National Aeronautics and Space Administration

Technology Assessment for Producing Propellant from Lunar Water

2023 NASA Exploration Science Forum

Aaron Paz NASA – Johnson Space Center

"Dust to Thrust" 2010

Water purification and gas drying steps used consumables in this demonstration

RESOURCE and Parallel Projects

RESOURCE is a SSERVI CAN 3 project lead by Dr. Jennifer Heldmann of NASA Ames Research Center. Proposed RESOURCE scope included a task lead by JSC to combine existing subsystems into an integrated system to demonstrate the end-to-end production of pure dry oxygen from an icy regolith mixture without using consumables.

Project Name	Technology					Rate			FY19	FY20	FY21	FY22	FY23	FY24
	Water Extraction	Water Capture	Water Cleanup	Water Electrolysis	Oxygen Drying	kg O2/hı	g O2/hr	Program						
Resource Exploration and Science of OUR Cosmic Environment (RESOURCE)							NASA	SSERVI						
Adv Thermal Mining Approach for Extraction, Transportation, and Condensation of Lunar Ice						0.002	UTEP	LuSTR						
Fundamental Regolith Properties, Handling and water Capture (FLEET)						0.44	NASA	GCD						
Thermal Management System for Lunar Ice Miners – Advanced Cooling Technologies SBIR						0.36	Advanced Cooling Technologies	SBIR						
ISRU Collector of Ice in a Cold Lunar Environment (ICICLE)						0.1	Paragon Space Development Corp	SBIR						
ISRU water purification and Hydrogen/Oxygen Production (IHOP)						1.19	Paragon Space Development Corp	ВАА						
OxEON TP (Water Only)						0.875	OxEON	Tipping Point						
OxEON BAA (Mars Co-electrolysis & Methanation)						0.788	OxEON	BAA						

Multiple new efforts with related technologies and parallel schedules include the development of hardware that will become available to the RESOURCE team at JSC.

Water Purification and Deionization

Electrolysis Comparison

Proton Exchange Membrane

Pros

- Flight heritage (ISS)
- Efficient gas compression
- High operating pressures
- Relatively low operating temperature (~30 ° C)

Cons

- Liquid water must be kept above 0° C during lunar night
- Feedwater must be deionized
- Radiator is required to reject waste heat
- Oxygen dryer is required

Solid Oxide Electrolyzer

Pros

- Does not require deionized feedwater
- Oxygen is dry and pure
- Flight heritage (MOXIE)
- Should be able to survive lunar night with minimal power
- Waste heat can be used to keep stack at operating temperature

Cons

- Low operating pressure (< 30 psia)
- High operating temperature (~800 ° C)
- Output gases are hot and may require more liquefaction power and/or more radiator mass depending on heat recuperation efficiency
- Water will need to be vaporized twice, once for extraction and again for electrolysis

Propellant from Lunar Water Concept

Simplified flow diagram for a lunar propellant production plant that uses no consumables

Gas Drying

Propellant	Water, ppmV, max	Source
Oxygen	26.3	MIL-PRF-25508H, Grade B
Hydrogen	9	MIL-PRF-27201E
Methane	1	MIL-PRF-32207, Grade A

Indicating desiccant is orange when it contains < 6% water

Indicating desiccant is white when it contains > 6% water but will continue to adsorb until saturated

1st test with regenerative gas drying system developed at Johnson Space Center

Hydrogen Liquefaction

- Magnetocaloric and elastocaloric refrigeration systems exhibit potential for lunar cryogenic fluid management
- Active Magnetic Regenerative Refrigeration (AMRR) systems leverage magnetocaloric materials, and their subsequent temperature changes when exposed to magnetic fields, to transport thermal energy
 - Rare earth element dependence, high magnetic field requirements, and poor heat transfer limit current refrigerants
 - Superparamagnetic high entropy alloys show promise in improving structural and functional performance of the materials
- Elastocaloric Cooling (eC) systems leverage shape memory alloys, and their subsequent temperature changes when exposed to stresses, to transport thermal energy
 - Fatigue and temperature dependence limit current alloys
 - Cryogenic superelastic alloys demonstrate increased capability at low temperature, and longer service life
- Adoption of caloric refrigeration systems is largely limited by the existence and/or availability of capable refrigerants, cost, mass, and technological readiness
- Advancements in ferroic materials research (e.g. novel high entropy alloy compositions) stand to increase the viability of these systems by improving refrigerant performance and reducing both mass and cost

	Vapor Compression ^[3]	Magnetocaloric ^[4-5]	Elastocaloric ^[6-8]
Mass Including Radiator (kg)	2340	TBD	TBD
Power (kW)	20.81	1.36	7.5
Operating Temperature (K)	12-298	0.007-298	4.2-298
Heat Lift @ 20K (W)	20	3	0.5
Cycle Type	Turbo-Brayton	AMRR (Sterling)	eC (Brayton)
2 nd Law Efficiency (%)	~25	50+	50+

34 mm (inner diameter of AMRR)

Lunar LOX/Methane Concept

- Producing both LOX and LCH4 on the moon would be a good "Moon to Mars" architecture for propellant production and can be accomplished if solid carbon is combined with hydrogen sourced from lunar water
- Current hydrogen liquefaction cryocooler technology will have to operate for over a year in order to see a return on landed mass (assuming 183 days of sunlight per year)^[9]
- > The use of solid carbon to drive a carbothermal reduction reaction has been demonstrated for terrestrial silicon production^[10]
- > Methane pyrolysis technology is being developed for terrestrial hydrogen and carbon production^[11]

References

[1] Holquist, J., Gellenbeck, S., Bower, C., & Tewes, P. (2021, July). Experimental Proof of Concept of a Cold Trap as a Purification Step for Lunar Water Processing. 50th International Conference on Environmental Systems.

[2] Holquist, J., Gellenbeck, S., Connor, J., Rivera, R., Bower, C., & Tewes, P. (2022, July). Demonstration of Paragon's Water Purification Assembly for Lunar Water Processing. 51st International Conference on Environmental Systems.

[3] Nugent, B. T., Grotenrath, R. J., & Johnson, W. L. (2022, June 15). 20 Watt 20Kelvin Reverse Turbo-Brayton Cycle Cryocooler Testing and Applications. Ntrs.nasa.gov. https://ntrs.nasa.gov/citations/20220009350

[4] Kamiya, K., Matsumoto, K., Numazawa, T., Masuyama, S., Takeya, H., Saito, A. T., Kumazawa, N., Futatsuka, K., Matsunaga, K., Shirai, T., Takada, S., & lida, T. (2022). Active magnetic regenerative refrigeration using superconducting solenoid for hydrogen liquefaction. In Applied Physics Express (Vol. 15, Issue 5, p. 053001). IOP Publishing. https://doi.org/10.35848/1882-0786/ac5723

[5] Ansarinasab, H., Fatimah, M., & Khojasteh-Salkuyeh, Y. (2023). Conceptual design of two novel hydrogen liquefaction processes using a multistage active magnetic refrigeration system. In Applied Thermal Engineering (Vol. 230, p. 120771). Elsevier BV. <u>https://doi.org/10.1016/j.applthermaleng.2023.120771</u>

[6] Qian, S. (2023). Thermodynamics of elastocaloric cooling and heat pump cycles. In Applied Thermal Engineering (Vol. 219, p. 119540). Elsevier BV. https://doi.org/10.1016/j.applthermaleng.2022.119540

[7] Qian, S., Catalini, D., Muehlbauer, J., Liu, B., Mevada, H., Hou, H., Hwang, Y., Radermacher, R., & Takeuchi, I. (2023). High-performance multimode elastocaloric cooling system. In Science (Vol. 380, Issue 6646, pp. 722–727). American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/science.adg7043
[8] Niitsu, K., Kimura, Y., Omori, T., & Kainuma, R. (2018). Cryogenic superelasticity with large elastocaloric effect. In NPG Asia Materials (Vol. 10, Issue 1, pp. e457–e457). Springer Science and Business Media LLC. https://doi.org/10.1038/am.2017.213

[9] Nugent, B. T., Grotenrath, R. J., & Johnson, W. L. (2022). 20 Watt 20 Kelvin Reverse Turbo-Brayton Cycle Cryocooler Testing and Applications.

[10] Maeng, S. H., Lee, H., Park, M. S., Park, S., Jeong, J., & Kim, S. (2020). Ultrafast carbothermal reduction of silica to silicon using a CO2 laser beam. *Scientific reports*, *10*(1), 21730.

[11] Methane Pyrolysis for Hydrogen-Opportunities and Challenges