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Abstract 16 

Cyanobacterial blooms in inland lakes produce large quantities of biomass that impact drinking 17 

water systems, recreation, and tourism and may produce toxins that can adversely affect public 18 

health. This study analyzed nine years of satellite-derived bloom records and compared how the 19 

bloom magnitude has changed from 2008-2011 to 2016-2020 in 1881 of the largest lakes across 20 

the contiguous United States (CONUS). We determined bloom magnitude each year as the 21 

spatio-temporal mean cyanobacteria biomass from May to October and in concentrations of 22 

chlorophyll-a. We found that bloom magnitude decreased in 465 (25%) lakes in the 2016-2020 23 

period. Conversely, there was an increase in bloom magnitude in only 81 lakes (4%). Bloom 24 

magnitude either didn’t change, or the observed change was in the uncertainty range in the 25 

majority of the lakes (n=1335, 71%). Above-normal wetness and normal or below-normal 26 

maximum temperature over the warm season may have caused the decrease in bloom magnitude 27 

in the eastern part of the CONUS in recent years. On the other hand, a hotter and dryer warm 28 

season in the western CONUS may have created an environment for increased algal biomass. 29 

While more lakes saw a decrease in bloom magnitude, the pattern was not monotonic over the 30 

CONUS. The variations in temporal changes in bloom magnitude within and across climatic 31 

regions depend on the interactions between land use land cover (LULC) and physical factors 32 

such as temperature and precipitation. Despite expectations suggested by recent global studies, 33 

bloom magnitude has not increased in larger US lakes over this time period. 34 

 35 
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1. Introduction  39 

Algal blooms are an emerging environmental issue adversely affecting and disrupting aquatic 40 

ecosystems globally (Brooks et al., 2016; Hou et al., 2022). Several non-toxic algal species can 41 

have high biomass, producing discoloration, hypoxia, and a foul odor that can adversely impact 42 

recreational activity, the economy, and ecosystems (Hallegraeff et al., 2021; Kudela et al., 2015). 43 

In addition, several species of cyanobacteria can produce cyano-toxins such as microcystins, 44 

anatoxins, cylindrospermopsin, and saxitoxins, all of which pose risks to human and animal 45 

health (Loftin et al., 2016). Intravenous exposure to microcystin caused an outbreak of acute 46 

liver failure and 76 deaths at a dialysis center in Caruaru, Brazil, in 1996 (Carmichael et al., 47 

2001). Although there is no comprehensive estimate of global economic loss due to harmful 48 

algal blooms (HABs), one study conservatively estimates the financial loss at several billion 49 

dollars (Kudela et al., 2015). A case study on the socio-economic impact, predominantly 50 

healthcare costs, of a single cyanobacteria harmful algal bloom (cyanoHAB) event in Utah Lake, 51 

USA, was valued at approximately $370,000 (2017 U.S. dollars) in 2017 (Stroming et al., 2020). 52 

Additionally, the frequent occurrence of cyanoHABs in inland lakes can affect the housing 53 

market. Zhang et al. (Zhang et al., 2022) reported that more frequent cyanoHABs in lakes or 54 

nearby water bodies decreased property values in four climate regions (Upper Midwest, South, 55 

Southeast, Northeast) in the U.S.  56 

 57 

The occurrence of HABs is a worldwide phenomenon. Several studies have suggested that 58 

climate change may be impacting the frequency and severity of harmful algal blooms (HABs) 59 

(Wells et al., 2020). Climate change could increase surface water temperature, cause more 60 

variable stratification (Wells et al., 2020), and thereby intensify the occurrence of cyanoHABs. A 61 
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recent satellite remote sensing-based study of 71 lakes with surface area >100 km2 distributed 62 

globally found that 68% had a significant increase in peak summertime bloom intensity from 63 

1982 to 2012. In contrast, peak summertime bloom intensity decreased in 8% of the lakes studied 64 

(Ho et al., 2019). However, the study did not find any consistent relationship between the 65 

increase in bloom intensity and commonly reported co-variates of the algal bloom – temperature, 66 

precipitation, and fertilizer use in the surrounding watershed. In contrast, Wilkinson et al. (2022) 67 

conducted a study using 10-42 years of field-measured chlorophyll-a (chl-a; mg m-3) data and 68 

reported no widespread algal bloom intensification in 323 lakes across American Midwestern 69 

and Northeastern states (Wilkinson et al., 2022). 10.8% of the water bodies had significant 70 

increases in bloom intensity, and 16.4% had significant decreasing trends (Wilkinson et al., 71 

2022). Hou et al. (2022) analyzed Landsat satellite images from 1982 and 2019 and reported 72 

changes in lacustrine bloom occurrence by decades in 21,878 lakes spread across six continents. 73 

Their study showed that bloom risk increased globally in the 2010s decade except for Oceania. 74 

Previous satellite-based studies (Ho et al., 2019; Hou et al., 2022) have used the Landsat 75 

datasets, which have a better spatial resolutions (30 meters) and a reduced revisit frequency (one 76 

image every 16 days), especially considering only the cloud-free days over the bloom season. On 77 

the other hand, the Medium Resolution Imaging Spectrometer (MERIS) from Envisat and Ocean 78 

and Land Colour Instrument (OLCI) on Sentinel-3A and 3B dataset provides a moderate spatial 79 

resolution (300m) but frequent temporal coverage (one image every other day) to observe 80 

cyanoHABs. Moreover, the MERIS/OLCI sensors have a 620 nm band used to identify and 81 

confirm the presence of cyanobacteria, which is not available on Landsat. With the availability of 82 

data from MERIS and OLCI, we bridge the knowledge gap by more frequently monitoring 83 
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cyanoHAB conditions with high fidelity in detecting cyanobacteria in the lakes across the 84 

CONUS.  85 

In this study, our goal was to investigate the change in cyanoHAB biomass in a larger set of 86 

lakes across the CONUS by using  data from the Cyanobacteria Assessment Network (CyAN) 87 

project (CyAN; Schaeffer et al., 2015) to assess how the bloom magnitude (Mishra et al., 2019) 88 

has changed in the OLCI era (2016-2020) relative to the MERIS era (2008-2011) in large lakes 89 

across the CONUS. The CyAN project has generated products from MERIS (2002-2012) and 90 

OLCI (2016-present)(Seegers et al., 2021). Datasets from the CyAN project have already been 91 

used for estimating areal extent (Schaeffer et al., 2022), temporal frequency (Clark et al., 2017; 92 

Coffer et al., 2020), occurrence (Coffer et al., 2020), and magnitude (Mishra et al., 2019). Here 93 

we expand beyond those studies by examining the combined MERIS and OLCI data sets to look 94 

at the spatial and temporal patterns in bloom magnitude and to identify environmental factors 95 

that may influence these patterns. In addition, we used several Land Use and Land Cover 96 

(LULC) datasets and physical data records such as precipitation and temperature to identify the 97 

critical LULC and physical factors contributing to the change in cyanoHAB magnitude. 98 

Specifically, we investigated 1) how the cyanoHAB magnitude has changed in the CONUS lakes 99 

over 2016-2020 compared to 2008-2011 and 2) what physical and LULC factors may have 100 

contributed to the change. 101 

 102 

2. Materials and Methods  103 

We used the remotely-sensed cyanobacteria bloom products termed the Cyanobacteria Index 104 

(CIcyano), from the CyAN project (CyAN) to calculate cyanoHAB bloom magnitude in nominal 105 

chl-a units representing the annual mean cyanobacterial chl-a concentration in a lake over the 106 

recreational season. Then, we calculated the median bloom magnitude over 2008-2011 (four 107 
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years) and 2016-2020 (five years) in 1881 lakes across the CONUS (Fig. S1, SM text 1) and 108 

used it for change analysis between those two observation periods using three different 109 

approaches described below. We then used Geographically Weighted Regression (GWR) to 110 

explain the spatial association of cyanoHAB bloom magnitude with physical factors related to 111 

temperature and precipitation and Land Use/Land Cover (LULC) surrounding the water bodies 112 

in three iterations - 1) the whole dataset, 2) a group of lakes where bloom magnitude had 113 

increased, and 3) a group of lakes where bloom magnitude has decreased. Then, we analyzed the 114 

distribution of physical and LULC covariates by lake groups, where bloom magnitude has 115 

increased or decreased, and reported if the difference in group medians is statistically meaningful 116 

using Cohen's d metric (Cohen, 1988; Sawilowsky, 2009). Finally, we linked the distribution of 117 

NOAA climate extreme index (CEI) and LULC variables over 2008-2011 (MERIS) and 2016-118 

2020 (OLCI) with the change in bloom magnitude (Increase or Decrease). Specific details on 119 

data and methods are provided below. In addition, a conceptual workflow summarizing the data 120 

flow and analysis methods is provided in Fig. 1 for clarity. 121 

 122 

2.1.Remote sensing data  123 

Cyanobacteria Index (CIcyano) 124 

The CIcyano products were derived from 300 m resolution data from the MERIS sensor onboard 125 

the Envisat satellite for 2002-2011 and from the OLCI sensor on the Copernicus Sentinel-3A/3B 126 

mission for 2016-2020 through the CyAN project (CyAN). There is a temporal data gap in the 127 

satellite CIcyano time series as a comparable sensor only became available in orbit when the 128 

MERIS replacement OLCI became operational mid-2016. While the MERIS sensor was 129 

intermittently available for CONUS from 2002 through 2007, continuous, full-resolution data 130 
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were only available for CONUS between 2008 and 2012. The CIcyano is calculated from the 131 

spectral surface reflectance (ρs(λ); unitless). It is produced using l2gen, the NASA standard 132 

software packaged within SeaDAS (https://seadas.gsfc.nasa.gov) for processing Level-2 ocean 133 

color data, and projected to an Albers equal area projection. ρs(λ) data are determined by 134 

removing Rayleigh radiances and gaseous transmission effects corrected for elevation from the 135 

instrument-observed top-of-atmosphere radiances, then converted to reflectance via 136 

normalization to downwelling irradiance at the sea surface (Seegers et al., 2021). Clouds are 137 

masked using a cloud detection algorithm  (Wynne et al., 2018). Finally, adjacent pixels along 138 

each water body are masked to avoid land adjacency issues, including mixed land/water pixels, 139 

and to ensure the signals originating from land vegetation were identified and excluded from 140 

further analysis (Urquhart and Schaeffer, 2020). CIcyano (Stumpf et al., 2016b; Wynne et al., 141 

2008), was then calculated as follows.  142 

 143 

𝑆𝑆𝑆𝑆(681) = 𝜌𝜌𝑠𝑠(681) − 𝜌𝜌𝑠𝑠(665) − {𝜌𝜌𝑠𝑠(709) − 𝜌𝜌𝑠𝑠(665)} ∗ (681−665)
(709−665)

𝑆𝑆𝑆𝑆(665) = 𝜌𝜌𝑠𝑠(665) − 𝜌𝜌𝑠𝑠(620) − {𝜌𝜌𝑠𝑠(681) − 𝜌𝜌𝑠𝑠(620)} ∗ (665−620)
(681−620)

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
= |𝑆𝑆𝑆𝑆(681)|
= 0 

      𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆(681)<0 & 𝑆𝑆𝑆𝑆(665)>0
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

      (1) 144 

 145 

Where ρs(x) indicates Rayleigh-corrected surface reflectance measured at a band with a bandcenter 146 

of x nm. The algorithm is explained in greater detail elsewhere (Lunetta et al., 2015; Mishra et al., 147 

2021; Mishra et al., 2019). 148 

 149 

We applied the algorithm to both MERIS and OLCI which have equivalent bands by design. Our 150 

previous work has shown that OLCI requires a correction of 6% in the CIcyano to match MERIS 151 

https://seadas.gsfc.nasa.gov/


 8 

CIcyano (Wynne et al., 2021). While European Space Agency's OLCI calibration reprocessing is 152 

ongoing, we incorporated inter-calibration correction by multiplying OLCI CIcyano with 1.06 to 153 

match the MERIS CIcyano time series. The data sets were composited with the maximum CIcyano 154 

value at each pixel for each sequential 7-day period for OLCI and MERIS starting in 2008. This 155 

approach reduces the impact of missing data due to clouds and underestimation of these blooms 156 

due to strong winds (Stumpf et al., 2012; Wynne et al., 2010). Less frequent coverage may miss 157 

more intense, especially scum-forming blooms if the only clear days during the composite were 158 

windy. Thus, the compositing process also minimizes the varying impact of wind on satellite-based 159 

cyanobacteria detection. Composite pixels with no valid data were excluded in the magnitude 160 

analysis, as described next.  161 

2.2.Seasonal Bloom Magnitude  162 

Cyanobacteria bloom magnitude is intended to represent the two key aspects of algal blooms: 163 

biomass quantity and bloom duration. Other metrics like frequency and spatial extent (Coffer et 164 

al., 2021; Schaeffer et al., 2022) provide information on temporal and spatial aspects of the bloom 165 

within a lake, but they do not address seasonal intensity. A spatial-temporal mean captures the 166 

quantity and duration of an entire lake over a season (or year). Accordingly, we estimated the 167 

bloom magnitude as spatiotemporal mean cyanobacteria biomass (Mishra et al., 2019) over the 168 

recreational season (May through October) within a lake as follows: 169 

 170 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  
𝑎𝑎𝑝𝑝
𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

1
𝑀𝑀

 �
1
𝑇𝑇
��𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝,𝑡𝑡,𝑚𝑚

𝑃𝑃

𝑝𝑝=1

𝑇𝑇

𝑡𝑡=1

𝑀𝑀

𝑚𝑚=1

      (2) 171 

 172 
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The indices P and T in Eq. (2) represent the number of valid pixels in a lake or water body and 173 

the number of composite (time) sequences in each month (e.g., four in a month), respectively. M 174 

is the number of months in a season or annual study period; ap is the area of a pixel, and Alake is 175 

the area of the lake taken from the National Hydrography Dataset Plus version 2.0 (NHDPlusV2) 176 

lake vector layer (McKay et al., 2012) (see SM text 1). Using only valid pixel area to calculate 177 

spatial mean could add bias to the estimates. While more invalid pixels over high-concentration 178 

bloom events will underestimate, more invalid pixels over bloom-absence or non-detect pixels 179 

will overestimate the bloom magnitude. Therefore, we used the lake area in Eq. (2), which may 180 

introduce a systematic bias that could underestimate the results. As MERIS has a somewhat 181 

higher rate of invalid data, MERIS bloom magnitudes may be underestimated slightly more than 182 

OLCI. (The significance will be covered in the discussion.) Bloom phenology could vary slightly 183 

from southern to northern CONUS due to the seasonality in temperature and diurnal light 184 

availability. Additionally, snow/ice cover during winter is another significant issue in the 185 

northern CONUS. Therefore, in the high-latitude regions in the CONUS, we needed to exclude 186 

winter months. However, that would introduce positive bias in data quantity in the southern 187 

CONUS in the analysis. Therefore, we decided to use the recreational season as the time range 188 

for this study. Previous research has shown that the uncertainty in CIcyano products is about 1x10-4 189 

CIcyano (Stumpf et al., 2016a). Therefore, we excluded all pixels < 1×10-4 CIcyano. As CIcyano 190 

values are relative index, we presented the spatio-temporal mean cyanobacteria bloom magnitude 191 

as nominal cyanobacterial chl-a concentration based on the relationship available for the CONUS 192 

lakes (Seegers et al., 2021).  193 

 194 

 𝐶𝐶ℎ𝑙𝑙-𝑎𝑎 (𝑚𝑚𝑚𝑚 𝑚𝑚−3) = 6620 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�  (3) 195 
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 196 

The intercept term from Seegers et al. was not included as it was not meaningfully different from 197 

zero (Seegers et al., 2021). The slope term had an uncertainty of about 10%, which does not 198 

impact the analysis, as our computations are based on the CIcyano, with chl-a used only for 199 

reporting. From here onwards, we refer to spatio-temporal mean cyanobacteria bloom magnitude 200 

as “bloom magnitude” for brevity.   201 

 202 

2.3. Change analysis 203 

A single change analysis was limited in demonstrating the various aspects of the change, such as 204 

increasing or decreasing temporal patterns, the difference in the size of the bloom magnitude, and 205 

proportional change between two time periods. In addition, there is a temporal data gap in the 206 

CIcyano time series from 2012-2015. Therefore, we analyzed the change in bloom magnitude in the 207 

2016-2020 period compared to the 2008-2011 period through (1) year-over-year change rate, (2) 208 

change between WHO alert levels, and (3) ratios of bloom magnitude between time periods.  209 

 210 

2.3.1. Change rate in year-over-year bloom magnitude 211 

We used Theil-Sen’s slope estimator (Sen, 1968) to assess temporal change patterns in the bloom 212 

magnitudes over the MERIS-OLCI study period (2008-2020). We also used Kendall’s τ 213 

(Kendall, 1938) for the Sen slope’s strength. Theil-Sen’s estimator for slope makes no 214 

assumptions about data and error distribution and provides an unbiased estimate of trend  (Hirsch 215 

and Slack, 1984). Theil-Sen’s slope was expressed in the units of mg m-3 yr-1. Kendall’s τ is a 216 

non-parametric statistical measure of rank correlation and is used to measure the ordinal 217 

association between two quantities. The value of the coefficient could vary from 1 when the 218 

ranking of the two measures is the same (perfect agreement) to -1 when the order of the two 219 
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measures is reversed (perfect disagreement). |τ| values of < 0.3, 0.3-0.5, and > 0.5 are interpreted 220 

as weak, moderate, and strong strength in the relationship. Additionally, we determined the 221 

uncertainty in Sen slope estimates by converting CIcyano uncertainty to a nominal chl-a. The 222 

detection threshold of CIcyano is about 1x10-4 CIcyano (Stumpf et al., 2016a). We assumed that a 223 

change of 1.324 mg m-3 of chl-a (2×10-4 CIcyano×6620) from 2008 to 2020 (13 years) cannot be 224 

measured due to the uncertainty associated with the retrievals. A difference of twice the 225 

uncertainty would conservatively accommodate uncertainty in the change analysis. Thus, we 226 

used a slope of 0.1 mg m-3 yr-1 (1.324 mg m-3 /13 years) as uncertainty in the change rate 227 

analysis. This value may appear small because it reflects the bloom as averaged over the lake and 228 

season, but it excludes any trend resulting from random patterns in the noise. 229 

 230 

2.3.2. Change between WHO alert levels 231 

We used the satellite-derived median bloom magnitude from the two periods to determine WHO 232 

alert levels (Chorus and Welker, 2021) for a given lake. WHO alert levels: Vigilance (chl-a of 3-233 

12 mg m-3), Alert Level-1 (chl-a of 12-24 mg m-3), Alert Level-2 (chl-a > 24 mg m-3) are 234 

monitoring and management action sequences that replaced the previous WHO guidelines of low, 235 

moderate, and high-risk categories for cyanoHAB monitoring (see SM text 2). In the current 236 

context, the alert level would indicate a lake’s seasonal average alert level over the corresponding 237 

time period. Further, we highlighted when lakes changed alert levels. To capture the changes, we 238 

used a code that concatenates the 2008-2011 alert level, then the 2016-2020 alert level. E.g., code 239 

A1V represents a lake changed from Alert level 1 (A1) in 2008-2011 to vigilance (V) level during 240 

2016-2020. 241 

 242 
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2.3.3. Bloom magnitude ratio 243 

We took the ratio of the median annual bloom magnitude from the MERIS period (2008-2011) to 244 

the median bloom magnitude from the OLCI period (2016-2020). We expressed the ratio as a 245 

fold change. OLCI: MERIS ratio of <1, 1, and >1 indicates a decrease, no change, and an 246 

increase in bloom magnitude. We used log2 of the fold change to show proportional change in 247 

both positive (increase) and negative (decrease) directions more intuitively. With log2 of the 248 

ratio, a two-, four-, or eight-fold increase in magnitude equals a log2 fold change of 1, 2, or 3.  249 

An equivalent decrease (two-, four, or eight-fold, or 1/2, 3/4, or 7/8, respectively) would be 250 

expressed as a log2 fold change of -1, -2, or -3.  Log2 ratio value of 0 indicate no change between 251 

MERIS and OLCI. As the detection threshold is about 1x10-4 CIcyano (Stumpf et al., 2016a), a 252 

difference of twice that (2x10-4 CIcyano) would conservatively accommodate uncertainty in the 253 

change analysis. In chl-a units (Equation 3), this value equates to 1.324 mg m-3. We used a 254 

conservative estimate of ±2 mg m-3 as a threshold for identifying changes of higher confidence. 255 

 256 

For further analysis, we grouped lakes into two categories. 1) Increase, where log2 OLCI: MERIS 257 

bloom magnitude was ≥ 1, and 2) Decrease: where Log2 OLCI: MERIS bloom magnitude was ≤ 258 

-1. 259 

 260 

2.3.4. Finding consensus among three change analyses   261 

We used a majority voting approach to combine the change outcomes from three analysis 262 

methods and find a consensus. We chose this approach because it is straight-forward and as 263 

effective as other complicated schemes (Lam and Suen, 1997). Majority voting takes decisions 264 

from multiple classifiers or, in our case, change analysis methods and finds the most frequent 265 
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output as the consensus. In this study, consensus occurs when the majority of the methods agree 266 

on the type of change. A lack of consensus would mean the observed change is uncertain. Using 267 

this approach, we can identify the set of lakes where the change outcomes have  268 

1) a unanimous agreement (all three have the exact change outcome),  269 

2) a majority agreement (two out of three have the exact change outcome), or  270 

3) no agreement at all (all three have different change outcomes). 271 

 272 

2.4.Climate data 273 

We used monthly climate data to find correspondence between the observed differences in 274 

bloom magnitude and the climate variables. We downloaded monthly climate data aggregated 275 

within U.S. climate division boundaries from NOAA National Climate Prediction Center 276 

(NCPC) (NOAA-NCPC). The dataset included temperature (°F), precipitations (inch), and 277 

degree days (°F) data. Further, we derived additional features from the monthly climate data by 278 

taking the statistical mean, min, and max of a climate variable over a specific time period (a 279 

month or over several months), which included the maximum temperature from March to 280 

October (°C) or the sum of precipitation over May and July as cumulative precipitation (May-281 

July) (mm). Although aggregation of climate variables was based on lacustrine cyanobacterial 282 

algal bloom phenology in the CONUS lakes (Coffer et al., 2020), final climate variables were not 283 

selected a priori. The variable selection process was entirely data-driven based on the Random 284 

Forest model to determine variable importance. In addition, we downloaded U.S. Climate 285 

Extreme Index (CEI) dataset for the warm season period (April-September) by climate region 286 

from the National Climate Data Center (NCDC) website (NCDC-NOAA). CEI quantifies 287 

observed changes in climate within the CONUS by summarizing a complex set of 288 

multidimensional climate variables in the U.S. within nine climate regions defined by the 289 
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National Center for Environmental Information (Karl and Koss, 1984). We used CEI for the 290 

observation period to find correspondence between a simplified and summarized state of climate 291 

and the cyanoHAB occurrences in the CONUS lakes. 292 

 293 

2.5.Land Use and Land Cover (LULC) data 294 

We downloaded annual LULC data for the years 2008-2011 and 2016-2020 from the United 295 

States Department of Agriculture (USDA) National Agricultural Statistical Service (NASS) 296 

website (NASS-USDA). For each lake, we extracted the corresponding LULC data within 297 

hydrological units at three hierarchical level that encloses the lake. Hydrologic Unit Code (HUC) 298 

is a hierarchical land area classification system created by the United States Geological Survey 299 

(USGS) based on surface hydrologic features in a standard, uniform geographical framework 300 

(HUC-USGS; Seaber et al., 1987). The United States is divided into successively smaller 301 

hydrologic units, which were classified into regions (HUC-2), subregions (HUC-4), basins 302 

(HUC-6), sub-basins (HUC-8), watersheds (HUC-10), and sub-watersheds (HUC-12). In this 303 

study, we used HUC-8, -10, and -12 to account for LULC and physical factors surrounding a 304 

lake at sub-basin, watershed to sub-watershed scale, and their effect on bloom magnitude. We 305 

extracted annual acreage information of relevant LULC types that included cropland area, 306 

wetland, grassland and pasture, forest and shrubland, and developed area within three 307 

Hydrological Unit (HU) boundaries with HU codes eight, ten, and twelve (HUC8, HUC10, 308 

HUC12) by converting extracted pixel counts from the cropland Data Layers (CDL) to acreage 309 

by LULC type. Further, we calculated the fraction of acreage of each LULC class in each HU by 310 

taking the area of the corresponding HU into account. We included HUCs at three different 311 

scales enclosing a lake (HUC8, HUC10, HUC12) and allowed the Random Forest feature 312 
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selection (described below) to determine the dependence between the spatial scale of LULC 313 

variables and how they affect the bloom magnitude. 314 

  315 

2.6.Feature selection with Random Forest model 316 

We derived 146 input variables - 67 physical/climate variables summarized by the climate region 317 

(associated geographically) and 79 LULC variables at three hydrologic units enclosing the lakes. 318 

Considering many input variables, we used Random Forest (RF) regression model as a tool for 319 

feature selection. RF models have been effectively used to eliminate unimportant variables or 320 

features, and it has been instrumental even in datasets with a higher number of features (Chen et 321 

al., 2020). Based on feature rank and their importance, we selected eight LULC and climate 322 

features for modeling bloom magnitude, which are listed in Table 1. See SM text 3 for additional 323 

details about the RF model and selected features. 324 

  325 

2.7.Geographically weighted regression (GWR) 326 

GWR is a spatial statistical method for modeling spatially heterogeneous processes that allow the 327 

relationships between a response and a set of covariates to vary across geographic space 328 

(Brunsdon et al., 1996; Fotheringham et al., 1997; Fotheringham et al., 2001). GWR is a better 329 

approach (Kang et al., 2023) compared to classical linear regression when the effects of 330 

independent variables are not static over space. The key assumption in linear regression is that 331 

the data comes from an independent and identically distributed population of random variables. 332 

It does not assume that regression parameters in the model had relations with the geographical 333 

location of variables. However, GWR incorporates spatial information into the regression model, 334 

allowing uncovering of the spatial variation in the relationship among variables.  335 
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 336 

We used GWR in this study to model localized physical and anthropogenic factors surrounding a 337 

lake, listed in Table 1, and their association with the bloom magnitude in a lake. The primary 338 

component of GWR is the spatial weight matrix in which closer observations are assigned larger 339 

weights defined by spatial kernel functions such as a Gaussian function (Brunsdon et al., 340 

2002).Thus, localized regression models are calibrated by data from surrounding locations. GWR 341 

calibrates n number of regression models, where n is the number of lakes, producing n sets of 342 

model coefficients and model R2 (local R2), which can be visualized with descriptive statistics or 343 

as a surface map. We scaled the eight independent variables such that they vary from zero to one 344 

before training the GWR regression models. Therefore, we can compare the model coefficient 345 

maps and the relative effects of the independent variables based on the magnitude or size of the 346 

coefficients. Additional mathematical details of GWR are available in SM text 4. Note that we 347 

didn’t select the variables “locally”; instead, we selected the variables ‘globally’ using a Random 348 

Forest model. We wanted to capture local relations. However, we didn’t want to train over-fitted 349 

GWR models that can happen due to local variable selection. Additionally, we tried to select 350 

meaningful variables with broader significance across the CONUS to draw meaningful 351 

conclusions in a CONUS-wide study. 352 

 353 

3. Results 354 

3.1.Change in Bloom magnitude 355 

3.1.1. Temporal change rate  356 

In 1881 largest lakes across CONUS, bloom magnitude was lower over the OLCI period (2016-357 

2020) than the last four years of the MERIS period (2008-2011) (year-over-year median range 358 
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for OLCI of 0.8 – 1.1 mg m-3 vs MERIS of 1.4 – 1.7 mg m-3) (Fig. S2, Table S1). A widespread 359 

decrease in bloom magnitude from the MERIS (2008-2011) period to the OLCI (2016-2020) 360 

period was observed in lakes across the CONUS. Of the 1881 lakes, the Sen slope, a statistically 361 

robust metric for analyzing change over time in time series data (Hirsch and Slack, 1984), was 362 

negative in 1447 lakes (77%). Sen slope was positive in only 434 lakes (23%). However, the lake 363 

counts with decreasing and increasing pattern reduced to 415 (22%, Kendall’s τ of ≤ -0.3 and 364 

Sen slope < 0.1) and 135 (7%, Kendall’s τ ≥ 0.3 and Sen slope > 0.1), respectively, when 365 

Kendal’s τ and Sen slope uncertainty were used for assessing the strength of the change (Fig. 2a, 366 

Fig. 3a-b). Although a more decreasing than increasing change was observed, the Slope’s 367 

strength, per Kendal’s τ, was weak in majority of the lakes (n=1377, 73%) (Fig. 3c). Of 1377 368 

lakes with Kendal’s |τ| ≥ 0.3, 413 lakes had extremely small Sen slopes that fell within the 369 

uncertainty band of - 0.1 to 0.1 mg m-3 yr-1 (see Methods for uncertainty calculation). Similar 370 

changes were observed when bloom magnitude over 2003-2011 was used, underlining that the 371 

observed temporal change patterns were valid starting in 2003 (Fig. S3, SM text 5). 372 

 373 

3.1.2. Change between WHO alert levels  374 

Most lakes were below the WHO Vigilance (V) category, we called it No-risk (N), over the 375 

observation periods. During 2008-2011, 1130, 434, 195, and 122 lakes were in no-risk, vigilance 376 

(V), alert level-1 (A1), and alert level-2 (A2) categories, respectively (Figs. 2b). In the 2016-377 

2020 period, the number of lakes in the no-risk category increased to 1299 (+15%), while lake 378 

counts in the V, A1, and A2 categories decreased to 389 (-10%), 140 (-28%), and 53 (-56%), 379 

respectively. More lakes (403, or 21%) changed to a lower WHO category (Fig. 2c, green 380 

highlighted bars) than the number of lakes (70 or 3.7%) moving to a higher category (Fig. 4, Fig. 381 
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2c, red highlighted bars). The shift of lakes from V to No Risk level (N, < 3 mg m-3 chl-a) and 382 

A1 to V categories contributed to the significant decrease in the bloom conditions. On the other 383 

hand, 35 and 21 lakes from the N and V categories moved to V and A1 categories, highlighting 384 

the bloom magnitude increase in those lakes in recent years. However, 75% of the lakes 385 

(n=1408) maintained the same WHO category over the study period, out of which 1093 lakes 386 

were at no risk level over both time periods. As expected, of the 413 lakes with extremely low 387 

Sen slopes within the uncertainty band of - 0.1 to 0.1 mg m-3 yr-1, 411 (99%) of them fell within 388 

the NN (No-risk during both periods) category (Fig. 2a, c). 389 

 390 

3.1.3. Median bloom magnitude ratios  391 

The decreasing pattern was even more compelling when we summarized the change by the ratio 392 

of median bloom magnitudes from OLCI and MERIS periods (Fig. 5). 83.3% of the lakes 393 

decreased in bloom magnitude in 2016-2020 compared to 2008-2011 (Figs 5 and 6a). Only 312 394 

lakes (16.7%) had an increase in bloom magnitude. However, when accounted for uncertainty in 395 

the change analysis (|chl-a difference| > 2 mg m-3), 27% of lakes were identified where bloom 396 

magnitude decreased. Of 27% of lakes, there were 11.1% where bloom magnitude decreased up 397 

to 50% (log2 (OLCI: MERIS ratio) of -1 to 0) and another 11.3% of lakes where magnitude 398 

decreased 50-75% (log2 (OLCI: MERIS ratio) of -2 to -1) (Fig. 6b). The other 5% had a decrease 399 

of more than 75% (log2 (OLCI: MERIS ratio) < -2) of bloom magnitude from the MERIS period. 400 

Conversely, when uncertainty in data and methods are considered, bloom magnitude increased in 401 

only 5% of the lakes (Fig 6a). In that group, bloom magnitude increased 1-2-fold in the majority 402 

of the lakes (n=56, 3%), and greater than 2-fold in 2.07% of the lakes (Fig. 6b). 403 

 404 
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3.1.4. Consensus among change analyses 405 

The three different analyses showed consistency in change or no change (Fig. 7, left panel). 74% 406 

of the lakes had the same result in all three change analysis methods (unanimous consensus) 407 

(NNN, DDD, and III counts in Fig 7, right panel). None of the lakes showed an ‘Increase’ in one 408 

method and a ‘Decrease’ in another, indicating consistency among these methods. While 71% of 409 

the lakes showed no change based on the majority of methods, 25% of the lakes had a decrease, 410 

and only 4% had an increase (Fig. 7, right panel). Of 1335 lakes in the (majority consensus) ‘No 411 

Change’ category, bloom magnitude decreased in most of them when uncertainty in data would 412 

not be considered, based on temporal change rate (n=989, 74%) and bloom magnitude ratio 413 

method (n=1104, 83%). Thus, the bloom magnitude in most of the lakes in the ‘No Change’ 414 

category either decreased or the observed change was in the uncertainty range. 415 

 416 

3.2.LULC and physical factors 417 

Model coefficients from a GWR analysis highlight covariates’ non-stationary effects (effects that 418 

vary over space) on the bloom magnitude across CONUS, which is evident in the model 419 

coefficient surface maps (Fig. S4). The model’s performance in terms of R2 (median R2 = 0.46, 420 

3rd quantile R2 =0.58) across the CONUS implies there were effects from local anthropogenic 421 

and natural processes on bloom magnitude (Table 2, extended Table S2). The fraction of 422 

grassland and pasture in HUC10 and crop acreage in HUC12 are the top local factors (in the 423 

GWR neighborhood, see SM text 4) based on the size of the median parameter estimates (Table 424 

2). For 50% of the lakes, a higher proportion of grassland and pasture acreage and crop acreage 425 

in the nearby hydrologic units (HUCs) are positively associated with higher bloom magnitude. 426 

The impact of grassland and pasture on bloom magnitude is predominantly positive along the 427 
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west coast, along the Mississippi River delta, eastern Texas, and northern Michigan region, and 428 

primarily negative in central Texas, Minnesota and Wisconsin, Central Florida, Ohio River 429 

valley, and in the North Carolina coastal area (Fig. S4). Similarly, crop acreage fraction 430 

positively affected the bloom magnitude in the West North Central, Northwest, and Southwest 431 

climate region and negatively associated in the west coast, East North Central, and South climate 432 

regions, Florida, and Maine. 433 

 434 

Maximum temperature from May to October, Tmax (May-Oct), and cumulative degree days from 435 

May to October, CDD (May-Oct), are the top climatic variables associated with the bloom 436 

magnitude, with associations to half of the lakes across the CONUS (Table 2). Tmax (May-Oct) 437 

was positively associated with bloom magnitude in the Central, South, and Southeast climate 438 

regions. Tmax (May-Oct) was negatively associated in Florida and the southern tip of Texas, 439 

possibly suggesting high-temperature stress. Bloom magnitude in lakes in the Northeast and East 440 

Northcentral climate regions (New England region, Michigan, Wisconsin, and Minnesota) was 441 

associated negatively with Tmax (May-Oct). Spatial patterns of Cumulative CDD (Mar-Oct) 442 

effect on bloom magnitude is inverse of Tmax (May-Oct) coefficient surface (or inverse 443 

relationship with bloom magnitude) with exceptions in central Florida and part of the Northeast 444 

climate region. Although cumulative CDD (Mar-Oct) and Tmax (May-Oct) capture similar 445 

environmental information (temperature), their association with bloom magnitude is the opposite 446 

of each other. 447 

 448 

We also analyzed the ‘Increase’ and ‘Decrease’ groups based on bloom magnitude ratio (see 449 

section 2.3.3) of lakes and their corresponding covariates to see any association with bloom 450 
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magnitude (Fig. S5). The median PDSIAN (%) in the ‘Increase’ group (median: 6% of the area) 451 

was lower than the ‘Decrease’ group (median: 23% of the area), with a medium to large 452 

difference between the group means based on Cohen’s d (Cohen, 1988; Sawilowsky, 2009) (d =-453 

0.6, Table S3, Fig. S5). In other words, if PDSI was above normal in a larger fraction of a 454 

climate region area, bloom magnitude in lakes within that climate region decreased over the 455 

2016-2020 period compared to 2008-2011. Similarly, in lakes where bloom magnitude has 456 

doubled, 50% of the lakes (median) have experienced ~76 mm less cumulative precipitation 457 

during June-July of the corresponding year than the lakes in the ‘Decrease’ group. The 458 

difference between the group means was large, based on Cohen's d (d =-0.8, Table S3). Thus, 459 

lower cumulative precipitation and lower percent of the area with PDSI above normal conditions 460 

in a climate region were associated with an increase in bloom magnitude (Fig. S5, Table S3). On 461 

the other hand, the median Tmax (May-Oct) in the ‘Increase’ group was larger (2.5 °C) than in the 462 

‘Decrease’ group. Thus, the difference in Tmax (May-Oct) between the two groups was of 463 

medium strength (per Cohen’s d =0.49, Fig. S5, Table S3). Median cumulative CDD was 171.5 464 

°F higher in the ‘Increase’ group (Table S3). The differences between the two groups for 465 

cumulative CDD were of small strength (per Cohen’s d = 0.2, Table S3).  466 

 467 

3.3.The U.S. Climate Extremes Index (CEI) and bloom magnitude spatiotemporal patterns 468 

The spatial pattern of decrease in bloom magnitude was prominent in West North Central, South, 469 

Southeast, and Central climate regions, where ~20-40% of the lakes experienced a decrease in 470 

cyanoHAB magnitude per majority change among three methods (Fig. 8). Over the two 471 

observation periods, the regional patterns in the CyanoHAB decrease (Fig. 8) are similar to the 472 

patterns of the PDSIAN (Fig. 9a). Over the recent years, 2016-2020, PDSI was above normal in a 473 
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larger area in the above climate regions (excluding West North Central) compared to the 2008-474 

2020 period (Fig. 9a). In contrast, PDSI was below normal in significantly larger parts over the 475 

2008-2011 period highlighting dryer warm season conditions (Apr-Sept) in the eastern CONUS 476 

(Fig. 9b). Similarly, the maximum air temperature was above normal in a more significant part of 477 

those climate regions over the 2008-2011 period (Fig. 9c).  478 

 479 

Moreover, eastern CONUS, excluding the northeast, received up to ~137 mm of more 480 

cumulative precipitation and days of precipitation above normal in a larger part of the region in 481 

recent years (Fig. 9d-e, S6a). Similarly, one-day precipitation in parts of the West North Central 482 

climate region was higher over 2016-2020 compared to 2008-2011 (Fig. 9f). Increased 483 

precipitation in the U.S.-Midwest and Northeast lakes has been linked with decreasing trends in 484 

bloom magnitude (Wilkinson et al., 2022) . Therefore, above-normal conditions in wetness 485 

across a more prominent part and normal or below-normal conditions in maximum temperature 486 

over the warm season may have caused the recent decrease in bloom magnitude in the eastern 487 

part of the CONUS.  488 

 489 

In comparison to other parts of the CONUS, the western part saw the highest proportion of lakes 490 

(6-12%) with an increase in CyanoHAB magnitude (Fig. 5, Fig. 8). That could be due to the fact 491 

that up to 10-95% of the area in the western U.S. experienced above-normal maximum 492 

temperature and below-normal days of precipitation. Similarly, median Tmax (May-Oct) over 493 

2016-2020 was up to ~2°C higher than the 2008-2011 period in the western half of the CONUS 494 

(Fig. S6b). Rising temperatures favor cyanobacteria as they grow better at higher temperatures 495 

(Havens and Paerl, 2015; Paerl and Huisman, 2008). Accordingly, the temperature is expected to 496 
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increase the occurrence and magnitude of freshwater cyanobacteria (Wells et al., 2020). In 497 

addition, we observed ~10% of increased usage of land for growing row crops and all other 498 

crops in the West North Central climate region (Figure S7). In recent years, increased crop 499 

production may have contributed to more nutrient loading in the watersheds. An increase in corn 500 

acreage (a row crop) has been linked with an increase in nutrient loading to Lake Erie (Michalak 501 

et al., 2013). Thus, warmer conditions and more frequent above-normal precipitation days in the 502 

West North Central climate region may have caused increased nutrient loading that may have 503 

increased bloom magnitude.  504 

4. Discussion  505 

Our results provide empirical evidence of a recent decrease in bloom magnitude over 2016-2020 506 

compared to 2008-2011. All regions of the CONUS had more lakes that showed a decrease in 507 

bloom magnitude than an increase, even including areas where the maximum temperature 508 

increased (Fig. 8). Western U.S. did have the greatest increase in temperature, and compared to 509 

other regions, it had a higher proportion of lakes with an increase in bloom magnitude. Several 510 

studies have linked the warming of surface water to an intensification of algal blooms and 511 

postulated the future widespread intensification of algal blooms with the changing climate 512 

(Gobler, 2020; Paerl, 1988). (Gobler, 2020; Paerl, 1988). While these changes may cause 513 

intensification in the long term, the recent record from this study does not show such a pattern 514 

over the study period. A similar study in the U.S. Northeast and Midwest, including data from 515 

the 1980s to 2010s, found that only 10.8% of the 300 lakes experienced algal bloom 516 

intensification and concluded no widespread intensification in bloom intensity (Wilkinson et al., 517 

2022) . We found similar results for the equivalent regions (East North Central, Central, 518 
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Northeast), with negligible lakes seeing an increase (Fig. 8). Across the CONUS, only 4% of the 519 

lakes experienced a significant increase in bloom magnitude from 2008 to 2020. Although 520 

Wilkinson et al. had similar results, the observation periods were different: Wilkinson et al. used 521 

chl-a time series of varying observation periods (10 to 42 years with a median of 14 years) for 522 

different lakes, which can constrain comparisons between lakes. Nonetheless, our results and 523 

Wilkinson et al. indicate that a larger fraction of lakes decreased in bloom magnitude than 524 

increased. 525 

 526 

Spatial patterns of recent change from this study are consistent with the CONUS part of the 527 

decadal study of lakes around the globe by Hou et al. (2022). Although Hou et al. focused on 528 

global lakes, we could compare the change patterns from their study to ours by selecting the 529 

CONUS area from their report that occurred during our observation time. From 2000-2010 to 530 

2010-2019, they reported a decrease in bloom occurrence (or frequency of satellite-detected 531 

blooms) in the lakes they analyzed in the eastern U.S. and an increase in bloom occurrence in the 532 

western U.S. Thus, the long-term change in bloom occurrence can be region-specific; opposite 533 

patterns in temporal change are possible on a continental scale (Hou et al., 2022).  534 

 535 

 Recent (OLCI-based) temporal changes in cyanoHAB spatial extent in more than 2000 lakes 536 

across the CONUS were analyzed by Schaeffer et al. (2022). They found an increase from 2016 537 

to 2020. We have similar results. We aggregated all CONUS data from OLCI (2016-2020) and 538 

found an average increase in bloom magnitude (0.25 mg m-3 yr-1), corresponding to the spatial 539 

extent increase observed by Schaeffer et al. (2022). However, this increase was much smaller 540 

than the decrease from 2008-2011 to 2016-2020, so OLCI is still well below the 2008-2011 541 



 25 

bloom magnitude baseline. CyanoHAB magnitude changes varied dependent on the temporal 542 

scales considered, and we cannot assume that patterns over a few years represent longer trends. 543 

  544 

LULC and climate covariates as predictors of bloom magnitude are consistent with other studies 545 

(Iiames et al., 2021; Myer et al., 2020). For example, out of 75 landscape and lake physiographic 546 

predictor variables considered by Iiames et al. (Iiames et al., 2021), percent area forest, percent 547 

evergreen forest, percent area row crop, and percent area evergreen forest were among the top-548 

ten predictors. Myer et al. (Myer et al., 2020) reported that the important covariates are surface 549 

water temperature, ambient temperature, precipitation, and lake geomorphology. While CDD and 550 

PDSIAN, which we found to be important, were not explicitly considered by Myer et al., they are 551 

related to their climate variables.  552 

 553 

Here, we used data from two sensors to assess the change in bloom magnitude with the same 554 

algorithm. While the two sensors are not identical, OLCI was designed to be the continuity 555 

mission to MERIS with nearly-identical MERIS bands (ESA). MERIS calibration has been 556 

established through four iterations of processing (Ansko et al., 2015), while OLCI calibration is 557 

still being refined, necessitating the cross-calibration. Moreover, MERIS and OLCI have similar 558 

field-of-view (68.5°), comparable swath width (1150 km for MERIS and 1270 km for OLCI), 559 

and smile effects (1.7 nm for different cameras and 1.0 nm within one camera for MERIS and 560 

1.4 nm for different cameras and 1.0 nm within one camera for OLCI) (D’alba and Colagrande, 561 

2005; Vicent et al., 2016; Zurita‐Milla et al., 2007). Moreover, previous work inter-calibrated the 562 

OLCI CIcyano to match MERIS CIcyano (Wynne et al., 2021), which was applied to our analysis. 563 

Therefore, the difference in CIcyano from the two sensors would be minimal, with negligible 564 
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effect on our analysis, as the observed changes (%) are several folds larger than the expected 565 

uncertainty in the cross-calibration (<0.5% within geographic regions) (Wynne et al., 2021). To 566 

avoid issues with possibly different minimum detection limits between the sensors, we excluded 567 

all pixels with CIcyano values less than the uncertainty threshold of 1×10-4. The compositing of 568 

maximum values over a 7-days period reduces the impact of winds on strongly buoyant (i.e., 569 

scum-forming) blooms (Wynne et al., 2021). However, this could still impact the analysis; 570 

higher frequency data collection during OLCI period will increase the likelihood of getting 571 

imagery on clear and low wind days (Wynne and Stumpf, 2015; Wynne et al., 2010). As OLCI 572 

has a higher frequency (two satellites, wider swath, angled to reduce glint), more blooms may be 573 

recovered, which could bias OLCI toward higher magnitudes over 2016-2020. However, while 574 

OLCI might return more data, MERIS may be underestimated because of the difference in 575 

retrieved data. (MERIS 2008-2011 has a 10% lower data return than OLCI. As a result, more 576 

lakes may have seen a decrease in significant bloom intensity than we reported. That is the 577 

opposite of the observed change – a decrease in magnitude from 2008-2011 to 2016-2020. Some 578 

lakes may have cyanobacteria that are below detection but of consequence. On the other hand, a 579 

standard water sample from a location near the shore where accumulation occurred would 580 

overstate the true magnitude of the bloom in the lake. Finally, the satellite-derived chl-a 581 

estimates have an uncertainty with 60% mean absolute error at the national scale (Seegers et al., 582 

2021), 84% overall agreement against in-situ toxin data (Mishra et al., 2021), and 73% overall 583 

agreement with state-reported events (Whitman et al., 2022). However, the CIcyano-chl-a 584 

algorithmic error reported by (Seegers et al., 2021) is within the previously reported possible 585 

uncertainty range of 39% to as high as 68% in the field chl-a measurements (Gregor and 586 

Maršálek, 2004; Trees et al., 1985).  Moreover, World Health Organization (WHO) thresholds 587 
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between alert levels have broader chl-a bands, hence greater uncertainties (Chorus and Welker, 588 

2021). In addition, spatial-temporal representation from discrete samples does not reflect the 589 

larger systems observed by moderate-resolution satellite sensors. For example, discrete in situ 590 

water samples in cyanobacteria blooms may differ by as much as two orders of magnitude within 591 

tens of meters. Therefore, it is practically impossible to collect representative water samples 592 

when subsurface aggregations of cyanobacteria or surface scums occur (Kutser, 2004). Thus, the 593 

observed error could also be due to high variability and uncertainty in the field data. On the other 594 

hand, satellite-measured CIcyano measurements have high temporal consistency. Most regional 595 

deviation from the national chl-a calibration would be systematic in each lake. For example, the 596 

standard error in the CIcyano-chl-a slope, parameterized in several Southern Florida lakes, was 597 

~7% (Tomlinson et al., 2016). Therefore, it would not significantly affect the change detection 598 

analysis as we compare how the bloom magnitude changed in the same lake over time. 599 

5. Conclusion 600 

Our study highlights the spatially varying interactions between cyanobacteria presence, LULC, 601 

and physical factors. Temporal changes in bloom occurrence can vary significantly at country, 602 

continental, and global scales (Hou et al., 2022), potentially due to the interaction between 603 

precipitation, temperature, and LULC. Moreover, temperature and precipitation do not 604 

monotonically increase across a continent in response to increases in CO2. Therefore, 605 

spatiotemporal change patterns in HAB conditions should be assessed on relevant scales for 606 

better spatial granularity. While the CONUS had an overall recent decrease in bloom magnitude 607 

compared to 2008-2011, there were clear regional differences, with some regions showing no 608 

change or an increase. Moreover, bloom magnitude has been increasing since 2016 in seven of 609 
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nine climate regions, excluding the Northeast and Southwest, where the change is negligible, 610 

highlighting the cyclicity in bloom magnitude, which may be due to the cyclicity in temperature 611 

(Li et al., 2021) and precipitation signals (Armal et al., 2018). We should also expect that 612 

temperature and precipitation cyclicity will continue, and some regions will see an increase in 613 

bloom magnitude over the next decade if climate patterns conducive to cyanobacteria growth 614 

occur. Similarly, changes in the landscape and land use can also alter the dynamics. For example, 615 

a change in fertilizer practice with no-till farming altered the bioavailable phosphorus in the Lake 616 

Erie watershed, leading to a greater susceptibility of the lake to cyanobacterial blooms in the last 617 

decade (Baker et al., 2014), which may be mitigated by additional changes in agricultural 618 

practice. Finally, as we saw regional patterns in the CONUS, we may not expect any systematic 619 

global patterns in response to climate. That is because several other factors, such as lake depth 620 

and morphology, nutrient level, and the surrounding landscape and hydrology, can affect the 621 

climate-bloom response interaction (Hou et al., 2022; Kosten et al., 2012; Qin et al., 2020). And 622 

certainly, the level of eutrophication will vary across countries and climatic zones. Therefore, 623 

extensive ecosystem-scale mechanistic modeling is required to quantify the impacts of increased 624 

temperature and nutrient loading on cyanoHABs at multiple spatial scales. 625 

 626 
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Figures627 

 628 

Figure 1. Satellite data processing and analysis workflow highlighting key methods and steps 629 

carried out to study how cyanobacteria bloom magnitude has changed in the CONUS lakes in 630 

2016-2020 compared to 2008-2011. 631 

 632 
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633 

Figure 2 a) Distribution of Sen's slope from the bloom magnitude change rate analysis. Green 634 

and red colors highlight the negative and positive changes in the time series. Slopes that fell 635 

within the uncertainty range (-0.1 to 0.1 mg m-3 yr-1) are highlighted in gray color. Lighter and 636 

darker shades of color indicate two significance levels - Kendall's |τ| ≥ 0.3 and ≥ 0.5, 637 

respectively. Sen slopes varied from -6.34 to 3.98 mg m-3 yr-1, but the axis was truncated to 638 

highlight the majority of the distribution; b) the number of lakes in each World Health 639 

Organization's CyanoHAB alert level (Chorus and Welker, 2021) in the contiguous United 640 

States. Gray and turquoise bars indicate the data from MERIS (2008-2011) and OLCI (2016-641 

2020) time periods; c) Number of lakes in each bloom status change class. Bar labels show the 642 

change from one alert level to another. E.g., A1V represents lakes changing from Alert level 1 in 643 

2008-2011 to vigilance level during 2016-2020.  644 
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 645 

Figure 3. Cyanobacterial chl-a time series in lakes as observed from the satellite-derived data. a) 646 

lakes where the bloom magnitudes have moderately or strongly decreased; b) Lakes where bloom 647 

magnitudes have moderately or strongly increased; c) lakes with weak decreasing or increasing 648 

patterns over the observation period. Gray lines indicate change over time with moderate 649 

(Kendall’s |τ| > 0.3), and colored lines indicate strong (Kendall’s |τ| > 0.5). Note satellite 650 

observation gap from 2012 through 2015. 651 

 652 
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653 

Figure 4. Change in cyanobacteria bloom magnitude as observed from MERIS (2008-2011) and 654 

OLCI (2016-2020) observations. Markers represent 1881 of the largest lakes in the contiguous 655 

United States that can be resolved with 300x300 m pixel resolution satellite data and have nine 656 

years of observation; their shapes show the bloom change among WHO alert levels (Chorus and 657 

Welker, 2021). As adopted from NOAA National Center for Environmental Information (NCEI) 658 

(Karl and Koss, 1984), nine climate regions are provided in the background for reference. In 659 

addition, lake counts in each climate region are provided as part of the labels. 660 

 661 
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 662 

Figure 5.  Changes in median bloom magnitudes in lakes between the two study periods 2008-663 

2011 and 2016-2020. Cooler colors indicate a decrease in median bloom magnitude, and warmer 664 

colors indicate an increase. A log2 fold change of 1, 2, and 3 shows an increase in bloom 665 

magnitude of two-, four-, or eight-fold. Similarly, a log2 fold change of -1, -2, and -3 indicates 666 

halving (50% decrease), quartering (75% decrease), and 87% decrease. Log2 (OLCI: MERIS 667 

ratios) of 0 indicate no change. Bubble size is proportional to log2 (OLCI: MERIS ratio). Gray 668 

bubbles highlight the lakes where the absolute difference between the magnitudes from the two 669 

study periods was ≤ 2 mg m-3 of chl-a. 670 

 671 

 672 

 673 

 674 



 34 

 675 

Figure 6. a) Distribution of bloom magnitude ratios across the CONUS. The histogram with blue 676 

(left) shows the lakes where bloom magnitude decreased, whereas the one with red (right) shows 677 

the ratio when the median magnitude over the OLCI period increased. A log2 fold change of 1, 2, 678 

and 3 shows an increase of 2-, 4-, or 8-fold. Similarly, a log2 fold change of -1 and -2 indicates a 679 

decrease of 1/2, 3/4, and 7/8. Log2 (OLCI: MERIS ratios) of 0 indicate no change. The gray 680 

histogram represents lakes where the change in bloom magnitude fell within ± 2 mg m-3, and b) 681 

Same data summarized as percent of lakes in increase/decrease discrete bins. 682 

 683 
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Figure 7. Left panel: Summary of change analysis from three different methods. Right panel: 684 

Consensus in change analysis as observed through three change analysis methods. Each bar 685 

represents the lake count with the change observed from year-over-year change rate, ratios of 686 

bloom magnitudes, and change between WHO alert levels. E.g., the bar labeled NDD represents 687 

that the change was observed as ‘No change’, ‘Decrease’, and ‘Decrease’ from year-over-year 688 

change rate, ratios of bloom magnitudes, and change between WHO alert levels, respectively. 689 

 690 

Figure. 8. Proportion of lakes experiencing an increase or decrease in bloom magnitude as 691 

observed by the change majority (change determined by two out of the three methods) in each 692 

climate region. Blue, red and gray bar colors indicate ‘Decrease’, Increase’, and ‘No change’ in 693 

bloom magnitude, respectively. 694 

  695 
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 696 

Figure 9. The distribution of NOAA climate extreme index (CEI) components over the warm 697 

season (Apr-Sep) in each climate region in the CONUS. Cumulative precipitation (Jun-Jul) is not 698 

a component of the CEI, but included here for comparison. Left and right bound of the boxes 699 

represent the first and third quartiles, respectively. The whiskers show 1.5 times of the 700 

interquartile range. The vertical bars in the middle of the boxes are the median, and the diamond 701 

markers are detected as outliers. 702 
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 703 

Table 1. List of selected land use and land cover (LULC) and climate features chosen by a Random 704 

Forest model and used in the Geographically Weighted Regression (GWR). 705 

Selected features Description 

All_crops_acr_pct_hu12 Percentage of the total acreage of all croplands in the HUC 
12, representing the agricultural activity in the hydrologic 
unit surrounding a lake under study.  

Forest_shrub_acr_pct_hu8 Percent area of the HU with code eight surrounding a lake 
covered by forest and shrubland.  

Grassland_pasture_acr_pct_hu10 Percent area of the HU with code ten surrounding a lake 
covered by grassland and pasture. 

Wetland_acr_pct_hu12 Percent area of the HU with code 12 surrounding a lake 
covered by wetlands.  

PDSI above normal (PDSIAN) Palmer Drought Severity Index (PDSI) is a standardized 
index computed from temperature and precipitation data to 
estimate relative dryness.  

Tmax (Mar-Oct) (°C) Maximum temperature observed from March to October. 

Cumulative precipitation (Jun - 
July) 

The accumulation of precipitation over June to July 
measured in mm. 

Cooling Degree Days (CDD)(°F) It represents how much warmer the mean air temperature 
is compared to a baseline temperature. 

  706 
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Table 2. Median model coefficients from the geographically weighted regression model with Land 707 

use/Land Cover (LULC) and climate variables as the explanatory variables. An extended summary 708 

statistic of the model coefficients is available in Table S2. 709 

 710  
Median 

coefficient  

Intercept 1.64 

All croplands fraction (%) in HUC12 3.03 

Forest and shrubland fraction (%) in HUC8 -2.05 

Grassland and pasture fraction (%) in HUC10 7.49 

Wetland fraction (%) in HUC12 0.31 

Cum. CDD (Mar-Oct) (°F) -16.66 

PDSI above normal (% area) -1.21 

Tmax (May_Oct) (°C) 10.31 

Cum. Precip (Jun-July) (Inch) 1.01 

Residuals -0.35 

Local R2 0.46 
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