Thermal Desktop Modeling of the 2016 CRYOTE-2 Tank Chill and Fill Tests

Erin Tesny, Jason Hartwig NASA Glenn Research Center

Presented at the 30th Space Cryogenics Workshop July 18, 2023

- Introduction
- CRYOTE-2 Test Set Up
- 2016 Tests Overview
- Thermal Desktop Model Set Up
- Modeling Challenges
- Results
- Conclusion & Future Work

- Cryogenic fluid storage and transfer systems are key to enabling future space missions. Of particular interest are fuel depots in LEO
- Accurate modeling of chilldown and transfer methods is needed
- Previous ground tests have been conducted of tank chilldown and fill with various injectors
- These historical datasets can be leveraged to create future predictive models of tank chilldown and fill operations

CRYOTE-2 Test Overview

- Rapid chilldown and No-Vent Fill (NVF) ground tests
- Spherical Receiver Tank: 0.221m³, 6-4 Titanium wall and 304 SS lid
- Liquid Nitrogen
- 3 Different Injectors
 - <u>3-spray nozzle</u>
 - 4 Successful Tests (> 90% fill)
 - 4 Failed Tests (MEOP exceeded)
 - 8-orifice inverted showerhead
 - 16-orifice inverted showerhead

- Current work is among most challenging cases modeled in TD to date given high thermal gradients (high wall temperatures at start of fill)
- 2016 CRYOTE-2 tests lacked a flow meter on the inlet line
- Fill Level was calculated using the load cells under the receiver tank
- Mass flow rate can be backed out from the fill level but only during FILL, not during CHILLDOWN
 - Only FILL was modeled in TD
- Model Outputs:
 - Receiver Tank Pressure
 - Fill Level
 - Average Wall Temperature

		Avg CRYOTE		CRYOTE					CRYOTE
		Inlet	TC50	Tank	CRYOTE	CRYOTE	CRYOTE	CRYOTE	Mass Avg
	VATA	Pressure	Median	Pressure	Ullage	Mass	Mass	LL at	Tank
	Supply	during	during	at NVF	Temp at	Liquid at	Vapor at	NVF	Temp at
Date	Pressure	NVF	NVF	Start	NVF Start	NVF Start	NVF Start	Start	NVF Start
Test Name	kPa	kPa	К	kPa	К	kg	kg	% Fill	К
20160914	310.3	288.83	85.88	261.53	86.75	1.42	2.19	0.83	242.89
20160921	310.3	245.65	85.53	226.40	84.96	2.77	1.92	1.62	227.42
20161004	310.3	277.02	86.58	244.28	86.20	2.28	2.05	1.34	192.78
20161005	310.3	236.56	85.10	225.30	85.15	7.44	1.86	4.32	162.66
20161006.1	310.3	243.45	85.21	233.50	85.64	6.77	1.92	3.94	165.33
20161006.2	310.3	242.86	85.21	233.50	85.64	6.77	1.92	3.94	165.33
20161006.3	310.3	293.05	86.08	241.34	85.96	5.35	2.00	3.11	172.56
20161007	310.3	323.95	88.77	235.85	85.71	6.17	1.95	3.59	170.40
20161012	310.3	291.89	86.49	245.70	86.21	5.42	2.03	3.16	172.89

				Г				r.					r	r		r		
t												TC55	TC60 (Lid	TC68		Tank Pressure	Tank	LL at
	TC96	TC95	TC94	TC93	TC92	TC91	TC90	TC89	TC75	TC74	TC73	(Lid	Half-	(Lid	NVF	at NVF	Temperature	NVF
Date	(0.0%)	(0.7%)	(6.0%)	(15.5%)	(28.1%)	(42.5%)	(57.5%)	(71.9%)	(84.4%)	(94.0%)	(99.3%)	Middle)	Way)	Edge)	Duration	End	at NVF End	End
Test Name	К	К	к	к	к	к	к	к	к	к	к	К	к	к	seconds	kPa	к	% Fill
20160914	262.11	251.80	247.51	204.69	201.11	263.19	229.77	266.96	224.95	242.95	274.28	233.93	236.69	272.20	24	414.24	233.81	1.13
20160921	259.94	241.76	233.37	157.98	162.73	260.47	198.76	266.55	201.98	216.15	278.63	223.51	224.18	277.77	1735	320.35	109.32	89.68
20161004	94.59	91.39	142.84	156.65	172.09	203.68	196.15	184.30	189.26	196.65	226.92	236.94	239.70	272.13	33	395.70	174.56	2.34
20161005	90.82	90.81	89.38	103.44	131.18	168.82	163.98	148.92	150.68	157.27	195.56	222.56	222.79	275.70	1479	297.56	88.29	91.77
20161006.1	91.34	91.09	89.82	111.27	134.72	171.84	166.59	151.41	153.15	160.05	197.73	225.43	226.23	276.40	1622	303.17	88.46	94.05
20161006.2	91.34	91.09	89.82	111.27	134.72	171.84	166.59	151.41	153.15	160.05	197.73	225.43	226.23	276.40	1634	302.53	88.41	94.88
20161006.3	92.43	91.37	90.16	123.95	143.53	179.66	172.68	157.79	160.82	169.32	210.22	232.80	234.31	282.02	144	410.37	140.94	6.87
20161007	92.20	91.43	89.98	122.10	141.55	178.52	172.47	157.38	159.58	166.54	204.17	228.39	229.92	278.98	700	406.61	121.05	16.34
20161012	92.37	91.69	90.40	126.55	145.26	181.68	175.44	160.56	163.43	170.43	207.78	229.70	231.44	278.66	111	416.93	144.75	5.81

Thermal Desktop Model Set-Up

- Solid Tank wall is meshed in SpaceClaim and modeled as ~500 solid nodes with material properties of Titanium/SS 304 applied
- Fluid lump is modeled in a Flow Compartment
- Typically Compartment with a single Bay is used to model bottom-fill (dip tube)
- The 3-spray nozzle has flow directed at the wall and lid unequally, can be seen in the different tank temperatures at the start of NVF
- The Compartment was split into 3 different horizontally stacked Bays so that the flow can be directed to different tank wall areas
- Default pool boiling heat transfer coefficient
 used to model heat transfer at the wall
- A Single Liquid-Vapor Interface is tracked as tank fills

Temperature [K], Time = 250 s

Compartment Bay #	Thermocouple	Flow Rate % per			
	Location	Compartment Bay			
1	TC73-89	33.3%			
2	TC90-93	55.5%			
3	TC94-96	11.2%			

•

٠

Thermal Desktop Model Set Up

Typical Boundary/Initial Conditions CB 1 for a tank chilldown case: Supply Flow Rate, CB 2 Temperature, Pressure, Quality Vent Flow Rate • CB 3 Wall Parasitics RT initial liquid, vapor Node >278.6 +1ICustom View1[THERMAL_PP] Substrate nodes pressure, quality & 278.6 temperature, and wall 270.6 262.5 temperatures 254.5 Initial Wall Temperatures: TC96 TC95 TC94 TC93 TC92 246.5 Reading Reading Reading Reading Reading Tank wall within a single (15.5%) (0.0%)(0.7%)(6.0%)(28.1%) 238.4 157.98 162.73 Compartment Bay is further 230.4 222, 3 discretized to correspond to 214.3 **TC89** TC75 TC74 **TC73** thermcouples at different fill Reading Reading Reading Reading Reading Reading 206. 2 (42.5%) (57.5%) (71.9%) (84.4%) (94.0%) (99.3%) levels 260.47 198.76 266.55 201.98 198.2 Temperature stratification in 190.2 ٠ 182.1 the wall is present at the start 174.1 of Fill 166 Imposed temperature reading ٠ 158 at start of fill on wall surface (158

Mass vs. Pressure Controlled Model Set Up

- Different methods for determining the inlet flow rate
- Can either be
 - A) Fed directly into model as an input
 - B) Determined by flow through an orifice where the <u>pressure difference</u> between the inlet pressure and tank pressure
- Both methods will lead to different pressure curves, fill levels, etc.
- Results will be presented for both methods, ie Mass Controlled and Pressure Controlled
- Four Successful tests and Four Failed Tests modeled for Mass Controlled and Pressure Controlled Models
- Important to know how flow will be controlled during test for accurate model results

NASA

CRYOTE-2 2016 Test Results: Receiver Tank Pressure

- Mass Controlled model overpredicts initial pressure spike in receiver tank due to TD underpredicting condensation at the wall for both Successful Tests and Failed Tests
- Pressure controlled model overpredicts overall pressure due to RT pressure leveling out with inlet pressure in Successful Tests
- Over shorter duration Failed Tests, pressure rise is slower and evens out more quickly as flow decreases

CRYOTE-2 2016 Test Results: Fill Level

- Mass Controlled model follows data Fill Level almost exactly, as it is an input to the model in Successful Tests and Failed Tests
- Pressure controlled model overpredicts initial Fill Level spike but then levels out due to reduction in flow rate (lower deltaP)
- Final Fill Level for Pressure Controlled similar to Mass Controlled

CRYOTE-2 2016 Test Results: Avg. Wall Temperature

- Mass Controlled model overpredicts overall temperature vs. Pressure Controlled
- Pressure Controlled wall cools faster due to greater flow rate (increase in fill level) at beginning of test
- Trend is consistent across Successful Tests, less pronounced in Failed Tests

Mass Controlled Results

Test	Success	Pressure	Fill	Average Wall
	or	MAPE	Level	Temperature
	Fail?	(%)	MAPE	MAPE (%)
			(%)	
20160921	S	17.1	9.6	12.1
20161005	S	19.2	2.4	20.1
20161006.1	S	25.0	7.0	11.0
20161006.2	S	2.9	3.7	13.9
20161004	F	0.9	2.6	3.6
20161006.3	F	3.3	1.8	2.1
20161007	F	5.1	1.9	4.5
20161012	F	1.9	0.9	2.4

Pressure Controlled Results

Test	Success	Pressure	Fill	Average Wall	
	or	MAPE	Level	Temperature	
	Fail?	(%)	MAPE	MAPE (%)	
			(%)		
20160921	S	21.2	10.4	5.9	
20161005	S	10.5	60.8	9.6	
20161006.1	S	16.3	78.7	4.6	
20161006.2	S	9.1	17.6	15.6	
20161004	F	2.6	29.6	9.2	
20161006.3	F	2.8	11.7	2	
20161007	F	4.5	11.8	5.6	
20161012	F	1.3	9.1	1.6	

$$ext{MAPE} = rac{100\%}{n} \sum_{t=1}^n \left|rac{A_t - F_t}{A_t}
ight|$$

• Flow rate input method affects chilldown results

Conclusions

- Mass Controlled method predicts Pressure, Fill Level, Temperature within 25.0%, 9.6%, 20.1%
- Pressure Controlled predicts Pressure, Fill Level, Temperature within 21.2%, 78.7%, 9.6%
- Mass Controlled method gives better agreement in predicting receiver tank Pressure for Successful tests
 - Little difference between Mass Controlled and Pressure Controlled for Failed Tests
- Mass Controlled method gives better agreement in predicting Fill Level for all Successful and Failed tests
- Pressure Controlled method gives better agreement in predicting Wall Temperature for Successful tests
 - Little difference between Mass Controlled and Pressure Controlled for Failed Tests
- Sufficient instrumentation on future tests is critical to creating representative models
- Model can be leveraged to predict future tank fill operations

Questions?