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Abstract 36 

Earth’s hydrological cycle is expected to intensify in response to global warming, with a ‘wet-37 

gets-wetter, dry-gets-drier’ response anticipated. Subtropical regions (~15-30°N/S) are 38 

predicted to become drier, yet proxy evidence from past warm climates suggests these 39 

regions may be characterised by wetter conditions. Here we use an integrated data-40 

modelling approach to reconstruct global and zonal-mean rainfall patterns during the early 41 

Eocene (~48-56 million years ago). The DeepMIP model ensemble indicates that the mid- 42 

(30-60° N/S) and high-latitudes (>60° N/S) are characterised by a thermodynamically-43 

dominated hydrological response to warming and overall wetter conditions. The tropical 44 

band (0-15° N/S) is also characterised by wetter conditions, with several DeepMIP models 45 

simulating narrowing of the Inter-Tropical Convergence Zone (ITCZ). Crucially, the latter is 46 

not evident from the proxy data. The subtropics are characterised by negative precipitation-47 

evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is 48 

surprisingly large inter-model variability in mean annual precipitation. We find that models 49 

with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterised by a 50 

reduction in subtropical moisture divergence, leading to an increase in mean annual 51 

precipitation. Crucially, these model simulations agree more closely with our new proxy-52 

derived precipitation reconstructions and other key climate metrics. This implies the early 53 

Eocene was characterised by reduced subtropical moisture divergence. If the meridional 54 
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temperature gradient was even weaker than suggested by those DeepMIP models, 55 

circulation-induced changes may have outcompeted thermodynamic changes, leading to 56 

wetter subtropics. This highlights the importance of accurately reconstructing zonal 57 

temperature gradients when reconstructing past rainfall patterns.  58 

 59 

Key points: 60 

• The early Eocene hydrological cycle in the DeepMIP models is overall 61 

characterised by a 'wet-gets-wetter, dry-gets-drier' response 62 

• The early Eocene exhibits weaker subtropical moisture divergence in simulations 63 

with reduced meridional temperature gradients 64 

• This highlights the important role of the meridional temperature gradient when 65 

predicting past (and future) rainfall patterns 66 

 67 

1 Introduction 68 

Future global warming is projected to be associated with a global-mean increase in mean 69 

annual precipitation (MAP) and a shift in regional and seasonal rainfall patterns (Chapter 8 of 70 

Masson-Delmotte et al., 2022), with important consequences for societies and ecosystems. 71 

Under higher global temperatures, Earth’s atmosphere will contain more water vapour 72 

following the Clausius–Clapeyron relation (Held and Soden, 2006). This ‘thermodynamic 73 

effect’ forms the basis for the predicted zonal-mean “wet-gets-wetter, dry-gets-drier” 74 

response under enhanced radiative forcing, whereby the existing spatial patterns in 75 

precipitation-evaporation (P–E) are exacerbated (Held and Soden, 2006; Seager et al., 76 

2010). While this thermodynamic scaling argument breaks down over land (Byrne and 77 

O’Gorman, 2015), general circulation models (GCMs) used in Coupled Model 78 

Intercomparison Project Phase 6 (CMIP6) suggest that higher global mean surface 79 

temperatures (GMST) will lead to wetter high latitudes (> 60 °N/S) (i.e., positive P–E 80 

change), and drier subtropics (15–30°N/S) (i.e., negative P–E change) (Hoegh-Guldberg et 81 



For submission to Paleoceanography & Paleoclimatology (DeepMIP Special Issue) 

 4

al., 2018; Masson-Delmotte et al., 2022). However, the same models disagree on the nature 82 

of change in much of the remainder of the low to middle latitudes, both over land and ocean 83 

(Slingo et al., 2022; Masson-Delmotte et al., 2022), which is a key uncertainty for appropriate 84 

climate mitigation and adaptation.  85 

Moreover, evidence from warm intervals in the geological past suggests that the 86 

subtropics may ultimately get wetter (rather than drier) under quasi-equilibrated warmer 87 

conditions, i.e. “dry-gets-wetter”. For example, both the Miocene (23.0 to 5.3 million years 88 

ago; Ma) and Pliocene (5.3 to 2.6 Ma) yield multi-proxy evidence for wetter subtropics in 89 

southern Australia (Sniderman et al., 2016), North Africa (Hailemichael et al., 2002; Schuster 90 

et al., 2009; Feng et al., 2022), South America (Carrapa et al., 2019), South-East Asia 91 

(Wang et al., 2019; Feng et al., 2022), and western North American (Bhattacharya et al., 92 

2022). Burls and Federov (2017) suggest these wetter subtropical conditions were due to 93 

weaker large-scale surface temperature gradients supporting weaker large-scale 94 

atmospheric circulation and hence subtropical moisture divergence. Although the impact of 95 

zonal-mean changes in circulation (dynamic effect) is often considered secondary to 96 

changes in atmospheric humidity (thermodynamic effect), the former may be important 97 

under certain climate scenarios (e.g., weak latitudinal temperature gradients; LTGs) and 98 

may even compensate for an increase in atmospheric humidity (Burls & Fedorov 2017). 99 

At a regional scale, enhanced monsoonal circulation in the north Africa–east Asia region 100 

(Zhang et al., 2013; Feng et al., 2022) and western North America (Bhattacharya et al., 101 

2022) further account for the wetter climate across those subtropical monsoon regions.       102 

Here we focus on the early Eocene (56.0 to 47.8 million years ago; Ma) (Hollis et al., 103 

2019), an interval characterised by higher CO2 values (> 1000 parts per million) (Anagnostou 104 

et al., 2020), higher global mean surface temperature (10–16 °C warmer than pre-industrial) 105 

(Inglis et al., 2020) and reduced pole-to-equator LTGs (of ~17 to 22°C) (Cramwinckel et al., 106 

2018; Evans et al., 2018; Gaskell et al., 2022). As such, this is an ideal interval to study how 107 

changes in GMST and the LTG impact tropical, subtropical, mid- and high-latitude rainfall 108 

patterns. However, there are very few quantitative early Eocene-aged MAP estimates, 109 
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particularly from the subtropics (15–30°N/S), and the hydrological response to warming 110 

remains largely unknown. To resolve this, we utilise the recently published state-of-the-art 111 

Deep-Time Model Intercomparison Project (DeepMIP) suite of  Eocene model simulations 112 

(Lunt et al., 2021) to explore the simulated global- and regional-scale hydrological response 113 

to warming. This is combined with a new proxy compilation to answer the following 114 

questions: i) How does simulated tropical, subtropical, mid- and high-latitude MAP and P-E 115 

respond to Eocene boundary conditions and increasing GMST, and what is the level of 116 

agreement across the DeepMIP models? ii) What is the relative role of changes in local 117 

evaporation versus moisture divergence (time-mean and eddy) in driving the MAP changes? 118 

iii) Are early Eocene simulations characterised by a ‘wet-gets-wetter, dry-gets-drier’ 119 

response? iv) How do the simulated thermodynamic (i.e., humidity) and dynamic (i.e. 120 

circulation) effects contribute to changes in moisture transport in the subtropics? v) How well 121 

do the DeepMIP models replicate proxy-derived MAP estimates? 122 

 123 

2 Methods 124 

2.1 Modelling simulations 125 

2.1.1 DeepMIP-Eocene simulations 126 

We make use of the DeepMIP suite of model simulations, embedded in the fourth phase of 127 

the Paleoclimate Modelling Intercomparison Project (Kageyama et al, 2018), itself a part of 128 

the sixth phase of the Coupled Model Intercomparison Project (CMIP6; (Eyring et al., 2016)). 129 

An extensive description of the standard design of these model experiments is provided in 130 

Lunt et al. (2017), and an overview of the large-scale climate features has been presented in 131 

Lunt et al. (2021). The main advantage of these simulations over the EoMIP (Eocene 132 

Modelling Intercomparison Project) “ensemble of opportunity” employed in earlier work 133 

(Carmichael et al., 2016) is that the new DeepMIP simulations have been designed and 134 

carried out using internally consistent Eocene boundary conditions (Herold et al., 2014; Lunt 135 

et al., 2017). Simulations have been run at different atmospheric CO2 levels – typically ×1, 136 

×3, ×6, and ×9 preindustrial (PI) CO2, but with a subset of these, or additional atmospheric 137 
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CO2 concentrations, chosen by some model groups (see Lunt et al., 2017; Lunt et al., 2021). 138 

Different CO2 experiments are expected to provide comparison targets to climate 139 

reconstructions for different key time slices, including the early Eocene Climatic Optimum 140 

(EECO; ~53.3–49.1 Ma), the Paleocene–Eocene Thermal Maximum (PETM; ~56 Ma), and 141 

the latest Paleocene (i.e., pre-PETM). Pre-industrial simulations (x1 CO2) with modern 142 

continental configurations have also been performed to assess the influence of non-CO2 143 

Eocene boundary conditions. Simulations have been performed with eight different models 144 

(Table S1) and detailed descriptions of the models and simulations are provided in Lunt et 145 

al. (2021). To explore regional variations in hydroclimate, we subdivide our data into four 146 

latitudinal bands: I) the tropics (0–15 °N/S), II) the subtropics (15–30 °N/S), III) the mid-147 

latitudes (30–60 °N/S), and IV) the high-latitudes (>60 °N/S). To further deconvolve the 148 

cause of global and regional variations, we perform a moisture budget analysis. The 149 

analysed climatologies are based on the last 100 years of each simulation. As different 150 

models provided slightly different variables, for some models we were not able to provide 151 

analysis of P–E (NorESM), or moisture budget analysis (IPSL, INMCM, and NorESM). We 152 

compare observed changes in subtropical hydrology to changes in modelled latitudinal 153 

temperature gradient (LTG), here taken as the difference in surface temperature between 154 

the mid-latitudes (30–60 °N/S) and the tropics (15 °N–15 °S).  155 

 156 

2.1.2 Moisture Budget Analysis 157 

To diagnose the cause of P–E changes within the DeepMIP ensemble, we conduct a 158 

moisture budget analysis (Trenberth and Guillemot, 1995; Seager and Henderson, 2013). 159 

This approach relies on the fact that climatological changes in P–E – calculated over a long 160 

enough timescale that fluctuations in the column integrated moisture content are negligible 161 

(in our case the last 100 years of each DeepMIP simulation) – are balanced by the column-162 

integrated convergence of moisture in the overlying atmosphere, as follows:  163 

P − E =  −∇ ∙ 1g �⃗�q dp 
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 164 

where g is the acceleration due to gravity (ms-2), q the atmospheric specific humidity (kg/kg), 165 

and 𝑣 the horizontal wind vector (ms-1) integrated across pressure (p, Pa) levels from the 166 

surface (ps) to the top of the troposphere (tropopause; pt). This climatological moisture 167 

convergence can be further decomposed into its time-mean (𝑣 𝑞) and eddy (𝑣′ 𝑞′) 168 

components. The time-mean component is calculated using the climatological mean data 169 

provided in the DeepMIP dataset while the eddy component is calculated as the residual 170 

between P–E and the time-mean component given that the high temporal resolution data 171 

required to calculate this term explicitly is not available as part of the DeepMIP dataset. 172 

 173 

2.2 Proxy synthesis 174 

2.2.1 Approach 175 

Fossil leaves and palynomorphs (spores and pollen) can provide quantitative estimates of 176 

MAP in the past. Using these, the primary approaches are: i) leaf physiognomy (i.e., leaf 177 

shape) (Givnish, 1984; Wolfe, 1993; Wing and Greenwood, 1993; Greenwood, 2007) and ii) 178 

nearest living relative (NLR)-based approaches (Pross et al., 2000; Greenwood et al., 2003; 179 

Pancost et al., 2013; Suan et al., 2017; West et al., 2020). A multi-proxy approach combining 180 

leaf physiognomy and NLR data is generally recommended and mitigates the different 181 

uncertainties incorporated by individual approaches (e.g., West et al., 2020).  182 

Methods based on leaf physiognomy utilise the correlation between the architecture 183 

of leaves and climatic variables. As leaf size and shape are highly sensitive to moisture 184 

availability (Givnish, 1984; Peppe et al., 2011; Spicer et al., 2021), fossil leaf architecture 185 

can be related to precipitation using univariate methods such as Leaf Area Analysis (LAA) 186 

(Wilf et al., 1998). The Climate Leaf Analysis Multivariate Program (CLAMP) (Wolfe, 1993, 187 

1995) combines multiple leaf traits, including leaf area, leaf shape, and margin state (i.e., 188 

toothed or untoothed), to provide estimates of annual and seasonal precipitation (Spicer et 189 

al., 2021). Anatomical characteristics of fossil wood can likewise reflect climate variables 190 
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(Wiemann et al., 1998; Poole and van Bergen, 2006). Although wood anatomy as a climate 191 

proxy has not had widespread application in deep time climate compilations, multivariate 192 

models of various wood anatomical characters are typically used (e.g., Poole et al., 2005).  193 

Nearest living relative (NLR) approaches are based on the premise that the climatic 194 

tolerance of a paleo-vegetation assemblage can be inferred from their presumed extant 195 

relatives (e.g., Mosbrugger and Utescher, 1997; Fauquette et al., 1998; Greenwood et al., 196 

2003; Willard et al., 2019; West et al., 2020). These methods can be based on macrofossil 197 

(most often leaf fossils but also seeds, fruits, or wood) or microfossil (i.e. sporomorphs) 198 

paleobotanical assemblages, as long as the taxa can be correlated to a living relative with a 199 

known climatic tolerance. The coexistence approach (CA; Mosbrugger and Utescher, 1997) 200 

is a specific instance of this, in which the single climatic interval in which all NLRs can 201 

coexist is reconstructed. More recent studies employing Bioclimatic Analysis (BA) typically 202 

calculate probability density functions of climatic variables instead of minimum-to-maximum 203 

intervals (e.g., Willard et al., 2019; West et al., 2020). The Climatic Amplitude Method (CAM) 204 

is an alternative NLR approach that incorporates relative abundances of different taxa 205 

(Fauquette et al., 1998).  206 

 207 

2.2.2 Proxy compilation 208 

Here we compile paleobotanical MAP estimates for the late Paleocene (59.2 to 56 Ma; 209 

Thanetian) to early Eocene (56.0 to 47.8 Ma; Ypresian). Our compilation builds upon 210 

previous EECO- (Carmichael et al., 2016) and Paleocene-Eocene Thermal Maximum 211 

(PETM; 56 Ma)-aged (Carmichael et al., 2017) compilations. We supplement this with i) 212 

published MAP estimates generated since, and ii) newly generated MAP estimates using 213 

CLAMP and NLR on published palynological and macrofloral (predominantly leaf-based) 214 

datasets. Our new proxy synthesis (n = 322) contains 133 MAP estimates (41%) from 215 

Carmichael et al. (2016), 106 data points (33%) from other published sources, and 83 new 216 

data points (26%) (Figure 1; Table S1-2; Supplementary Data). The new data in the 217 

compilation helps to improve geographical coverage in previously data-poor regions, 218 
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including central west coast and eastern Africa (e.g., Eisawi and Schrank, 2008; 219 

Adeonipekun et al., 2012; Cantrill et al., 2013) (also recently presented in Williams et al., 220 

2022); the coal and lignite bearing deposits of northeastern India and southern Pakistan 221 

(Frederiksen, 1994; Tripathi et al., 2000; Verma et al., 2019); the Tibetan plateau and 222 

sedimentary basins of southern China (e.g., Aleksandrova et al., 2015; Su et al., 2020; Xie et 223 

al., 2020); and the South American (e.g., Quattrocchio and Volkheimer, 2000; Pardo‐Trujillo 224 

et al., 2003; Jaramillo et al., 2007) and North American continent and Caribbean islands 225 

(e.g., Graham et al., 2000; Jarzen and Klug, 2010; Smith et al., 2020) (Figure 1; 226 

Supplementary Data). Most of these use the NLR approach based on palynological 227 

datasets, as plant macrofossils from the late Paleocene – early Eocene low latitudes are 228 

more rarely preserved, although some exceptions are known (Wing et al., 2009; Shukla et 229 

al., 2014; Herman et al., 2017). We also incorporate data from the mid and high latitudes, 230 

e.g., southern South America, North America, Australia and New Zealand, and high Siberia 231 

(Supplementary Data). For regions with exceptionally poor data coverage (e.g., tropical and 232 

subtropical latitudes, Antarctica), we also compile and generate MAP estimates from the 233 

early middle Eocene (47.8 to ~45 Ma; first half of the Lutetian). Published CLAMP and NLR 234 

data were re-analysed following recent recommendations, so that there is no bias as a result 235 

of discrepant methodology. Specifically, 1) CLAMP-scored fossil leaf assemblages were re-236 

analysed using up-to-date geographically appropriate calibration datasets (Kennedy et al., 237 

2014; Yang et al., 2015; Reichgelt et al., 2019), 2) for both CLAMP and NLR reconstructions, 238 

gridded climate datasets from the R package dismo were employed (Hijmans et al., 2020), 239 

and 3) NLR analysis was performed using consistently filtered modern distribution datasets 240 

to avoid regional overrepresentation (e.g. West et al., 2020). Modern site coordinates and 241 

age constraints were extracted from the original publications.  242 

 243 

2.2.3 Data-model comparison framework 244 

To compare proxy and model data, we employ a data comparison similar to that used for the 245 

Miocene MioMIP ensemble (Burls et al., 2021). This approach requires inclusion of 246 
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uncertainty for both the proxy and model MAP estimates. To account for site location 247 

uncertainty, we determine site co-ordinates for the age range of our proxy data compilation 248 

above, i.e., from 59 Ma (late Paleocene) to 45 Ma (early middle Eocene) using the Müller et 249 

al. (2016) Gplates continental polygons in combination with the hotspot-based rotation frame 250 

of Matthews et al. (2016) (i.e., analogous to all DeepMIP simulations apart from NorESM; 251 

Lunt et al., 2020). For the model simulations, MAP values are taken from the grid cells that 252 

fall within the proxy location uncertainty. The model MAP uncertainty is subsequently defined 253 

as the range between minimum and maximum MAP within these model grid cells. For proxy 254 

estimates, we use the proxy error and error type as reported in the original study. Typically, 255 

this is a minimum–maximum range or confidence interval (e.g., 95%) for NLR approaches 256 

(e.g., Willard et al., 2019; West et al., 2020), and standard error (SE) or standard deviation 257 

(SD) derived from calibration dataset residuals for leaf physiognomy methods (e.g., 258 

Teodoridis et al., 2011). For our newly generated values, uncertainties are reported as 95% 259 

confidence interval for NLR and ±1 SD for CLAMP. The subsequent overlap between the 260 

model and proxy uncertainty range is assessed following the MioMIP methodology (Burls et 261 

al., 2021). Any overlap between the proxy and model uncertainty ranges is defined as “no 262 

bias” (Figure S1 in Burls et al., 2021). 263 

 264 

3 Results and Discussion 265 

3.1 DeepMIP models reproduce pre-industrial global precipitation patterns 266 

Each model included in the DeepMIP suite is able to reproduce the main features of pre-267 

industrial precipitation patterns (Figure 2, Figure S1). However, some common model 268 

precipitation biases are apparent. For example, all simulations exhibit a double Inter-Tropical 269 

Convergence Zone (ITCZ) in MAP, simulating excess precipitation south of the equator. This 270 

bias is common and the double ICTZ remains a consistent error in both the previous (e.g., 271 

CMIP3, CMIP5) and latest (CMIP6) generation of climate models (Tian & Dong 2020). There 272 

is also a lack of simulated precipitation in the western equatorial Pacific (Figure 2c). Never-273 

the-less, the shape of the South Pacific convergence zone (SPCZ) is improved in the multi-274 
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model mean (MMM) compared to the previous EoMIP generation model simulations 275 

(Carmichael et al., 2016). 276 

 277 

3.2 Influence of non-CO2 boundary conditions on the early Eocene hydrological 278 

cycle 279 

Non-CO2 boundary conditions (i.e., paleogeography, vegetation, aerosols) can exert an 280 

influence on global and regional MAP and P–E values. The previous EoMIP ensemble found 281 

a minor role for non-CO2 boundary conditions on global MAP (+0.1 mm/day; Carmichael et 282 

al., 2016). However, this was only performed for a single model simulation (HadCM3L). To 283 

better isolate the influence of non-CO2 boundary conditions on the early Eocene hydrological 284 

cycle, we compared early Eocene 1x CO2 simulations and pre-industrial 1x CO2 simulations 285 

from multiple (n=6) DeepMIP models.   286 

At a global scale, the early Eocene 1x CO2 simulations are characterised by higher 287 

MAP values relative to pre-industrial (0.1 to 0.4 mm/day; 1x CO2 symbols in Figure 3). This 288 

is because the early Eocene 1xCO2 simulations have higher global mean surface 289 

temperatures (~3–5°C) relative to the preindustrial 1x CO2 control simulations (see also Lunt 290 

et al., 2021) (Figure S2). This leads to enhanced surface evaporation which is balanced by 291 

precipitation globally (Held and Soden, 2006; Siler et al., 2019).  292 

At a regional scale, the early Eocene 1x CO2 simulations are characterised by higher 293 

MAP estimates in the tropics (0-15° N/S), mid-latitudes (30-60 °N/S), and high-latitudes (>60 294 

°N/S) (typically +0.1 to +0.4 mm/day, but up to +0.6 mm/day in the high-latitudes, Figure 4 295 

and 5; Figure S3) relative to pre-industrial. The tropics, mid-latitudes, and high-latitudes are 296 

also characterised by positive P–E values (typically +0.1 to 0.2 mm/day, but up to +0.4 297 

mm/day in the high-latitudes; Figure 4 and 6; Figure S4 and S5) relative to pre-industrial. 298 

Furthermore, the tropics are characterised by an eastward shift and expansion in deep 299 

tropical convection, and hence the Walker Circulation, over the Pacific Ocean (Figure 4). 300 

Focusing on the ITCZ, non-CO2 Eocene boundary condition only affect the width of the ITCZ 301 

(defined as in Byrne and Schneider, 2016) in CESM and MIROC, where it increases slightly 302 
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(Figure 7a). Additionally, the ITCZ latitude of maximum precipitation shifts northwards 303 

relative to the preindustrial control in 3 (CESM, HadCM3B and MIROC) of the 5 models that 304 

did the 1xCO2 experiment (Figure 7b). The subtropical (15–30 °N/S) early Eocene 1x CO2 305 

MMM difference from the pre-industrial is characterised by negative P–E values (-0.2 to -0.8 306 

mm/day; Figure 6; Figure S4 and S5), but the associated MAP estimates span a wide 307 

range and can be higher (i.e., CESM, GFDL, MIROC; 0.1 to 0.6 mm/day) or lower (i.e., 308 

COSMOS, HadCM3L, HadCM3LB; -0.1 to -0.2 mm/day) relative to pre-industrial (Figure 5; 309 

Figure S3). When assessing the relative roles of local evaporation, time-mean moisture 310 

transport divergence, and eddy moisture transport divergence changes, generally the 311 

models with increased 1x CO2 subtropical MAP (i.e., CESM, GFDL, MIROC) experience 312 

increased local subtropical evaporation that is not completely counteracted by the enhanced 313 

time-mean moisture divergence (Figure 8c, Figure S6b).  314 

 315 

3.3 Global and zonal-mean variability in the early Eocene hydrological cycle  316 

The DeepMIP simulations span a wide range of CO2 concentrations (x1 to x9 PI CO2) and 317 

GMST (~17 to 35°C) and can thus provide insights into the global- and regional-scale 318 

hydrological response to CO2-induced warming. Across the DeepMIP ensemble, higher 319 

GMST estimates are associated with higher global-mean MAP estimates as warming leads 320 

to enhanced surface evaporation, both between different models and within the same model 321 

at different CO2 levels (Figure 3). Similar to previous studies (e.g. Held and Soden 2006; 322 

Siler et al., 2019) and the latest CMIP models (MMM = 2.51%/K with a range of 2.1 – 3.1%/K 323 

per Pendergrass, 2020) the best linear fit across the entire DeepMIP ensemble is a 2.4% 324 

increase in global MAP per degree of warming. 325 

Next to this global perspective, there are also zonal-mean variations in MAP that 326 

differ in their relationship with GMST (Figure 5). In the tropics (0–15 °N/S), the mid-latitudes 327 

(30–60 °N/S) and the high-latitudes (>60 °N/S), higher GMST estimates are associated with 328 

higher MAP estimates, with the greatest sensitivity to GMST in the high latitudes (9.1% 329 

increase in precipitation per °C warming; Figure 5d). As CO2, and hence GMST increases, 330 
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both enhanced local evaporation and time-mean moisture convergence are responsible for 331 

the rise in tropical precipitation across the DeepMIP multi-model ensemble (Figure S6a). 332 

The width of the ITCZ decreases with increased CO2 in 5 (CESM, COSMOS, HadCM3B, 333 

HadCM3BL and MIROC) of the 6 models that provided the meridional wind field variable 334 

required to perform ITCZ width calculations (Figure 7a). This is consistent with recent data-335 

assimilation based work focusing on the PETM (Tierney et al, 2022). To varying degrees, the 336 

ITCZ latitude of maximum precipitation shifts southwards with increasing CO2 in most of the 337 

models (Figure 7b). Turning to the high-latitudes, increased local evaporation and time-338 

mean plus eddy moisture convergence work together to maintain the greatest sensitivity of 339 

MAP to GMST in the high latitudes (Figure S6d). Similar to the tropics and high-latitudes, 340 

increased local evaporation with elevated CO2 concentrations plays a key role in increasing 341 

mid-latitude MAP values. However, much like the subtropics discussed next, there are 342 

significant model differences in the (relatively minor) contribution of the time-mean and eddy 343 

moisture flux divergence terms (Figure S6c).  344 

 In the subtropics (15–30 °N/S), the relationship between GMST and MAP differs 345 

greatly between the DeepMIP model simulations. For this latitudinal band there is a wide 346 

range in MAP estimates: HadCM3, MIROC and COSMOS simulate lower MAP values 347 

relative to pre-industrial, whereas CESM and GFDL simulate higher MAP values relative to 348 

pre-industrial (Figure 5b). Moisture budget diagnostics (see below) suggest that a weaker 349 

latitudinal temperature gradient is the cause of higher subtropical MAP values in both CESM 350 

and GFDL. 351 

For a given global mean temperature change, the DeepMIP models also exhibit 352 

different zonal-mean P–E responses. In the tropics and the high-latitudes, higher GMST 353 

estimates are associated with more positive P–E values and overall wetter conditions 354 

(Figure 6). In the subtropics, higher GMST estimates are associated with more negative P–355 

E values and overall drier conditions (Figure 6b). This indicates that from a zonal-mean 356 

perspective the early Eocene largely conforms to the ‘wet-gets-wetter, dry-gets-drier’ 357 

hypothesis within the DeepMIP simulations. Lastly, there is a weak relationship between 358 
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GMST and P–E values in the mid-latitudes (Figure 6c). As the mid-latitude band 359 

encompasses both positive and negative P–E values compared to pre-industrial (ca. -2 to +2 360 

mm/day; Figure 4), the lack of relationship between CO2 and temperature in this zonally-361 

averaged view is perhaps unsurprising. 362 

Our moisture budget analysis (Figure 8; Figure S8) lends further insight into the 363 

mechanisms driving the simulated subtropical P–E changes. Generally speaking, the time-364 

mean component is the dominant component in the tropics, where the time mean moisture 365 

transport typically dominates over the eddy component (Figure 8c-8d). Changes in net P–E 366 

values (δ(P–E)) due to the time mean component can be further decomposed into: i) 367 

changes in humidity assuming constant preindustrial circulation (𝑣 δq, the thermodynamic 368 

component of changes in the time mean moisture divergence), ii) changes in circulation 369 

assuming constant preindustrial humidity (δv 𝑞 , the dynamic component of changes in the 370 

time mean moisture divergence), and iii) a perturbation term representing the coupling of 371 

changes in humidity and changes in circulation (δvδq) (Figures 8e-f; Figure S9): 372 

 373 

δ P − E =  −∇ ∙ 1g 𝑣 δq dp − ∇ ∙ 1g δ𝑣𝑞 q dp −  −∇ ∙ 1g δ𝑣δq dp + RES   
 374 

where “tm” indicates time mean, δ represents the change in each variable between the study 375 

interval (i.e., the early Eocene) and the pre-industrial climate, and the residual term (RES) 376 

accounts for changes in the surface pressure bound of the integrals, which is dominated by 377 

topographic changes between the Eocene and pre-industrial experiments. With increasing 378 

temperatures, atmospheric humidity (q) is predicted to increase following the Clausius-379 

Clapeyron relation. Assuming that the zonal-mean circulation (v) remains identical to pre-380 

industrial (δv = 0), the dynamic term will be zero and the thermodynamic term will result in 381 

the tropics and high-latitudes becoming wetter (i.e. the moisture convergence into these 382 

regions in the control climate is enhanced) and the subtropics becoming drier (i.e., the 383 

moisture divergence from this region in the control climate is enhanced). Zonal-mean 384 
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circulation changes are often considered secondary to changes in atmospheric humidity. 385 

However, it has been demonstrated that zonal-mean circulation changes may be 386 

important under certain climate scenarios (e.g., weak latitudinal temperature gradients) 387 

and may even compensate for changes in atmospheric humidity in regions such as the 388 

subtropics on zonal average (Burls & Fedorov 2017). In a scenario where zonal-mean 389 

circulation (v) – specifically a decrease in Hadley cell strength – dominates over an 390 

increase in humidity (q), the subtropics on average will be characterised by reduced 391 

(rather than enhanced) moisture divergence and wetter (rather than drier) conditions 392 

(Burls & Fedorov 2017).  393 

Focusing on the subtropics in the DeepMIP simulations (Figure 9), higher GMST 394 

values indeed result in an increase in atmospheric humidity and enhanced subtropical 395 

moisture divergence. This leads to a corresponding decrease in P–E (up to > -1.5 mm/day; 396 

Figure 9a) and is consistent with a ‘wet-gets-wetter, dry-gets-drier’ scenario in warmer 397 

climates. However, this scenario is partially compensated by a reduction in LTGs, here taken 398 

as the difference between 15°S–15°N and 30–60°N/S. Reduced LTGs lead to a reduction in 399 

the strength of the zonal-mean subtropical circulation (v) – i.e., the Hadley circulation – and 400 

a relative increase in subtropical zonal-mean P-E (Figure 9b), particularly in the Southern 401 

Hemisphere where the strength of the Hadley Cell (Figure S10) systematically weakens with 402 

the LTG in all models (Figure S12b & 11e). The models differ more in the strength of the 403 

relationship between Hadley circulation changes and the LTG in the Northern Hemisphere 404 

(Figure S12d & S12f), perhaps because of the complicating factor of inter-model differences 405 

in latitudinal ITCZ shift. The dynamical effect of weakened Hadley circulation is stronger in 406 

model simulations with weaker latitudinal temperature gradients (i.e., CESM and GFDL 407 

model simulations) and weaker in models with stronger latitudinal temperature gradients 408 

(e.g., HadCM3L) (Figure 9d & S12b). Therefore, the DeepMIP models with the lowest LTGs 409 

(e.g, CESM and GFDL) are characterized by higher subtropical MAP estimates relative to 410 

pre-industrial. Intriguingly, those models with reduced LTGs most closely reproduce 411 

temperature gradients (and GMST estimates) as reconstructed by proxies (Zhu et al., 2019; 412 
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Figure 1 in Lunt et al., 2021). This implies that the early Eocene was likely characterized by 413 

a reduction in the strength of Hadley circulation. However, all DeepMIP models, including 414 

CESM and GFDL, show that the reduction in subtropical circulation (Figure 9d) is not 415 

sufficient to compensate fully for changes in atmospheric humidity (Figure 9c). As such, the 416 

subtropics are characterised by overall drier conditions in terms of P–E in the DeepMIP 417 

ensemble (Figure 9a).  418 

Extrapolating from this, if early Eocene LTGs were even weaker than suggested by 419 

these models (Lunt et al., 2021), Hadley circulation-induced changes may have 420 

outcompeted the thermodynamic changes, leading to overall wetter subtropics on zonal 421 

average (e.g. Burls & Federov, 2017). Although proxy-model bias has decreased over recent 422 

years for certain DeepMIP models, overall, early Eocene proxy compilations still suggest 423 

weaker global equator-to-pole LTGs (~14 to 22°C; Gaskell et al., 2022; Evans et al., 2018; 424 

Cramwinckel et al., 2018) than those predicted in the DeepMIP model ensemble (~18 to 425 

25°C; Figure 1b in Lunt et al., 2021). However, proxy-derived LTG estimates remain 426 

associated with large uncertainties due to proxy-inherent uncertainties, the use of different 427 

input datasets, and/or the analysis of different time intervals (cf. GMST estimates; Inglis et 428 

al., 2020). Taken together, this highlights the important role of accurately reconstructing 429 

and modelling the meridional temperature gradient when interpreting past meridional 430 

rainfall patterns. 431 

 432 

3.4 Proxy-based precipitation estimates during the early Eocene 433 

Our proxy synthesis indicates that high-latitude regions were characterised by high MAP 434 

estimates, consistent with previous results from the northern (Eberle and Greenwood, 2012; 435 

West et al., 2015; Suan et al., 2017; Salpin et al., 2019; West et al., 2020) and southern 436 

high-latitudes (Poole et al., 2005; Pross et al., 2012) (Figure 10). This is consistent with 437 

evidence for low-salinity sea surface conditions in the high northern latitudes near the 438 

termination of the EECO (~49 Ma) (i.e., the Azolla interval), although this salinity signal 439 

might be strongly linked to paleogeographic change (Brinkhuis et al., 2006; Barke et al., 440 
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2012). Proxy estimates from more transient periods of warming (e.g., the PETM and Eocene 441 

Thermal Maximum 2; ETM2) provide additional support for high MAP in the Arctic (Pagani et 442 

al., 2006; Willard et al., 2019), the North Sea Basin (Kender et al., 2012; Garel et al., 2013; 443 

Collinson et al., 2003), and the southwest Pacific (Sluijs et al., 2011; Pancost et al., 2013). 444 

We note that in our compilation, early Eocene-aged CLAMP-derived MAP estimates from 445 

North America are much higher than most NLR estimates. CLAMP estimates are based on 446 

locally derived floral assemblages, whereas NLR estimates can reflect both locally derived 447 

floral elements but also floral elements transported over long distance (e.g. wind- or water-448 

dispersed pollen). As a consequence, CLAMP estimates may reflect a bias towards wetter 449 

environments, whereas NLR estimates may be biased towards drier (upland) environments. 450 

The set of MAP estimates from Antarctica based on wood physiognomy are also far higher 451 

than the other proxies (Poole et al., 2005). Due to the lack of wood physiognomic MAP 452 

estimates from other regions, it is unclear whether these values are representative of the 453 

Antarctic continent. 454 

Early Eocene tropical and subtropical MAP estimates are also relatively high (> 2 to 4 455 

mm/day, Figure 10). Although proxy-derived subtropical MAP values imply wetter conditions 456 

during the early Eocene, we note that these estimates are biased towards regions with well-457 

preserved floral assemblages and, by extension, relatively wet regions. Subsequently, arid 458 

and semi-arid environments are likely under-sampled in our synthesis. Evidence from 459 

periods of superimposed warming during the Eocene suggests drier subtropics, with 460 

evidence for enhanced evapotranspiration in Tanzania during the onset of the PETM 461 

(Handley et al., 2012), drying in the continental interior (e.g., Bighorn Basin) during the body 462 

of the PETM (Smith et al., 2007; Kraus and Riggins, 2007; Kraus et al., 2013), and increased 463 

subtropical salinity in the central Pacific during ETM2 (Harper et al., 2017). Based on the 464 

sparsity of data for the early Eocene background state however, we cannot distinguish 465 

whether the lack of paleobotanical evidence for arid environments derives from sampling 466 

sparsity itself, from methodological bias, or from actual absence of such environments. 467 

Moving forward, we suggest that alternative proxies, for example clumped isotope-δ18O 468 
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analysis of pedogenic siderites (van Dijk et al., 2020), could help to reconstruct hydrological 469 

change in arid and semi-arid environments where plant macrofossils are unlikely to be 470 

preserved, and the availability of plant-based terrestrial proxy data will therefore be limited or 471 

absent. These caveats will need to be addressed in the future to fully establish the fidelity 472 

with which the DeepMIP-Eocene models simulate the tropical and subtropical hydrological 473 

cycle response over land. In this study, we proceed by evaluating the models with our 474 

synthesis of paleobotanical MAP estimates.  475 

 476 

3.5 Terrestrial precipitation data-model comparison 477 

To explore whether the DeepMIP models realistically reproduce regional MAP patterns 478 

during the early Eocene, we employ the data-model comparison approach outlined in 479 

Section 2.2.3 using our new and published botanical-based MAP estimates. A previous site-480 

by-site data-model comparison (Carmichael et al., 2016) suggested that the EoMIP models 481 

were able to reproduce key features of the hydrological cycle in the mid-latitudes (e.g., 482 

western US interior, central Europe), but modelled MAP estimates were typically lower than 483 

those from proxies in the high-latitudes (e.g., East Antarctica, SE Australia, Axel Heiberg). 484 

For the new DeepMIP-Eocene model-data comparison, we find a similar result (Figure 11 & 485 

12). The MMM underestimates proxy-derived MAP in the high northern latitudes, especially 486 

at lower CO2 levels (Figure 11). We attribute this mismatch to the lack of polar amplification 487 

in certain models, especially at lower CO2 levels (e.g., HadCM3, COSMOS) (Lunt et al., 488 

2021, Figure S11). At high CO2 values, the model-data bias for high-latitude MAP is 489 

smallest, down to -0.4 to -0.6 mm/day for the 6x and 9x CO2 simulations (Figure 12d). The 490 

mid latitudes are likewise associated with large data-model mismatches, with models 491 

simulating MAP values that are too low by ~0.4 to 1.3 mm/day from a zonal-mean 492 

perspective, and a decrease in bias with increasing CO2 levels (Figure 12c). Moving to the 493 

subtropics, model-bias is likewise negative, with a large range between near-zero and -1.75, 494 

but without a clear intra- or inter-model improvement with CO2 levels. Finally, almost all 495 

models (expect for COSMOS) simulate too much precipitation in the tropics compared to the 496 
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reconstructions, with positive biases of up to +1.5 mm/day, that remain similar or worsen 497 

with increasing CO2 for a given model (Figure 12a).  498 

 499 

Comparing between models, proxy-model mismatches are lowest for CESM, GFDL, MIROC 500 

and NorESM in the subtropics, mid- and high latitudes (Figure 12; Figure S11) i.e., the 501 

models with higher GMST estimates and lower LTGs (Lunt et al., 2021). These models 502 

overall simulate higher precipitation. They however do not outperform the other models in 503 

the tropical band (Figure 12a). From a regional viewpoint, in the mid-latitudes the MMM 504 

either underestimates MAP (e.g., western South America and Tibet) or overestimates MAP 505 

(e.g., western North America; Figure 11). As these mismatches lie close to major mountain 506 

ranges (e.g., Rocky Mountains, proto-Tibetan Plateau, Andes), it is possible that mismatches 507 

are due to topographic effects as a small offset in reconstructed paleolocation can make a 508 

large difference in reconstructed elevation. Additionally, the DeepMIP Eocene model 509 

resolution is coarse and the topography has inherent uncertainty, especially in the North 510 

American Cordillera and proto-Himalayas (Herold et al. 2014). In our MMM comparison, it 511 

should be noted that the composition of the model ensemble changes over the different CO2 512 

levels in the MMM (cf. Table S1 and Figure 4). For instance, whereas the 3xCO2 513 

experiment was performed with 7 out of 8 DeepMIP models, only 3 models (CESM, GFDL, 514 

INMCM) were used for the 6xCO2 experiment, and only CESM ran a 9xCO2 simulation. For 515 

a more detailed analysis of regional hydroclimate in the DeepMIP simulations, we refer the 516 

reader to Williams et al. (2022) and Reichgelt et al. (2022), for the African and Australian 517 

continent, respectively.    518 

 519 

Our results indicate that the models with higher GMST and weaker LTGs are able to better 520 

simulate the global and regional scale hydrological cycle (Figure 12). Overall, our integrated 521 

data-model approach suggests that the early Eocene was characterised by a 522 

thermodynamically-dominated hydrological response to warming within the mid and high 523 

latitudes. Enhanced polar amplified warming in response to increased CO2 forcing leads to 524 
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an improved high-latitude model-proxy fit with enhanced local evaporation and eddy 525 

moisture transport convergence increasing precipitation (Figure S6; Figure 12c-d; Figure 526 

S11). Furthermore, the DeepMIP-Eocene models on average simulate higher precipitation in 527 

the tropics relative to the proxy data (Figure 12a; Figure S11), with increased tropical 528 

precipitation driven by enhanced local evaporation and time-mean moisture convergence. 529 

While several DeepMIP-Eocene models simulate a narrowing of the ITCZ, an ITCZ 530 

narrowing signal is not clearly evident within the proxy data (Figure 10). Lastly, in the 531 

subtropical latitudes, the models differ widely in their response leading to varying degrees of 532 

model-data bias (Figure 12b). Weakened Hadley circulation in response to weaker LTGs 533 

could have offset thermodynamic subtropical drying and supported regional wetting, as seen 534 

to some extent in the GFDL and CESM models (Figure 12b; Figure S10). Although the lack 535 

of proxy evidence for arid subtropical regions in the early Eocene background state might be 536 

caused by a bias of the sparsely available data to wet regions, this conspicuous absence of 537 

evidence at least reflects regionally wetter conditions.  538 

 539 

4 Conclusions 540 

Here we use the DeepMIP model simulations to investigate global and zonal-mean rainfall 541 

patterns during the early Eocene (~56.0–47.8 million years ago). Across the DeepMIP 542 

ensemble, higher GMST estimates are associated with higher global-mean MAP estimates, 543 

with an overall 2.4% increase in global MAP per degree of warming. At higher temperatures, 544 

the DeepMIP model simulations indicate that - on average - the low- (0-15° N/S) and high-545 

latitudes (>60° N/S) are characterised by positive P–E values (wetter conditions). While the 546 

subtropics (15-30° N/S) are characterised by negative P–E values (drier conditions), there is 547 

large inter-model variability in subtropical mean annual precipitation (MAP) due to the 548 

competing influence of humidity (i.e., thermodynamic changes) and atmospheric 549 

circulation (i.e., dynamic changes) in this region. The DeepMIP model simulations that 550 

exhibit higher subtropical MAP estimates relative to pre-industrial are characterised by 551 

weaker latitudinal temperature gradients and a reduction in subtropical moisture divergence. 552 
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This acts to offset drier conditions, particularly in the Southern Hemisphere where the 553 

strength of the Hadley Cell systematically weakens with the latitudinal temperature gradient 554 

in all models. Crucially, the models with reduced latitudinal temperature gradients (e.g., 555 

GFDL, CESM) more closely reproduce our compilation of proxy-derived precipitation 556 

estimates and other key climate metrics. Taken together, this implies weaker subtropical 557 

circulation in the early Eocene. However, changes in subtropical moisture divergence were 558 

not sufficient to induce subtropical wetting in the models. Extrapolating from this, if early 559 

Eocene latitudinal temperature gradients were even weaker than suggested by these 560 

models, circulation-induced changes may have outcompeted the thermodynamic changes, 561 

leading to overall wetter subtropics – consistent with sparsely available proxy data. Taken 562 

together, our study highlights the importance of accurately reconstructing and modelling 563 

the meridional temperature gradient when interpreting past subtropical rainfall patterns. 564 

 565 
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Figure Captions 960 

 961 

Figure 1. Overview of early Eocene precipitation proxy compilation. Previously 962 

published estimates compiled by the Carmichael et al., (2016) shown as purple squares; 963 

additional published estimates plotted as dark green circles; new estimates (this study) 964 

plotted as light green circles. Sample locations plotted with their modern positions on a 965 

present-day world map. 966 

 967 

Figure 2. Rainfall patterns in DeepMIP pre-industrial simulations. a) Climate Prediction 968 

Center (CPC) Merged Analysis of Precipitation (CMAP) Observations (Xie & Arkin 1997), b) 969 

multi-model mean (MMM) of precipitation estimates (mm/day) for the pre-industrial control 970 

runs for the 9 models in the DeepMIP ensemble (middle), c) MMM anomalies in precipitation 971 

(mm/day) for DeepMIP pre-industrial control runs minus modern observations. d) Zonal-972 

mean precipitation of DeepMIP model control runs and modern observations. Note that the 973 

MMM contains a different model ensemble for different CO2 concentrations (see Table S1, 974 

Figure 4).  975 

 976 

Figure 3. Global hydrological response to warming in the DeepMIP experiments. 977 

Global mean change in precipitation relative to pre-industrial (in % change) on the vertical 978 

axis plotted against global mean surface air temperature (GMST) relative to pre-industrial (in 979 

°C) on the horizontal axis. Simulations with the same model at three or more different CO2 980 

levels have been connected by coloured lines. Correlation coefficient of a linear fit through 981 

the combined values (black line) is 0.96, slope is 2.4% increase in precipitation per °C of 982 

warming.  983 

 984 

Figure 4. Multi-model mean temperature and precipitation anomalies relative to the 985 

pre-industrial control in the DeepMIP simulations. a) surface air temperature, b) 986 

precipitation and c) precipitation – evaporation (P-E). "n" values above each plot represent 987 
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the number of models available for calculating the MMM. See Figure S7 for the standard 988 

deviation in each variable across the ensemble members contributing to the ensemble mean 989 

 990 

Figure 5.  Mean annual precipitation (MAP) values in the DeepMIP Eocene simulations 991 

for the a) tropics (15°–15° N/S), b) subtropics (15°–30° N/S), c) mid latitudes (30°–60° 992 

N/S), and d) high latitudes (60°–90° N/S). Panels (a-d) show the % change in MAP relative 993 

to pre-industrial vs the change in global mean surface air temperature change (GMST; °C) 994 

relative to pre-industrial. Simulations with the same model at 3 or more different CO2 levels 995 

have been connected by colored lines. Dashed black line represents a linear fit through the 996 

combined values and the slope and correlation coefficient are shown in bottom right hand 997 

corner. Note that y-axis scaling differs between plots. 998 

 999 

Figure 6.  Precipitation-evaporation (P–E) values in the DeepMIP model simulations 1000 

for the a) tropics (15°–15° N/S), b) subtropics (15°–30° N/S), c) mid latitudes (30°–60° 1001 

N/S), and d) high latitudes (60°–90° N/S). Panels (a-d) show the change in P–E relative to 1002 

pre-industrial (mm/day) vs the change in global mean surface air temperature change 1003 

(GMST; °C) relative to pre-industrial. Simulations with the same model at 3 or more different 1004 

CO2 levels have been connected by colored lines. Dashed black line represents a linear fit 1005 

through the combined values and the slope and correlation coefficient are shown in bottom 1006 

right hand corner Note that y-axis scaling differs between plots.  1007 

 1008 

Figure 7. Zonal-mean MAP and ITCZ characteristics in the DeepMIP-Eocene 1009 

simulations. a) The width of the ITCZ (defined as in Byrne and Schneider, 2016), b) the 1010 

ITCZ latitude of maximum precipitation and c) the zonal-mean MAP profiles for each model.   1011 

 1012 

Figure 8. Zonal-mean components of the hydrological cycle as functions of latitude in 1013 

the DeepMIP simulations. a) surface precipitation minus evaporation (P−E), b) implied 1014 

moisture transport (vq implied in g/kg m/s), c) moisture transport by time-mean flow (v q in 1015 
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g/kg m/s), d) moisture transport by eddy transport (v' q' in g/kg m/s), e) the contribution of 1016 

changes in the time-mean humidity to changes in the moisture transport (i.e., 1017 

thermodynamic effects) (v δq in g/kg m/s), f) the contribution of changes in the circulation to 1018 

changes in moisture transport (i.e., dynamic effects) (δvq  in g/kg m/s). Full set of 1019 

simulations is plotted as thin transparent colored lines, and the multi model mean as thick 1020 

colored lines. Note that the MMM contains a different model ensemble for different CO2 1021 

concentrations (see Table S1, Figure 4). Note also that IPSL, INMCM, and NorESM are 1022 

missing from the moisture budget analysis in this and subsequent plots because the 1023 

atmospheric variables required were missing from the DeepMIP database.  1024 

 1025 

Figure 9. Subtropical moisture budget diagnostics show competing influence of 1026 

atmospheric humidity and circulation in the subtropics (15-30°N/S). a) the 1027 

relationship between changes in subtropical P−E and GMST, b) the relationship between 1028 

changes in subtropical P−E and the latitudinal temperature gradient (LTG) between 1029 

15°S–15°N and 30–60°N/S, c) changes in subtropical P−E due to humidity-induced 1030 

changes in the time-mean moisture transport divergence (i.e., (𝑣q implied in g/kg m/s), c) 1031 

moisture transport by time-mean flow (v 𝑞 in g/kg m/s), d) changes in subtropical P−E due 1032 

to circulation-induced changes in the time-mean humidity to changes in the moisture 1033 

transport (i.e., thermodynamic effects) (𝑣 δq in g/kg m/s), f) the contribution of changes in 1034 

the circulation to changes in moisture transport (i.e., dynamic effects). 1035 

 1036 

Figure 10. Proxy-based mean annual precipitation (MAP; mm/day) values overlayed 1037 

on simulated MAP fields from the DeepMIP ensemble. (a) Zonal-mean MAP from all the 1038 

DeepMIP-Eocene experiments (light coloured lines) with the multi-model-mean as a bold line 1039 

and the proxy estimate overlayed as symbols (NLR-based approaches in black; LAA in dark 1040 

grey; CLAMP in light grey). See Figure S10 for individual model plots with simulated MAP 1041 

values at the proxy locations rather than zonal-mean values. (b) MMM MAP for each 1042 

DeepMIP-Eocene CO2 experiment with the reconstructed MAP estimates overlayed.   1043 
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 1044 

Figure 11. Data-model comparison for the early Eocene. In each panel, the early Eocene 1045 

multi-model-mean (MMM) mean annual precipitation (MAP) bias is shown for a given CO2 1046 

concentration. The root-mean-square error of the bias across all the sites is shown in black 1047 

on the left. Lower values indicate a closer data-model agreement. 1048 

 1049 

Figure 12. Zonally-averaged model-data mean annual precipitation (MAP) bias for the 1050 

a) tropics (15°–15° N/S), b) subtropics (15°–30° N/S), c) mid latitudes (30°–60° N/S), and 1051 

d) high latitudes (60°–90° N/S). Panels (a-d) show the model-data bias in mm/day for the 1052 

different model simulations, sorted by CO2 forcing 1053 

 1054 
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