

ICES303-D: AIChE/IIC – Physio-Chemical Life Support – Water Recovery & Management Systems – Technology and Process Development **07/18/2023**

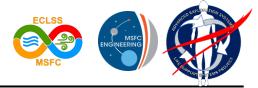
Development and Testing of a New Partial Gravity Urine Processor Design and Urine Pretreatment

Colton J. Caviglia, Jill Williamson, and Yo-Ann Velez Justiniano NASA MSFC

> Chelsea McCool and Chelsi D. Cassilly Jacobs Space Exploration Group | Huntsville, AL

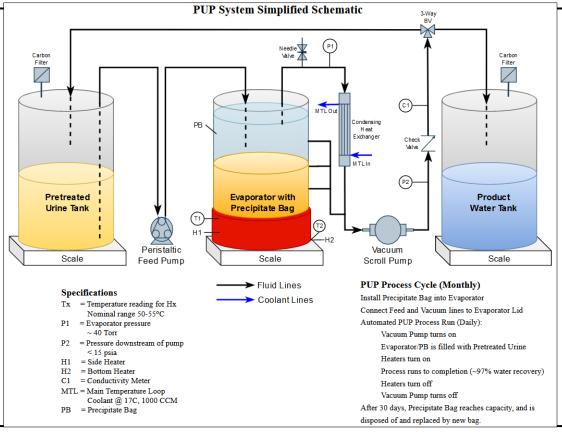
- The goal of this activity is to develop a partial gravity urine processor to utilize the partial gravity available on the Moon $(\frac{1}{6}g)$ or Mars $(\frac{1}{3}g)$.
- Design requirements and goals are derived from the ECLSS BVAD, NASA-STD-3001 and CONOPS defined under the Artemis Base Camp.
- The Planetary Urine Processor (PUP) concept must include provisions to capture and store any waste products produced through the urine reclamation.
- Final disposition of the waste is *TBD* per Planetary Protection Protocols.

Design Loads/Requirements



	Units	Value		
Urine	lb/CM-day	3.31		
Flush	lb/CM-day	1.09		
Recovery Efficiency	%	>95		
Total Dissolved Solids	mg/L	43300		
Urea	mg/L	23300		
Pretreat Formulation	mL/Flush	3.30		
# of Crew	-	4		
Duty Cycle	%	>60		
Operating Temperature	٥F	~100		

- Penalties for up/down mass to/from lunar or planetary habitats may necessitate high water recovery rates from urine waste feeds.
- Nearly 100% recovery may be desirable for lunar or planetary surface habitats. Any water adds volume and mass.
- Unable to discard separated urine solids and pretreatment on the lunar or planetary surfaces so must be returned
- Anticipate an increased duty cycle versus ISS UPA to achieve lower processing rate and ostensibly lower size.
 - A 66% duty cycle (16 hours out of 24 hours) results in 1.1 lb/hr rate, approximately 33% of current capacity.
- Daily dormant period (6-8 hours per day) may be used to precondition or collect urine for the next operational cycle.
- Operation at a higher temperature may have some power/size advantages but could be offset by ammonia generation and increased insulation.



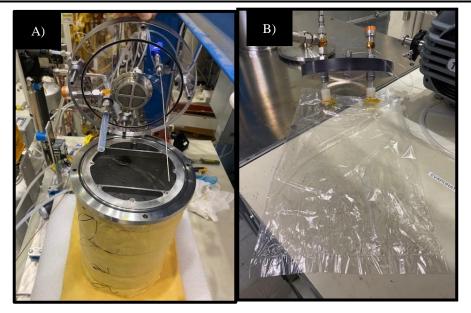
UPA Comparison

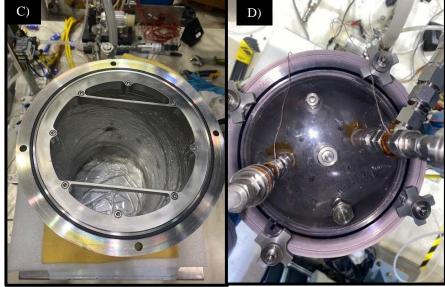
	Units	UPA	PUP-1	
Processing Rate	(lbs/hr)	3.5	1.1	
Evaporator Pressure	(mmHg)	36.0	30-40	
Evaporator Area	(in ²)	490.0	200.0	
Evaporator Volume	(liter)	24.4	10.0	
Gravity	(g)	~9g (induced)	$\frac{1}{6}, \frac{1}{3}, 1g$	

Concept 1 Overview

ICES 2023-100

Concept is to gravity or pump feed collected/stabilized urine through a small evaporator to distill clean water.


FCI S


- Gravity is also utilized for phase separation of non-condensable gases and a small amount of vapor from the product water.
- As the volume of liquid in the evaporator is processed, heavier precipitated solids and nonvolatile pretreat solution would displace dilute urine.
- The precipitate bag inside the evaporator would eventually be discarded when full of solids/pretreat solution.

Concept 1 Overview

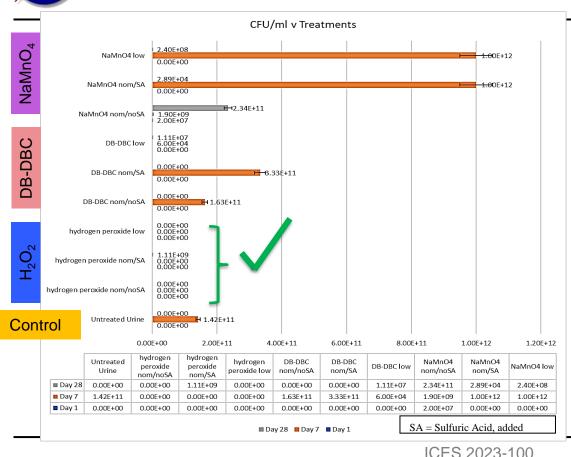
- A) Evaporator with open lid showing urine feed port, demister, thermocouple, and nylon bag installed.
- B) Nylon Sealed Precipitants Bag installed on evaporator lid

C) Inside of evaporator with nylon bag installed.

D) Nylon Precipitants Bag inside of evaporator during process run

[GOAL]: Find a more 'green' pretreatment that is effective toward microbial control with minimal mass/volume requirements

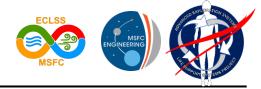
Pretreat	Pretreat Concentration	Sulfuric Acid Concentration	
Control (no treatment)	N/A	-	
n-Bronopol	1 g/L-urine	Sulfuric Acid (1 mL/g pretreat)	
(2-Bromo-2-nitro-1,3-propanediol)	2 g/L-urine	-	
	1 g/L-urine	Sulfuric Acid (1 mL/g pretreat)	
H ₂ O ₂	1 g/L-urine	-	
	0.5 g/L-urine	-	
	1 g/L-urine	Sulfuric Acid (1 mL/g pretreat)	
DB-DCB (1,2 dibromo-2,4-dicyanobutane)	1 g/L-urine	-	
	0.5 g/L-urine	-	
	1 g/L-urine	Sulfuric Acid (1 mL/g pretreat)	
NaMnO₄	1 g/L-urine	-	
	0.5 g/L-urine	-	



[GOAL]: Find a more 'green' pretreatment that is effective toward microbial control with minimal mass/volume requirements

Pretreat	Pretreat Concentration	Sulfuric Acid Concentration	
Control (no treatment)	N/A	-	
n-Bronopol	1 g/L-urine	Sulfuric Acid (1 mL/g pretreat)	
(2-Bromo-2-nitro-1,3-propanediol)	2 g/L-urine	-	
	1 g/L-urine	Sulfuric Acid (1 mL/g pretreat)	
H ₂ O ₂	1 g/L-urine	-	
	0.5 g/L-urine	-	
	1 g/L-urine	Sulfuric Acid (1 mL/g pretreat)	
DB-DCB (1,2 dibromo-2,4-dicyanobutane)	1 g/L-urine	<u>-</u>	
(1,2 albiente 2,1 aleyanobatano)	0.5 g/L-urine	<u>-</u>	
	1 g/L-urine	Sulfuric Acid (1 mL/g pretreat)	
NaMnO₄	1 g/L-urine	-	
	0.5 g/L-urine	-	

n-Bronopol was removed early off the downselect due to poor urine quality control (turbidity) during initial testing

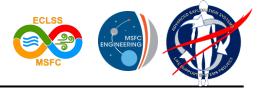

Pretreat Study Microbial Results

- Based on the CFU counts in combination with the secondary measurements (pH, turbidity, DO), the <u>down-select to hydrogen peroxide</u> was chosen for more robust urine pretreat studies and for relevant testing during PUP hardware testing.
- The peroxide pretreatment was selected for its urine stabilization properties, including slowing urea decomposition, and preventing microbial growth.
- It was also chosen due to it's potential for in-situ extraction and production on planetary bodies.

H₂O₂ Parametric Testing

- Subsequent testing with H_2O_2 inoculated ~1x10⁴ CFU/mL (via aged urine).
 - Provided urine relevant microbes
 - Increased levels of urease enzyme for better challenges to the peroxide
- Three different concentrations of peroxide were tested:
 - Low (0.5 g/L-urine), Nominal (1.0 g/L-urine), High (1.5 g/L-urine).
 - No sulfuric acid additions were challenged
- Assessed at Day 0, 7, and 28 days
 - Microbial
 - pH

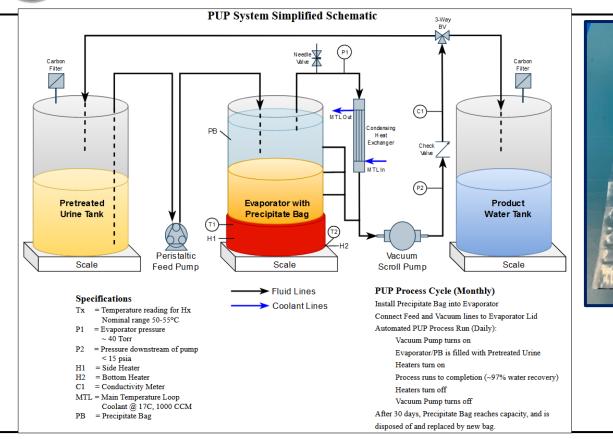
Results:


- Control saw CFU counts increase from 10⁴ to >10⁷
- All Low, Nominal, High show sufficient microbial control
 - Low (0.5 g/L-urine) did have higher on average observed in earlier down select
- Other independent studies* with peroxide conclude at 1.5 g/L-graywater was necessary for microbial control

*Pinel, I., Hinrichs, J., Castin, A., "Treatment processes for Partial Gravity Water Recovery Systems," Technical Report Oct. 2021- Sept. 2022 Company: Lenntech Water Treatment Solutions

H₂O₂ Parametric Testing

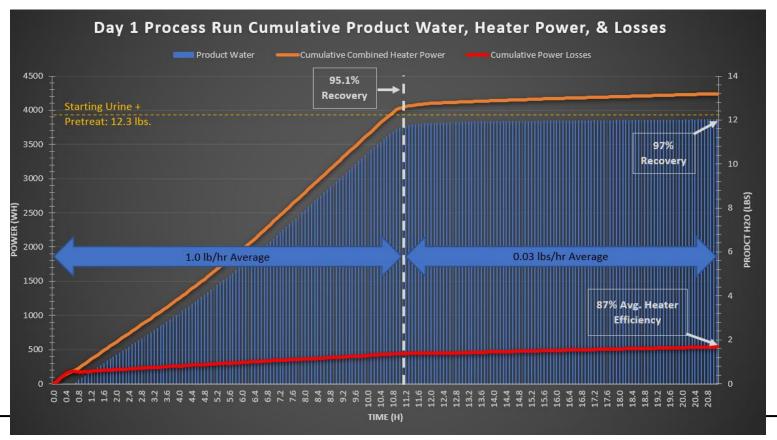

- Subsequent testing with H_2O_2 inoculated ~1x10⁴ CFU/mL (via aged urine).
 - Provided urine relevant microbes
 - · Increased levels of urease enzyme for better challenges to the peroxide
- Three different concentrations of peroxide were tested:
 - Low (0.5 g/L-urine), Nominal (1.0 g/L-urine), High (1.5 g/L-urine).
 - No sulfuric acid additions were challenged
- Assessed at Day 0, 7, and 28 days
 - Microbial
 - pH


Results:

- Control saw CFU counts increase from 10⁴ to >10⁷
- All Low, Nominal, High show sufficient microbial control
 - Low (0.5 g/L-urine) did have higher on average observed in earlier down select
- Other independent studies* with peroxide conclude at 1.5 g/L-graywater was necessary for microbial control

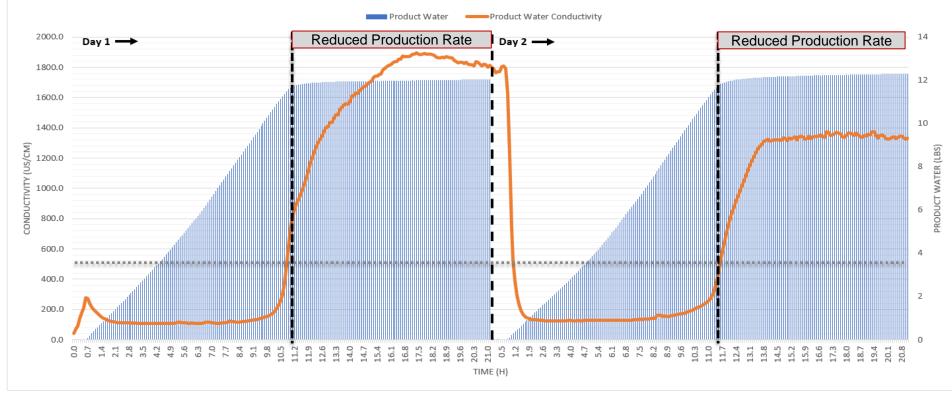
^{*}Pinel, I., Hinrichs, J., Castin, A., "*Treatment processes for Partial Gravity Water Recovery Systems*," Technical Report Oct. 2021- Sept. 2022 Company: Lenntech Water Treatment Solutions

Concept 1 Overview



ICES 2023-100

Concept 1 Process Run Data



Concept 1 Conductivity Data

Day 1 & 2 Process Run Conductivity and Cumulative Product Water

Conductivity & cumulative product water mass during 2-day urine + H₂O₂ test with same PB.

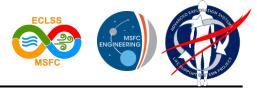
Remaining solids/brine:

Figure 10. Brine/foam left after 99% water recovery.

Collected Product Water, "distillate":

Total water collected mixed and sampled for full representative analysis Expected water quality results with unacidified stabilized urine

Table 5. PUP	product	water tan	k sample	analysis after	[•] day 1 & 2	process r	uns.	
	0		TOC		C 1 1			


Sample	рН	Conductivity (µS/cm)	TOC (ppm)	Ammonium (ppm)	Calcium (ppm)	Lithium (ppm)	Magnesium (ppm)	Potassium (ppm)	Sodium (ppm)
Day 1	8.87	198	8.09	59.63	< 0.30	ND	<0.3	<0.30	7.25
Day 2	8.61	240	9.46	57.50	< 0.30	ND	2.13	0.60	0.40

ND – not detected at the dilution required

~0.5 lbs remaining solids/brine from ~11 lbs starting urine volume

PUP Concept 1 Products

- Proof of concept testing of the PUP has consistently demonstrated a >96% water recovery rate, with a maximum rate of 99% achieved
- Preliminary test results seem to indicate that increasing the recovery rate from 96% up to 99% may not be worth the increased time and power required for the minimal volume of product water gained.
- Use of a liner bag shows promise particularly in a reusable application
 - Teams are investigating this durably and system performance with continued Precipitation Bag use
- Experiencing initial foaming of urine after activation
 - Teams are looking to address foaming concerns (system operations, screens, and/or defoamer)

Future Plans

- Teams are looking towards alternate Concept 1 designs to improve thermal efficiencies and enhanced production
- These designs will take advantage of either latent heat recovery and dedicated heating chambers with more efficient heater operations to reclaim remaining water
- Revisit the Hydrogen Peroxide with reconsideration of acid modification to further improve product water quality

• Special thanks to the PUP team for making this project come to life!

Colton Caviglia Yo-Ann Velez Justiniano Chelsea McCool Chelsi Cassily **Greg Schunk** John Thomas Eric Beitle Jeff Hansen

52nd International Conference on Environmental Systems

Questions?

Thank you for your time!

