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A MULTISTEP PROBABILITY OF COLLISION COMPUTATIONAL 
ALGORITHM 

Doyle T. Hall,* Luis G. Baars,† and Stephen J. Casali‡ 

The two-dimensional probability of collision calculation method is both widely 

used and computationally efficient. However, Monte Carlo simulations show that 

this method sometimes fails to provide sufficiently accurate estimates for Earth-

orbiting satellites. This study presents a multistep algorithm that calculates colli-

sion probabilities for all conjunctions, regardless if affected by curvilinear trajec-

tory or time varying covariance dynamics. The algorithm sequentially applies in-

creasingly accurate estimation methods, but only as required for efficiency. Eval-

uating usage violations for the two-dimensional probability of collision method 

represents one of the most important steps. Extensive testing demonstrates the 

efficiency and reliability of the multistep algorithm. 

INTRODUCTION 

The NASA Conjunction Assessment Risk Analysis (CARA) program is responsible for moni-

toring and providing collision avoidance to NASA’s un-crewed spacecraft in orbit. The CARA 

team estimates collision probabilities for a specific set of high value Earth-orbiting satellites1 based 

on the latest available satellite tracking data and orbit determination (OD) solutions.2 Like CARA, 

many other conjunction analysis organizations use the probability of collision (𝑃𝑐) to assess the risk 

of collisions between tracked Earth-orbiting satellites. The semi-analytical two-dimensional colli-

sion probability estimation method (2D-𝑃𝑐), originally formulated in 1992,3 represents the most 

widely used algorithm, in part because it has been improved in computational efficiency signifi-

cantly over the past decades.4-7 However, the 2D-𝑃𝑐 method relies on several assumptions that must 

be satisfied in order to produce accurate results, including using the approximations of locally rec-

tilinear motion and time-invariant covariance matrices. Monte Carlo (MC) simulations, which do 

not invoke such limiting assumptions, provide a means to test the accuracy of semi-analytical meth-

ods, and allow accurate 𝑃𝑐 estimation for low-velocity and multi-encounter interactions.8 Extensive 

MC analysis of actual conjunction events shows that the 2D-𝑃𝑐 method sometimes fails to provide 

sufficiently accurate estimates for reliable conjunction risk assessments of satellites in low-Earth 

orbit (LEO); these relatively rare 2D-𝑃𝑐 method failures include some low relative velocity con-

junctions, but also some high velocity encounters that involve long propagations or eccentric or-

bits.9 

In these cases, the semi-analytical “3D-𝑁𝑐” method – which evaluates the statistically expected 

number of collisions (𝑁𝑐) as a means to estimate 𝑃𝑐 values – provides a way of processing both 
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single- and multi-encounter interactions.10 The 3D-𝑁𝑐 formulation does this by accurately account-

ing for curvilinear trajectory and time varying covariance effects. Although usually much more 

efficient than MC methods, 3D-𝑁𝑐 requires significantly more computation than the 2D-𝑃𝑐 method. 

An optimized computation would only apply 3D-𝑁𝑐 to the limited subset of conjunctions for which 

2D-𝑃𝑐 might fail. However, this hybrid approach requires a reliable method to identify such 2D-𝑃𝑐 

method “usage violations.” Increasing the speed of the 3D-𝑁𝑐 calculation itself also would provide 

further efficiency improvements. 

This study presents a multistep algorithm designed to calculate 𝑃𝑐 values both accurately and 

efficiently for all CARA conjunctions, regardless if affected by curvilinear trajectories, low veloc-

ities, or covariance variations. For each conjunction, the process starts with the 2D-𝑃𝑐 calculation, 

and identification of any associated usage violations. The algorithm then sequentially applies other, 

more accurate semi-analytical 𝑃𝑐 estimation methods, but only as required. It next tries the “2D-

𝑁𝑐” method, which is significantly more efficient than the 3D-𝑁𝑐 method because it evaluates one 

of the required integrals analytically rather than numerically. If necessary, the algorithm then tries 

the more advanced 3D-𝑁𝑐 method itself, a step required relatively infrequently and primarily for 

long duration conjunctions caused by low relative velocities. Finally, in the very rare cases that all 

of these semi-analytical methods fail, or if the user desires validation of the results, the algorithm 

performs MC 𝑃𝑐 estimation.  

Evaluating 2D-𝑃𝑐 method usage violations represents one of the most important elements of the 

multistep algorithm. Detecting these violations entails comparing Mahalanobis distances11 between 

the two satellites calculated using the rectilinear vs curvilinear trajectory approximations. Large 

differences between the Mahalanobis distance curves indicate likely 2D-𝑃𝑐 method failures. Usage 

violations correspond to cases for which the differences exceed a conservatively small threshold 

value. The analysis also provides an approximate correction factor for the 2D-𝑃𝑐 estimate, as well 

as an estimated duration for the conjunction. The multistep procedure follows up these calculations 

with more accurate estimation methods for conjunctions that have 2D-𝑃𝑐 method usage violations 

and corrected 𝑃𝑐 estimates that are too large, or that have estimated durations that are too long.  

Testing based on almost two million conjunctions between actual satellites indicates that the 

multistep algorithm provides reliably accurate 𝑃𝑐 estimates, and is significantly more efficient than 

always using advanced semi-analytical or MC estimation methods. 

OVERVIEW OF THE MULTISTEP COLLISION OF PROBABILITY ALGORITHM  

This section describes the multistep collision probability algorithm, which uses the following 

five increasingly accurate computational methods: 

1. The 2D-𝑃𝑐 method: the two-dimensional collision probability method estimates 𝑃𝑐 values 

for rectilinear motion conjunctions by calculating an integral over a circular region on the 

conjunction plane. 

2. The 2D-𝑁𝑐 method: the two-dimensional expected number of collisions method estimates 

𝑃𝑐 values for high velocity curvilinear motion conjunctions by calculating one integral over 

the collision sphere. 

3. The 3D-𝑁𝑐 method: the three-dimensional expected number of collisions method estimates 

𝑃𝑐 values for high and low velocity curvilinear motion conjunctions by calculating a series 

of collision sphere integrals. 

4. The SDMC method: the Simplified Dynamics Monte Carlo method, estimates 𝑃𝑐 values for 

curvilinear motion conjunctions by calculating a sampled series of two-body motion trajec-

tory propagations. 
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5. The BFMC method: the Brute Force Monte Carlo method, estimates 𝑃𝑐 values for curvilin-

ear motion single- or multi-conjunction interactions by calculating a sampled series of high 

fidelity trajectory propagations starting from the initial OD epochs. 

The first three methods represent semi-analytical approximations, and the last two MC approaches. 

Because the computation required by each successive method increases significantly, the multistep 

algorithm by default invokes each only as required for efficiency. CARA’s developmental software 

implementation executes the first four methods in an automated fashion. The final BFMC method 

represents CARA’s most accurate, “gold standard” 𝑃𝑐 estimation method, which is extremely com-

putationally intensive9 but rarely required for operational processing. The first four methods rely 

on assumptions or approximations that are not necessarily rigorously satisfied for all conjunctions, 

creating the possibility of 𝑃𝑐 estimation inaccuracies. To address this, the multistep algorithm com-

putes a set of conservative usage violation indicators that determine whether to invoke each suc-

cessive 𝑃𝑐 estimation method. The multistep algorithm aims to produce final “refined” 𝑃𝑐 estimates 

that would all agree with the BFMC method, had it been actually executed. 

Flowchart for the Multistep Calculation 

Figure 1 shows a flowchart of the multistep 𝑃𝑐 algorithm. The gray rectangles show the main 

computation modules, and the blue diamonds indicate decision points. 

 

Figure 1. Schematic flowchart of the multistep algorithm for collision probability computation. 

Fraction of CARA Conjunctions Processed at Each Step of 𝑷𝒄 Refinement 

The rectangles on the left side of Figure 1 show the fractions of conjunctions processed at each 

of the refinement steps, based on testing of 1.93 million conjunctions archived in the CARA data-

base during the years 2021 and 2022. Among this original set, 7.3% of the conjunction data struc-

tures possess orbit determination (or filtering) conditions that prevent further processing. For the 

remaining 1.79 million conjunctions, the multistep algorithm reports refined estimates based on the 

2D-𝑃𝑐 method for 94.7%, the 2D-𝑁𝑐 method for 5.0%, and the 3D-𝑁𝑐 method for 0.3%. Relatively 

few conjunctions ultimately require estimation using MC methods, 0.006% for SDMC and 0.002% 

for BFMC. By default, the algorithm invokes the successive estimation methods only as required, 

but optionally allows processing with any or all of the methods, useful for testing and development, 

as well as for complete analysis of “high interest events” (HIEs). 
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COLLISION PROBABILITY INPUT PARAMETERS AND RELATED QUANTITIES 

The parameters required for 𝑃𝑐 estimation include size estimates for the primary and secondary 

satellites, as well as orbital states and covariance matrices. This section describes these parameters 

and some related quantities. 

The Combined Hard-body Radius for Known and Unknown Satellites 

Because manufactured satellites generally have irregular shapes, 𝑃𝑐 methods typically estimate 

probabilities for the spheres that circumscribe each of the two objects.3-10,12 For known satellites, 

this “hard-body” radius (HBR) parameterization is both conservative (because it spans each satel-

lite’s fully deployed components) and convenient (because it is a single, time-invariant parameter). 

The collision probability for a conjunction between satellites that both have known sizes depends 

on the combined HBR, i.e., 𝑅 = 𝑅1 + 𝑅2. Most CARA conjunctions, however, represent encoun-

ters involving unknown objects, typically debris created by on-orbit satellite explosions or colli-

sions.13 For many of these, radar cross section (RCS) measurements provide a means to estimate 

HBR values and associated uncertainties.14,15 Analysis indicates that collision probabilities involv-

ing unknown secondary objects are approximated reasonably well by using the following effective 

combined HBR15  

𝑅 = √(𝑅1 + 𝑅̅2)2 + 𝜎𝑅2

2  (1) 

with (𝑅̅2, 𝜎𝑅2

2 ) denoting the mean and variance of the RCS based secondary HBR estimate. 

The Expected Number of Collisions (𝑵𝒄) and Collision Probability (𝑷𝒄) 

The 2D-𝑁𝑐 and 3D-𝑁𝑐 methods evaluate the statistically expected number of collisions, 𝑁𝑐, as 

a means to estimate 𝑃𝑐 values for single conjunctions, or to establish lower and upper 𝑃𝑐 bounds for 

multi-encounter interactions. The relationship between 𝑁𝑐 and 𝑃𝑐 is straightforward. For an isolated 

conjunction, the expected number of collisions equals the collision probability, i.e., 𝑁𝑐 = 𝑃𝑐. For a 

typical multi-encounter interaction, the total expected number of collisions is the linear sum of the 

individual conjunction collision probabilities, i.e., 𝑁𝑐 = ∑ 𝑃𝑐,𝑘𝑘 . The total collision probability for 

a multi-encounter interaction has the following bounds10 

max𝑘(𝑃𝑐,𝑘) ≤ 𝑃𝑐 ≤ 1 − ∏ (1 − 𝑃𝑐,𝑘)𝑘   (2) 

The upper bound corresponds to full statistical independence between all of the conjunctions, and 

the lower bound represents the opposite extreme. (Note: this assumes that the individual conjunc-

tions in the sequence each have sufficiently short durations so that they are not blended10 in time 

with one another; this temporally isolated assumption is satisfied for the vast majority of CARA 

conjunctions, as discussed later.) The upper limit from eq. (2) provides a conservative 𝑃𝑐 estimate 

for multi-encounter interactions.  

Trajectory Uncertainty Estimation and Covariance Realism 

Realistic assessment of satellite collision risks requires accurate characterization of trajectory 

uncertainties. A review of previous studies16 indicates that there are several sources of orbital state 

estimation errors, resulting in both aleatoric uncertainties (e.g., due to random errors arising from 

natural variability) and epistemic uncertainties (e.g., due to systematic errors arising from limited 

data or ignorance of physical processes). Risk assessment based on the probability of collision 

addresses random errors; addressing systematic errors requires using other metrics, such as the 

recently formulated credibility of collision17 as discussed in more detail later.  
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Many 𝑃𝑐 estimation methods approximate random trajectory uncertainties using a single Gauss-

ian probability density function (PDF) for orbital states. This approach does not always provide an 

accurate assessment of uncertainties because the OD estimation process potentially suffers a lack 

of covariance realism.16 In order to model trajectory uncertainties more accurately, some OD meth-

ods estimate each orbital state PDF as a Gaussian mixture model (GMM), i.e., a weighted sum of 

multiple multivariate normal (MVN) functions.18,19 In these cases, calculating the collision proba-

bility of the kth isolated conjunction requires a double summation  

𝑃𝑐,𝑘 = ∑ ∑ (𝑃𝑐,𝑘,𝑔1,𝑔2
)𝑔2𝑔1
  (3) 

with the indices 𝑔1 and 𝑔2 spanning the GMM components of the primary and secondary orbital 

state PDFs, respectively. The algorithm illustrated in Figure 1 aims to calculate individual compo-

nent probabilities, i.e., single 𝑃𝑐,𝑘,𝑔1,𝑔2
 values. (Note: for brevity this analysis suppresses the 𝑘, 𝑔1 

and 𝑔2 indices, unless otherwise stated.) 

Instead of using the GMM approach of eq. (3), other methods apply multiplicative factors to 

state covariance matrices in an effort to correct for poor covariance realism, and estimate the asso-

ciated effects on collision probabilities.20-22 In these cases, given the scaled covariance matrices as 

input, the multistep 𝑃𝑐 algorithm still can be used to account for the effects of both curvilinear 

trajectories and long duration encounters. 

The Credibility of Collision 

Recently, Delande et al 17 introduced the concept of the credibility of collision, which assesses 

risk based on orbital state possibility functions (rather than PDFs), in order to account for system-

atic trajectory uncertainties. Like PDFs, possibility functions also can take the form of single 

Gaussians or GMMs that incorporate OD-based mean state vectors and covariance matrices. Be-

cause of this, curvilinear trajectories and long duration encounters also potentially compromise the 

accuracy of credibility of collision calculations. Preliminary analysis indicates that the approach 

used by the 3D-𝑁𝑐 method of optimally re-centering the point used to linearize the equations of 

motion10 also provides a means of increasing the accuracy of credibility of collision estimation. 

(Note: although not addressed further in this analysis, the CARA team is currently studying the 

credibility of collision as both a risk assessment metric and a tracking sensor priority metric.) 

COLLISION PROBABILITY CALCULATION METHODS 

This section summarizes each 𝑃𝑐 method used in the multistep algorithm. For convenience, the 

3D-𝑁𝑐 description precedes that of the 2D-𝑁𝑐 method, even though the algorithm invokes these 

methods in the opposite order. 

The 2D-𝑷𝒄 Method 

The 2D-𝑃𝑐 method of approximating collision probabilities, introduced in 1992 by Foster and 

Estes,3 uses the approximations of rectilinear motion, constant velocities and constant relative po-

sition covariance matrices for each analyzed conjunction. Both the formulation and computational 

efficiency of this widely used method have improved significantly over the past decades.4-7 Calcu-

lating 2D-𝑃𝑐 estimates requires two-dimensional integration over the HBR circle projection on the 

conjunction encounter plane. In 2005, Alfano5 evaluated one of the integrals analytically by align-

ing the conjunction plane’s axes with the principal axes of the marginalized joint PDF ellipse, 

yielding the following approximation  

𝑃𝑐 ≈
1

√8𝜋 𝜎𝑥

∫ {erf(𝑌+) − erf(𝑌−)} [exp (−
(𝑥 + 𝑥𝑚)2

2𝜎𝑥
2 )]  𝑑𝑥

𝑅

−𝑅

 (4) 
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with 𝑌± = (𝑦𝑚 ± √𝑅2 − 𝑥2) (2𝜎𝑦)⁄ . In this expression, (𝑥𝑚, 𝑦𝑚) denote the close-approach miss 

location on the conjunction plane, and (𝜎𝑥, 𝜎𝑦) the semi-major and semi-minor axes of the PDF’s 

1-sigma ellipse, respectively. The factor in the curly brackets represents the difference of error 

functions: ∆ = erf(𝑌+) − erf(𝑌−). In many software environments (e.g., Matlab), this factor often 

can be computed significantly more accurately using complementary error functions, i.e., ∆ =
erfc(𝑌−) − erfc(𝑌+), especially when computing small 𝑃𝑐 values.7 For most conjunctions, Gauss-

Chebyshev quadrature provides an efficient and accurate means to compute the integral in eq. (4), 

using an approach similar to that described in 2019 by Elrod.7 

Monte Carlo studies show that 2D-𝑃𝑐 estimates can be inaccurate for some low relative velocity 

(i.e., extended duration) encounters,8,9 and for a small fraction of high velocity encounters that are 

strongly affected by curvilinear trajectory effects – with the latter often associated with long prop-

agations or highly eccentric orbits.9,10 These discrepancies do not result from inaccurate calculation 

of the integral in eq. (4), but rather because one or more of the 2D-𝑃𝑐 assumptions (i.e., rectilinear 

motion, constant velocity or constant covariance) fails to be satisfied. 

The 3D-𝑵𝒄 Method 

The 3D-𝑁𝑐 method explicitly accounts for the effects of curvilinear trajectories along with as-

sociated velocity and covariance variations, as formulated in 2021 by Hall10 (and briefly summa-

rized in this section). To accomplish this, the 3D-𝑁𝑐 method approximates trajectories during indi-

vidual conjunctions using two-body equations of motion23 and assumes that the equinoctial element 

orbital states24,25 of the primary and secondary objects each have a normally distributed uncertainty 

distribution at time of closest approach (TCA). More specifically, the method approximates each 

equinoctial state PDF at TCA using a single MVN function, an approach demonstrated by MC 

studies to mitigate 𝑃𝑐 inaccuracies due to non-Gaussian covariance propagation effects.9,26,27 For 

high velocity conjunctions negligibly affected by curvilinear trajectory effects, this 3D-𝑁𝑐 approach 

consistently produces 𝑃𝑐 estimates that accurately match those calculated using the 2D-𝑃𝑐 method.10 

The 3D-𝑁𝑐 method estimates each conjunction’s 𝑃𝑐 value by integrating the statistically ex-

pected collision rate over the duration of the encounter. The formulation results in a final expression 

that requires three dimensions of numerical integration, one in time, and two over the surface of 

the collision sphere 

𝑃𝑐 ≈ ∫ {𝑅2 ∫ ∫ ℱ(𝜙, 𝜃, 𝑅, 𝑡) sin(𝜃) 𝑑𝜃
𝜋

0

𝑑𝜙
2𝜋

0

}
𝜏𝑏

𝜏𝑎

𝑑𝑡 (5) 

The integrand function represents the product of an MVN function and an averaged projected ve-

locity10 

ℱ(𝑡, 𝑅, 𝜙, 𝜃) = 𝒩(𝑅𝒓̂, 𝒓̆𝑡 , 𝑨̃𝑡) 𝜈(𝑅, 𝒓̂, 𝑿̆𝑡, 𝑷̃𝑡) (6) 

The arguments for these functions include the combined HBR, 𝑅; the radial unit vector measured 

from the center position of the primary satellite, 𝒓̂ = [cos(𝜙) sin(𝜃),  sin(𝜙) sin(𝜃), cos(𝜃)]𝑇; and 

an inertial frame primary-to-secondary position/velocity vector and associated covariance matrix 

 𝑿̆𝑡 = [
𝒓̆𝑡

𝒗̆𝑡
]      and     𝑷̃𝑡 = [

𝑨̃𝑡 𝑩̃𝑡
𝑇

𝑩̃𝑡 𝑪̃𝑡

]  (7) 

(Note: for brevity the dependence on time, 𝑡, is listed as a subscript for these quantities.) The 61 

vector 𝑿̆𝑡 and associated 66 matrix 𝑷̃𝑡 represent the effective mean and covariance of the relative 

position/velocity vector, adjusted to account for curvilinear effects with optimal accuracy, and de-

rived by centering the linearization of the motion on the peak PDF overlap point.10,28 Calculating 
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𝑿̆𝑡 and 𝑷̃𝑡 requires an iterative procedure which uses as input the TCA mean state vectors and 

covariance matrices of the two objects.10 An earlier approach formulated in 2012 by Coppola29 uses 

the mean relative state and covariance in eqs. (5) and (6) – i.e.,  𝑿̅𝑡 and 𝑷̅𝑡 instead of 𝑿̆𝑡 and 𝑷̃𝑡; 

however, MC studies indicate that this simpler method produces significantly less accurate 𝑃𝑐 esti-

mates for many conjunctions than either the 2D-𝑃𝑐 or 3D-𝑁𝑐 methods.10 (Note: preliminary analysis 

indicates that using 𝑿̆𝑡 and 𝑷̃𝑡 instead of 𝑿̅𝑡 and 𝑷̅𝑡 also improves credibility of collision17 estima-

tion accuracy.) 

The quantity in the curly brackets of eq. (5) represents the time-dependent statistically expected 

collision rate, calculated as an integral over the surface of the collision sphere, which has radius 𝑅 

and is centered on the position of the primary object. (Chan30,31 also discusses the concept of the 

collision sphere.) Calculating the collision rate entails evaluating a two-dimensional unit sphere 

integral over the azimuthal and axial angles (𝜙, 𝜃), respectively, computed efficiently as a single 

sum using Lebedev quadrature.32 (By default, all unit sphere integrations in this analysis use the 

maximum available 5,810 Lebedev quadrature points.) To calculate the time integral, CARA’s 3D-

𝑁𝑐 function computes a time series of Lebedev sums, using a dynamic algorithm to refine the num-

ber and spacing of the temporal integration steps in order to achieve a desired convergence toler-

ance. The limits for the integration, 𝜏𝑎 ≤ 𝑡 < 𝜏𝑏, span the duration of the conjunction, i.e., the 

interval that the collision rate is large enough to contribute appreciably to the total 𝑃𝑐 value.10 Most 

LEO conjunctions have very short durations,33 meaning that Δ𝜏 = 𝜏𝑏 − 𝜏𝑎 is small compared to 

the minimum orbital period of the two satellites. However, for some low velocity multi-encounter 

interactions, Δ𝜏 durations become so extended that sequential conjunctions potentially “blend” in 

time with one another; these rare blended interactions sometimes require BFMC estimation to en-

sure accurate 𝑃𝑐 estimation. 

Extensive testing indicates that the 3D-𝑁𝑐 method’s three-dimensional integration approach ac-

counts accurately for the curvilinear trajectory effects and time varying covariance dynamics that 

occur in both high and low velocity LEO interactions, as long as the latter are not blended in time. 

The 2D-𝑵𝒄 Method 

The 2D-𝑁𝑐 method is a computationally efficient version of the 3D-𝑁𝑐 method. The efficiency 

results from evaluating the time integral analytically by approximating the integrand using a 2nd 

order series expansion method. The derivation proceeds as follows: The first step shifts the time 

integration in eq. (5) to be the innermost integral. The second step consolidates the integrand’s 

dependence on time with the following approximation (which adopts subscript notation for the 

variables 𝑅 and 𝑡): 

ℱ(𝜙, 𝜃, 𝑅, 𝑡) = ℱ𝑅,𝑡(𝒓̂) ≈ (
𝜈𝑅,𝑇(𝒓̂)

(2𝜋)3/2|𝑨̅𝑇𝑐
|
1/2

) 𝑒−ℳ𝑅,𝑡(𝒓̂)/2 (8) 

The modified Mahalanobis distance (MMD) function is given by 

ℳ𝑅,𝑡(𝒓̂) = (𝑅𝒓̂ − 𝒓̆𝑡)𝑇[𝑨̃𝑡
−1] (𝑅𝒓̂ − 𝒓̆𝑡) + ln(|𝑨̃𝑡| |𝑨̅𝑇𝑐

|⁄ ) (9) 

The first term of ℳ𝑅,𝑡(𝒓̂) represents the squared effective Mahalanobis distance for a point on the 

collision sphere, and the second accounts for the time dependence of the relative position covari-

ance matrix 𝑨̃𝑡. Eq. (8) introduces two reference times, 𝑇𝑐 and 𝑇. The first denotes the TCA, i.e., 

the instant during the conjunction that the mean relative distance achieves minimum value, given 

by 𝑇𝑐 = argmin(|𝒓̅𝑡|). The second time, 𝑇, indicates the instant of minimum MMD at the center 
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of the collision sphere, i.e., 𝑇 = argmin(ℳ0,𝑡). For most conjunctions, these two times are some-

what offset from one another, and 𝑇 can be determined using a bisection search or a similar numer-

ical method.34 Eq. (8) approximates the integrand’s slowly varying velocity factor by neglecting 

changes from the value at time 𝑇, i.e., 𝜈(𝑅, 𝒓̂, 𝑿̆𝑡, 𝑷̃𝑡) ≈ 𝜈(𝑅, 𝒓̂, 𝑿̆𝑇 , 𝑷̃𝑇) = 𝜈𝑅,𝑇(𝒓̂). 

The third derivation step performs a 2nd order series expansion of the ℳ𝑅,𝑡(𝒓̂) function, centered 

on the time 𝑇, yielding the following approximation (which suppresses the dependence on 𝒓̂ for 

brevity) 

ℳ𝑅,𝑡 ≈ ℳ𝑅,𝑇∗
+ (

𝑡 − 𝑇∗

𝓌𝑅,𝑇
)

2

    with      𝑇∗ = 𝑇 −
ℳ̇𝑅,𝑇

ℳ̈𝑅,𝑇

      (10) 

and 

ℳ𝑅,𝑇∗
= ℳ𝑅,𝑇 −

ℳ̇𝑅,𝑇
2

2ℳ̈𝑅,𝑇

     and      𝓌𝑅,𝑇
2 =

2

ℳ̈𝑅,𝑇

 (11) 

The time derivatives ℳ̇𝑅,𝑇 and ℳ̈𝑅,𝑇 can be estimated numerically by applying the chain rule to 

eq. (9) and using finite differencing34 to approximate the derivatives in the resulting expressions.  

The fourth and final derivation step combines eqs. (5) and (8)-(11), allowing the time integral 

to be evaluated analytically, which yields the final 2D-𝑁𝑐 method approximation for the collision 

probability 

𝑃𝑐 ≈
𝑅2

2𝜋|𝑨̅𝑇𝑐
|
1/2

∫ ∫ {(𝜈𝑅,𝑇)(𝓌𝑅,𝑇) [exp (−
ℳ𝑅,𝑇∗

2
)]} sin(𝜃) 𝑑𝜃

𝜋

0

𝑑𝜙
2𝜋

0

 (12) 

Note that each factor in the curly brackets depends on 𝒓̂, and in turn on 𝜙 and 𝜃. Calculating 2D-

𝑁𝑐 estimates requires only one unit sphere integration, again computed efficiently with Lebedev 

quadrature. Testing indicates that eq. (12) accurately accounts for curvilinear trajectory and covar-

iance variation effects for the vast majority of CARA conjunctions, except for some with very low 

relative velocities. Specifically, for some low velocity (but unblended) conjunctions, the 2nd order 

approximation used in eqs. (10) and (11) potentially becomes inaccurate; these relatively rare 

events require using the 3D-𝑁𝑐 method. However, as before, the even rarer blended low velocity 

interactions further require BFMC estimation. 

For sufficiently small HBR values, the time 𝑇 closely matches the instant that the collision rate 

attains its peak value during the conjunction. This small-HBR limit corresponds to 𝑅 ≪

min𝑖(√𝜆𝑖), with {𝜆1, 𝜆2, 𝜆3} representing the eigenvalues of the 𝑨̃𝑇 covariance matrix. Further 

neglecting velocity uncertainties and position-velocity correlations (i.e., approximating 𝑪̃𝑇 and 𝑩̃𝑇 

in eq. (7) as 33 zero matrices, respectively) allows the unit sphere integrals in eq. (12) to be eval-

uated analytically, yielding the following “small-HBR” approximation for the collision probability 

         𝑃𝑐 ≈ (
𝑅2|𝒗̆𝑇|𝓌0,𝑇

2|𝑨̅𝑇𝑐
|
1 2⁄

) exp (−
ℳ0,𝑇

2
)           for small 𝑅, 𝑩̃𝑇 , and 𝑪̃𝑇 (13) 

This equation provides a convenient means of testing software implementations of the 2D-𝑁𝑐 

method, as well as a basis to estimate a rough correction factor for 2D-𝑃𝑐 method estimates as 

described later. 
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The Simplified Dynamics Monte Carlo Method 

The SDMC method estimates collision probabilities using a multi-trajectory simulation based 

on equinoctial orbital states and two body equations of motion. Specifically, SDMC (also known 

as two-body Monte Carlo9,10,27) uses a “from-TCA” approach that repetitively samples equinoctial 

orbital states from the Gaussian PDFs estimated for the primary and secondary objects at TCA. 

Propagating each sampled state forward and backward in time for short durations using the equa-

tions of two-body motion23-25 allows estimation of the fraction that represent collisions (i.e., hits).9,10  

Testing indicates that the SDMC and 3D-𝑁𝑐 methods produce 𝑃𝑐 estimates that consistently agree 

to one another to within expected MC statistical variations. However, SDMC usually requires sig-

nificantly more computation than 3D-𝑁𝑐, especially when estimating small probabilities. (For typ-

ical laptops, SDMC estimation becomes prohibitive roughly for 𝑃𝑐 < 10-7; for the 24-core pro-

cessing system available to CARA analysts, the limit is roughly 𝑃𝑐 < 10-8.) For conjunctions with 

sufficiently large 𝑃𝑐 values, the SDMC method provides a compelling means to illustrate how cur-

vilinear trajectories affect close approach (CA) distributions, as shown later. 

The Brute Force Monte Carlo Method 

The BFMC method estimates collision probabilities using high fidelity trajectory propagations, 

based on full special perturbations (SP) orbital states.9,10,27 (SP orbital states typically comprise 

seven- or eight-dimensional vectors that include satellite ballistic coefficients and/or solar radiation 

pressure parameters.23) Specifically, BFMC uses a “from-epoch” MC approach that repetitively 

samples equinoctial element-based SP orbital states from Gaussian PDFs estimated at the OD 

epochs of both the primary and secondary objects. Propagating each sampled SP state using high 

accuracy numerical integration allows estimation of the fraction that represent hits.9,27 This high 

fidelity from-epoch approach allows BFMC to estimate 𝑃𝑐 values for extended interactions that 

potentially involve many close encounters, such as between two closely orbiting objects over a 

multi-day period. For unblended conjunctions, testing indicates that the SDMC and BFMC methods 

consistently agree with one another to within expected statistical variations.9,27 However, BFMC 

requires significantly more computation than SDMC. (For the 24-core processing system currently 

available to CARA analysts, BFMC estimations become prohibitive roughly for 𝑃𝑐 < 10-5.) BFMC 

also uses a relatively large set of metadata9 (e.g., time-dependent atmospheric density parameters) 

that, if accessible, requires considerable effort to assemble in a timely fashion. For these reasons, 

the multistep algorithm recommends BFMC only for the extremely rare occurrences of blended 

interactions that pose sufficiently high risk to warrant the effort.  

USAGE VIOLATIONS FOR COLLISION PROBABILITY CALCULATIONS 

As mentioned previously, the first four 𝑃𝑐 computation methods used by the multistep algorithm 

each potentially provide inaccurate estimates under certain conditions. This section summarizes 

usage violation criteria that indicate the potential for the 𝑃𝑐 estimates to be insufficiently inaccurate 

for reliable risk assessment. 

2D-𝑷𝒄 Method Usage Violation Analysis 

The multistep algorithm detects potential 2D-𝑃𝑐 inaccuracies using four types of usage viola-

tions: 

1. “NPD” violations indicate if any of the position covariance matrices are not positive defi-

nite.  

2. “Offset” violations indicate if the time between the TCA and the time of minimum Ma-

halanobis distance for the rectilinear encounter is potentially too long (i.e., exceeds a con-

servative threshold value, as described below). 
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3. “Extended” violations indicate if the rectilinear encounter duration is potentially too ex-

tended. 

4. “Inaccuracy” violations indicate if the Mahalanobis distances for the rectilinear vs curvilin-

ear encounters potentially differ by too much. 

To check for non-positive definite (NPD) covariance matrix violations, the algorithm calculates 

eigenvalues for the inertial position covariance matrices of both the primary and secondary objects 

at TCA. It also calculates eigenvalues for the relative position (or joint) covariance matrix at TCA, 

which may have been corrected for the effects of orbital error cross correlation.10,35 The algorithm 

registers an NPD usage violation indicator if any of these nine eigenvalues are not positive. 

To check for relative velocities that are too low to satisfy the 2D-𝑃𝑐 method’s assumptions of 

rectilinear motion, constant velocity or constant covariance, the algorithm calculates two scalars: 

one to indicate if the peak collision rate occurs too far in time from the TCA, and another to indicate 

if the conjunction extends too much in duration. During a rectilinear encounter with constant ve-

locity, the mean relative position varies linearly in time: 𝒓̅𝑡 = 𝒓̅𝑇𝑐
+ 𝒗̅𝑇𝑐

(𝑡 − 𝑇𝑐) = 𝒓̅𝑇𝑐
+ 𝒗̅𝑇𝑐

(𝛿𝑡). 

Assuming constant covariance, the squared Mahalanobis distance at the center of collision sphere 

varies quadratically in time 

𝑀𝑡
′ = ℳ0,𝑡

′ = 𝒓̅𝑡
𝑇[𝑨̅𝑇𝑐

−1]𝒓̅𝑡 = 𝑎(𝛿𝑡)2 + 𝑏(𝛿𝑡) + 𝑐 (14) 

with 𝑎 = 𝒗̅𝑇𝑐

𝑇 [𝑨̅𝑇𝑐

−1]𝒗̅𝑇𝑐
 , 𝑏 = 2𝒓̅𝑇𝑐

𝑇 [𝑨̅𝑇𝑐

−1]𝒗̅𝑇𝑐
, and 𝑐 = 𝒓̅𝑇𝑐

𝑇 [𝑨̅𝑇𝑐

−1]𝒓̅𝑇𝑐
. (Note: primes distinguish quan-

tities derived using the rectilinear motion approximation from those derived for curvilinear motion.) 

The minimum occurs at the time 𝑇′ = 𝑇𝑐 − 𝑏 (2𝑎)⁄ . For small HBR values, 𝑇′ closely corresponds 

to the instant that the collision rate attains its peak value during a rectilinear encounter, which is 

analogous to the time 𝑇 for a curvilinear encounter used in eqs. (9)-(12). To check if 𝑇′ is too far 

from TCA for the 2D-𝑃𝑐 assumptions to hold reliably, the algorithm compares 𝛿𝑇′ = 𝑇′ − 𝑇𝑐 to 

the minimum orbital period of the two objects, 𝑝𝑚𝑖𝑛. Specifically, if the offset violation indicator 

𝑉𝑜 = 𝛿𝑇′/𝑝𝑚𝑖𝑛 is greater than a threshold of 0.01, the algorithm registers a 2D-𝑃𝑐 offset violation. 

This threshold has been selected conservatively so that, in combination with the other thresholds 

discussed below, the analysis produces no failed detections of actual usage violations among the 

1.79 million conjunctions tested in this study. Since orbital periods for LEO objects are ~100 

minutes, this threshold registers offset violations for 𝛿𝑇′ values longer than ~60 s, which occur 

relatively rarely.33 

Expressing the rectilinear encounter Mahalanobis distance as 𝑀𝑡
′ = 𝑀𝑇′

′ + [(𝑡 − 𝑇′)/𝑤′]2 in-

dicates a 1-sigma width in time of 𝑤′ = (𝒗̅𝑇𝑐

𝑇  𝑨̅𝑇𝑐

−1𝒗̅𝑇𝑐
)−1/2. This width corresponds to a conjunction 

duration33 of Δ𝜏′ = [2√2  erfc−1(𝛾)]𝑤′, with 𝛾 corresponding to the small fraction of 𝑃𝑐 that ac-

cumulates outside the duration bounds. (This analysis defines durations using 𝛾 = 10-6, correspond-

ing to Δ𝜏′ ≈ 9.8𝑤′.) The rectilinear conjunction bounds are 𝜏𝑎
′ = 𝑇′ − Δ𝜏′/2 and 𝜏𝑏

′ = 𝑇′ +
Δ𝜏′/2. To check if the 2D-𝑃𝑐 assumptions hold reliably, the algorithm compares the extended vio-

lation indicator 𝑉𝑒 = Δ𝜏′/𝑝𝑚𝑖𝑛 to a threshold of 0.02. If 𝑉𝑒 is greater than this limit, then the algo-

rithm registers a 2D-𝑃𝑐 extended duration usage violation. Again, this selected threshold produces 

no failed detections among the test conjunctions, and registers violations for Δ𝜏′ values longer than 

~120 s, which rarely occur for LEO satellites.33 

The fourth and final usage violation check for the 2D-𝑃𝑐 method compares Mahalanobis dis-

tances for the rectilinear and curvilinear trajectories. More specifically, the algorithm aims to detect 

any significant differences between two temporal MMD curves: one calculated for the constant-

velocity and constant-covariance rectilinear trajectory approximation, given by eq. (14); and the 

other for the two-body motion curvilinear trajectory approximation, for which the velocity and 
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covariance vary. Setting 𝑅 = 0 in eq. (9) yields the MMD at the center of collision sphere during 

a curvilinear encounter 

𝑀𝑡 = ℳ0,𝑡 = 𝒓̆𝑡
𝑇[𝑨̃𝑡

−1] 𝒓̆𝑡 + ln(|𝑨̃𝑡| |𝑨̅𝑇𝑐
|⁄ ) (15) 

If the 𝑀𝑡
′ and 𝑀𝑡 functions given by eqs. (14) and (15) differ significantly during the encounter, 

then the 2D-𝑃𝑐 method could potentially provide an inaccurate estimate. Figure 2 schematically 

illustrates the two functions, showing 𝑀𝑡
′ as the dotted blue curve and 𝑀𝑡 as the solid black curve. 

To determine if the two curves differ significantly, the algorithm calculates the following quantities 

for the curvilinear encounter: the minimum, 𝑀𝑚𝑖𝑛 = 𝑀𝑇 = ℳ0,𝑇, and the corresponding 1-sigma 

width in time, 𝑤 = 𝓌0,𝑇. Calculating these requires an iterative numerical process, but less com-

putation than executing the 2D-𝑁𝑐 method. Calculating the analogous quantities for the rectilinear 

encounter, 𝑀𝑚𝑖𝑛
′  and 𝑤′, requires relatively little computation. 

 

Figure 2. Comparison of modified Mahalanobis distance functions during a conjunction. 

Combining the Mahalanobis curve parameters with the small-HBR approximation of eq. (13), 

provides a rough correction scale factor for 2D-𝑃𝑐 estimate, 𝐹𝑐, expressed as a natural logarithm as 

follows 

          ln(𝐹𝑐) = ln (
𝑃𝑐

𝑃𝑐
′) ≈ ln (

𝑣̆𝑇

𝑣̅𝑇𝑐

) + ln (
𝑤

𝑤′
) − [

𝑀𝑚𝑖𝑛 − 𝑀𝑚𝑖𝑛
′

2
] 

(16) 

with 𝑃𝑐 denoting the probability for the actual curvilinear encounter, and 𝑃𝑐
′ the probability for the 

2D-Pc approximation based on rectilinear trajectories. To check for potential 2D-𝑃𝑐 inaccuracies, 

the algorithm calculates an inaccuracy usage violation indicator, 𝑉𝑖 = 1 − exp[−| ln(𝐹𝑐) |], and 

registers a violation if 𝑉𝑖 exceeds a threshold of 0.02. In the absence of any other usage violations, 

testing confirms that for 𝑉𝑖 ≤ 0.02 the 2D-𝑃𝑐 method provides estimates within ~2% of the refined 

𝑃𝑐 values, as calculated using the subsequent more accurate estimation methods (i.e., 2D-𝑁𝑐, 3D-

𝑁𝑐, etc.). The correction factor 𝐹𝑐 can be less than or greater than one, depending on the specific 

conjunction. Specifically, 𝐹𝑐 < 1 indicates that the rectilinear 2D-𝑃𝑐 approximation overestimates 

the actual 𝑃𝑐 value that accounts for curvilinear effects. Similarly, 𝐹𝑐 > 1 indicates 2D-𝑃𝑐 underes-

timation. 

Testing also indicates that, in general, most screened CARA conjunctions ultimately are found 

to have collision probability estimates that are negligibly small, i.e., 𝑃𝑐 < 10-10. In order to prevent 

needless processing for the majority of these low risk conjunctions, the multistep algorithm calcu-

lates an initial approximation by applying the scale factor, i.e., 𝑃𝑐
′′ = 𝐹𝑐  𝑃𝑐

′. This scaled estimate 

combines the 2D-𝑃𝑐 method estimate 𝑃𝑐
′ given by eq. (4), and the correction factor 𝐹𝑐 given by eq. 

(16) – which together require significantly less computation than simply executing the 2D-𝑁𝑐 
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method. Testing verifies that, among the set of test conjunctions with no NPD, offset or extended 

usage violations, 𝑃𝑐
′′ values closely match the fully refined estimates for cases that satisfy the as-

sumptions used for the small-HBR approximation of eq. (13). However, for those that do not rig-

orously satisfy these assumptions, 𝑃𝑐
′′ still provides an approximation that, although rough, allows 

safe and efficient processing of very low risk conjunctions. Specifically, among the set of test con-

junctions that have 𝑃𝑐
′′ < 10-15 and only have inaccuracy usage violations, testing indicates no in-

stances with actual refined estimates 𝑃𝑐 > 210-14, which is well below the negligibly small level 

of 𝑃𝑐 = 10-10. On this basis, in the absence of any other 2D-𝑃𝑐 usage violations, the multistep algo-

rithm conservatively reports the quantity max(𝑃𝑐
′, 𝑃𝑐

′′) as the refined estimate for conjunctions with 

𝑉𝑖 > 0.02 and 𝑃𝑐
′′ < 10-15. For conjunctions with 𝑉𝑖 > 0.02 and 𝑃𝑐

′′ ≥ 10-15 (or that have any other 

2D-𝑃𝑐 method violations), the algorithm proceeds on to the 2D-𝑁𝑐 method, and then to the other 

methods as required, to calculate refined 𝑃𝑐 estimates. 

In summary, the multistep algorithm advances past 2D-𝑃𝑐 only for conjunctions that register an 

NPD, offset or extended usage violation, or that have an inaccuracy violation and a scaled 2D-𝑃𝑐 

estimate that exceeds a conservative threshold, i.e., 𝑃𝑐
′′ ≥ 10-15. This leads to the algorithm to report 

2D-𝑃𝑐 based estimates for 94.7% of the test conjunctions. 

2D-𝑵𝒄 Method Usage Violation Analysis 

The algorithm detects potential 2D-𝑁𝑐 inaccuracies using four types of violations: 

1. “Convergence” violations indicate if the iterative process failed to converge on the mini-

mum Mahalanobis distance time, 𝑇, or failed to find the associated (𝑿̆𝑇 , 𝑷̃𝑇) values. 

2.  “Offset” violations indicate if the offset between the TCA and 𝑇 is potentially too long. 

3. “Extended” violations indicate if the curvilinear conjunction duration ∆𝜏 is potentially too 

long. 

4. “Inaccuracy” violations indicate if the 2nd order series used for eqs. (10) and (11) potentially 

becomes inaccurate. 

The specific indicators and associated (conservatively selected) threshold values for these 2D-𝑁𝑐 

usage violations are similar in character to those described previously the for the 2D-𝑃𝑐 method, 

but not described in further detail here for brevity. 

3D-𝑵𝒄 Method Usage Violation Analysis 

The algorithm also detects potential 3D-𝑁𝑐 inaccuracies using four types of violations: 

1. “Convergence” violations indicate if the iterative process failed to calculated the required 

(𝑿̆𝑡, 𝑷̃𝑡) values at any point during the duration of the conjunction. 

2.  “Offset” violations indicate if the offset between the TCA and the time of peak collision 

rate (numerically estimated from the temporal collision rate curve) is potentially too long. 

3. “Extended” violations indicate if the conjunction duration is potentially too long. 

4. “Inaccuracy” violations indicate if the difference between the 2D-𝑁𝑐 and 3D-𝑁𝑐 estimates 

is unexpectedly large. 

Again, these violation indicators are similar in character to those described previously. 

SDMC Method Usage Violation Analysis 

The multistep algorithm detects potential SDMC inaccuracies using two types of usage viola-

tions. Specifically, “offset” SDMC violations use exactly the same criteria as used by the 3D-Nc 

method’s offset violations. In addition, “extended” SDMC violations indicate if any MC hits occur 

at or near the edges of the conjunction’s full encounter segment, as defined by Hall.10 These edge-
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case hits indicate potentially blended conjunctions, which require BFMC to ensure accurate 𝑃𝑐 es-

timation. 

COMPARISON OF COLLISION PROBABILITIES AND USAGE VIOLATIONS 

As mentioned previously, the multistep algorithm optionally allows automated processing using 

any or all of the first four 𝑃𝑐 estimation methods, 2D-𝑃𝑐, 2D-𝑁𝑐, 3D-𝑁𝑐 and SDMC, respectively. 

In order to compare estimates from these methods, this study performed a two-pass testing analysis. 

The first pass processed all 1.79 million CARA conjunctions using each of the first three methods. 

The second pass executed SDMC for the subset found in the first pass to have refined 𝑃𝑐 estimates 

of 10-6 or above. (This study conducted no systematic BFMC method testing, but previous analysis 

indicates that, for non-blended conjunctions, the SDMC and BFMC methods consistently agree 

with one another to within expected statistical variations.9,27) 

Comparing the 2D-𝑷𝒄 and 2D-𝑵𝒄 Methods 

The left panel of Figure 3 compares the 2D-𝑁𝑐 and 2D-𝑃𝑐 methods. Specifically, the vertical 

axis plots 2D-𝑁𝑐 estimates calculated using eq. (12) and the horizontal axis plots 2D-𝑃𝑐 estimates 

from eq. (4). Gray circles show conjunctions for which neither method registered a usage violation; 

the other colors indicate violations registered by one or both of the methods. For clarity, the axes 

only span 𝑃𝑐 values above 10-20 (leftward- or downward-pointing triangles show values below this 

cutoff). Because all of the gray symbols line up along the diagonal, the plot indicates that the 2D-

𝑁𝑐 and 2D-𝑃𝑐 estimates accurately match one another in the absence of any usage violations. 

 

Figure 3. Comparison of 2D-𝑵𝒄 vs 2D-𝑷𝒄 method 𝑷𝒄 estimates with usage violations (left), 3D-𝑵𝒄 

vs 2D-𝑵𝒄 method estimates with usage violations (middle), and SDMC vs 3D-𝑵𝒄 method 𝑷𝒄 estimates 

with usage violations (right). 

The left panel of Figure 3 shows that the 2D-𝑃𝑐 usage violation algorithm correctly detects all 

conjunctions with significantly different 2D-𝑁𝑐 and 2D-𝑃𝑐 estimates, with no missed detections. 

This reflects both the comprehensive nature of the 2D-𝑃𝑐 usage violation criteria, and the conserva-

tive selection of the associated usage violation thresholds. However, a significant portion of esti-

mates with 2D-𝑃𝑐 usage violations also line up very nearly along the diagonal in the left panel of 

Figure 3. These represent “false alarms” elicited by the 2D-𝑃𝑐 usage violation algorithm, which 

also result from the conservatively selected thresholds. Specifically, among the entire test data set, 

86% of conjunctions with 2D-𝑃𝑐 usage violations also have 2D-𝑃𝑐 estimates found to be within 

30% of the refined estimates – an accuracy level found to provide reasonably reliable risk assess-

ments. The false alarm rate is even larger among high-risk events with refined estimates of 𝑃𝑐 ≥ 

10-4, for which 94% of the usage violation cases have 2D-𝑃𝑐 estimates accurate to within 30%. So 

overall, the 2D-𝑃𝑐 usage violation algorithm has a false alarm rate of ~90%. In other words, of the 
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original 5.3% of test conjunctions flagged with 2D-𝑃𝑐 usage violations, most (~4.8%) represent 

false alarms, and the remainder (~0.5%) represent actual 2D-𝑃𝑐 method usage violations. 

The highly scattered off-diagonal population in the left panel of Figure 3 represents the most 

discrepant 2D-𝑁𝑐 and 2D-𝑃𝑐 estimates. Notably, scaling these values using the rough correction 

factor 𝐹𝑐 from eq. (16) reduces the level of scatter considerably, but does not eliminate it altogether. 

In addition, the points significantly above the diagonal line on the 2D-𝑁𝑐 vs 2D-𝑃𝑐 plot tend to 

correspond to conjunctions with 𝐹𝑐 ≫ 1, and those well below the diagonal tend to have 𝐹𝑐 ≪ 1. 

Comparing the 3D-𝑵𝒄 and 2D-𝑵𝒄 Methods 

The middle panel of Figure 3 compares 3D-𝑁𝑐 and 2D-𝑁𝑐, with the vertical axis plotting 3D-

𝑁𝑐 estimates calculated using eq. (5), and the horizontal axis 2D-𝑁𝑐 estimates from eq. (12). Again, 

all of the gray symbols line up along the diagonal, indicating that the 3D-𝑁𝑐 and 2D-𝑁𝑐 estimates 

accurately match one another in the absence of any usage violations. The 2D-𝑁𝑐 usage violation 

analysis correctly identifies all off-diagonal points, again reflecting conservatively selected 2D-𝑁𝑐 

usage violation criteria. In this case, however, a much larger fraction of 2D-𝑁𝑐 estimates with usage 

violations (plotted as the red circles, which are slightly larger than the gray circles) also line up 

along the diagonal. As before, this high false alarm level exists because the multistep algorithm 

uses conservative usage violation criteria for the 2D-𝑁𝑐 method, with thresholds adjusted to elimi-

nate any missed detections among the test conjunctions. The middle panel of Figure 3 has a notably 

smaller number of colored points overall than does the left panel, indicating that 2D-𝑁𝑐 produces 

significantly fewer usage violations than 2D-𝑃𝑐 among the test conjunctions. Finally, most of the 

off-diagonal points in middle panel of Figure 3 represent low velocity conjunctions. 

Comparing the SDMC and 3D-𝑵𝒄 Methods 

The right panel of Figure 3 compares the SDMC and the 3D-𝑁𝑐 methods. Specifically, the ver-

tical axis plots SDMC 𝑃𝑐 estimates, and the horizontal axis plots 3D-𝑁𝑐 estimates calculated using 

eq. (5). Again, gray circles show conjunctions for which neither method registered a usage viola-

tion, and the other colors indicate violations registered by one or both of the methods. (The plot 

includes error bars that show 95% confidence intervals9 for the SDMC estimates, but these are 

usually smaller than the circle symbols themselves.)  The right panel of Figure 3 indicates that the 

3D-𝑁𝑐 and SDMC methods consistently produce results that agree to within expected statistical 

limits, as has been reported previously.10 

EXAMPLE CONJUNCTION COLLISION PROBABILITY CALCULATIONS 

This section shows several example output plots created by the multistep algorithm. The soft-

ware optionally produces two types of graphs for each conjunction: a temporal plot that shows 

collision rate and cumulative probability variations; and a close approach distribution plot that 

shows the spatial pattern of CA points using a primary-centered format, similar to the “B-plane” 

plots used for planetary encounters.9 Figures 4-8 show these plots for a selected set of conjunctions, 

some of which have no 𝑃𝑐 estimation usage violations whatsoever, as well as for others that register 

2D-𝑃𝑐, 2D-𝑁𝑐, and 3D-𝑁𝑐 method violations.  

Figure 4 shows temporal and CA distribution plots for a conjunction with a high collision prob-

ability (𝑃𝑐 ≈ 0.01) that registers no usage violations for any of the 𝑃𝑐 estimation methods. The left 

panel plots the collision rate (bottom) and cumulative 𝑃𝑐 (top) estimated using the 3D-𝑁𝑐 and 

SDMC methods, showing the expected offsets and durations, and illustrating how the final total 𝑃𝑐 

values agree with those estimated using the 2D-𝑃𝑐 and 2D-𝑁𝑐 methods. The right panel plots dif-

ferent views of the 3-sigma (3) covariance ellipse predicted using the 2D-𝑃𝑐 method, along with 
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the CA points calculated in the SDMC simulation – with the red dots representing MC hits, and the 

blue dots representing misses. Specifically, the top-left plot in the right panel shows a zoomed-out 

view of the entire CA distribution; the top-right plot shows a zoomed-in view that plots the HBR 

circle along with the distribution of hits; and the bottom plot shows a view zoomed in by unequal 

magnifications on the horizontal and vertical axes. 

 

Figure 4. Temporal plot (left) and close approach distribution plot (right) for a high-𝑷𝒄 conjunction 

with no usage violations for any of the 𝑷𝒄 estimation methods. 

 

Figure 5. Temporal plot (left) and close approach distribution plot (right) for a moderate-𝑷𝒄 con-

junction with no usage violations for any of the 𝑷𝒄 estimation methods. 

 

Figure 6. Temporal plot (left) and close approach distribution plot (right) for a conjunction with a 

2D-𝑷𝒄 method usage violation. 
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Figure 5 shows temporal and CA plots for a conjunction with 𝑃𝑐 ≈ 4.510-5 and no usage vio-

lations for any of the estimation methods. Again, both plots illustrate how the 𝑃𝑐 values estimated 

using the 2D-𝑃𝑐, 2D-𝑁𝑐, 3D-𝑁𝑐, and SDMC methods agree with one another. 

Figure 6 shows temporal variation and CA distribution plots for a conjunction with a relative 

velocity of ~3.1 km/s, which registers one 2D-𝑃𝑐 method usage violation, but no 2D-𝑁𝑐, 3D-𝑁𝑐, or 

SDMC violations. Specifically, the algorithm indicates a 2D-𝑃𝑐 method inaccuracy usage violation 

for this conjunction (i.e., with 𝑉𝑖 > 0.02). Notably, for this event the 3 ellipse for the rectilinear 

encounter deviates significantly from the distribution of MC hits for the curvilinear encounter. This 

difference explains why the 2D-𝑃𝑐 method erroneously reports a 𝑃𝑐 estimate more than two orders 

of magnitude smaller than the more accurate, refined estimate of 𝑃𝑐 ≈ 4.410-5 (as reported by the 

2D-𝑁𝑐, 3D-𝑁𝑐 and SDMC methods). 

 

Figure 7. Close approach distributions for a high velocity conjunction with a 2D-𝑷𝒄 method usage 

violation (left), and a low velocity conjunction with a 2D-𝑷𝒄 method usage violation (right). 

 

Figure 8. Close approach distributions for very low velocity conjunctions with 2D-𝑵𝒄 method usage 

violations (left) and 3D-𝑵𝒄 method usage violations (right). 

Figure 7 shows CA distribution plots for two conjunctions that each have a 2D-𝑃𝑐 method usage 

violation, but no 2D-𝑁𝑐, 3D-𝑁𝑐, or SDMC violations. The left panel shows a high velocity con-

junction for which the 2D-𝑃𝑐 method reports an erroneously high 𝑃𝑐 estimate. The right panel shows 

a low velocity conjunction for which 2D-𝑃𝑐 reports an erroneously low estimate. 

Figure 8 shows CA distribution plots for two conjunctions that each have multiple usage viola-

tions. The left panel shows an example of a conjunction with usage violations for both the 2D-𝑃𝑐 

and 2D-𝑁𝑐 methods, but not for the 3D-𝑁𝑐 or SDMC methods, which has a very low relative ve-
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locity of ~0.4 m/s. The right panel shows a conjunction with usage violations for all of the estima-

tion methods (except BFMC), which has a comparably low velocity of ~1.0 m/s. As mentioned 

previously, usage violations for the more advanced 3D-𝑁𝑐 and SDMC methods occur almost ex-

clusively for such very low velocity conjunctions. 

CONCLUSIONS 

The multistep algorithm provides an efficient and accurate means to estimate collision proba-

bilities for all types of interactions experienced by Earth-orbiting satellites. The flexibility arises 

from an approach of applying several increasingly advanced 𝑃𝑐 estimation methods. The efficiency 

arises by invoking these methods only as required, based on a set of usage violation criteria that 

detect potential 𝑃𝑐 estimation inaccuracies. Extensive testing using ~2 million actual conjunctions 

demonstrates the reliability of the usage violation criteria. The algorithm processes 94.7% of CARA 

conjunctions using estimates based on the most efficient 2D-𝑃𝑐 method. It processes most of the 

remainder using 2D-𝑁𝑐 (5.0%) and 3D-𝑁𝑐 (0.3%), which are also semi-analytical methods. The 

algorithm resorts to MC methods for <0.01% of the test conjunctions, most of which represent very 

low relative velocity interactions. 

Detecting potential 2D-𝑃𝑐 method usage violations represents one of the most important ele-

ments of the multistep algorithm. The comprehensive nature of the 2D-𝑃𝑐 usage violation criteria 

combined with the conservative selection of the associated violation thresholds allows the algo-

rithm to identify all conjunctions with significant 2D-𝑃𝑐 estimation inaccuracies, with no missed 

detections. However, in order to achieve this zero missed detection rate, the resulting 2D-𝑃𝑐 usage 

violation algorithm has a false alarm rate of ~90%. In other words, of the original 5.3% of test 

conjunctions flagged with 2D-𝑃𝑐 usage violations, most (~4.8%) represent false alarms, and the 

remainder (~0.5%) represent actual 2D-𝑃𝑐 method usage violations. 

In summary, when provided realistic orbital states and covariance matrices, the multistep algo-

rithm computes accurate collision probabilities for both high and low velocity interactions, ac-

counting for curvilinear trajectory effects and time varying covariance dynamics as required. 
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NOTATION 

𝑎,𝑏,𝑐 coefficients for the quadratic time variation of the 𝑀𝑡
′ function – see eq. (14) 

 𝑨̅𝑡 , 𝑩̅𝑡 , 𝑪̅𝑡 the 33 submatrices of the 66 covariance matrix 𝑷̅𝑡 – similar to the form given in eq. (7) 

 𝑨̃𝑡 , 𝑩̃𝑡 , 𝑪̃𝑡 the 33 submatrices of the 66 covariance matrix 𝑷̃𝑡 – see eq. (7) 

 ℱ integrand function of the three-dimensional 𝑃𝑐 integral used in the 3D-𝑁𝑐 method  

 𝐹𝑐 the rough multiplicative correction factor for 2D-𝑃𝑐 method estimates, see eq. (16) 

 𝑔1, 𝑔2 indices for Gaussian mixture model components for the primary and secondary satellites 

 𝑘 index for one isolated conjunction within a multi-encounter interaction 

 ℳ𝑅,𝑡(𝒓̂) the MMD for a point on the collision sphere for a curvilinear encounter – see eq. (9) 

 ℳ𝑅,𝑡
′ (𝒓̂) the MMD for a point on the collision sphere for a rectilinear encounter 
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 𝑀𝑡 the MMD at the center of the collision sphere for a curvilinear encounter, i.e., 𝑀𝑡 = ℳ0,𝑡 

 𝑀𝑡
′ the MMD at the center of the collision sphere for a rectilinear encounter, i.e., 𝑀𝑡

′ = ℳ0,𝑡
′  

 𝑁𝑐 the statistically expected number of collisions 

 𝒩(𝒓, 𝒓̅, 𝑨̅) the MVN function, i.e., 𝒩(𝒓, 𝒓̅, 𝑨̅) = exp[−(𝒓 − 𝒓̅)𝑇𝑨̅−1(𝒓 − 𝒓̅)/2] √(2𝜋)3|𝑨̅|⁄  

 𝑃𝑐 the probability of collision 

 𝑃𝑐
′ 

the 𝑃𝑐 calculated for a rectilinear encounter, i.e. the estimate calculated with the 2D-Pc 

method  

 𝑃𝑐
′′ the scaled 2D-𝑃𝑐 estimate, roughly corrected for curvilinear trajectory effects, 𝑃𝑐

′′ = 𝐹𝑐  𝑃𝑐
′ 

 𝒓̂  unit vector pointing to one location on the unit sphere 

 𝒓̅𝑡 , 𝒗̅𝑡 
the time-dependent OD based mean primary-to-secondary (i.e., relative) position and ve-

locity vectors 

 𝒓̆𝑡 , 𝒗̆𝑡 
the time-dependent effective mean relative position and velocity vectors for a curvilinear 

encounter, calculated using the iterative method described in detail by Hall10 

 𝑅 the combined primary+secondary hard-body radius, i.e., 𝑅 = 𝑅1 + 𝑅2 

 𝑅̅2, 𝜎𝑅2
2  the mean and variance of an RCS-based hard-body radius of the secondary object 

 𝑡 time 

 𝑇 the time that the MMD function attains its minimum value for a curvilinear encounter 

 𝑇′ the time of minimum MMD for a rectilinear encounter, as indicated by the prime 

 𝑇𝑐 the nominal time of closest approach for a conjunction 

 𝑇∗ the time of minimum MMD for a point on the collision sphere 

 𝜈 the averaged projected velocity function at a point on the unit sphere – see eq. (6) 

 𝓌𝑅,𝑇  
the 1-sigma time width of the MMD function at a point on the collision sphere for a curvi-

linear encounter 

 𝓌𝑅,𝑇
′  the 1-sigma MMD time width at a point on the collision sphere for a rectilinear encounter 

 𝑤 
the 1-sigma MMD time width at the center of the collision sphere for a curvilinear en-

counter, i.e., 𝑤 = 𝓌0,𝑇 

 𝑤′ the 1-sigma MMD time width at collision sphere center for a rectilinear encounter 

 𝑥𝑚, 𝑦𝑚 conjunction plane miss distance coordinates for a rectilinear encounter 

 𝑿̅𝑡 , 𝑷̅𝑡 the time-dependent mean relative position/velocity state vector and covariance matrix 

 𝑿̆𝑡 , 𝑷̃𝑡 
the time-dependent effective mean relative pos./vel. state and covariance for a curvilinear 

encounter 

 𝜆𝑖 the ith eigenvalue of the 𝑨̃𝑇 covariance matrix 

 𝜎𝑥, 𝜎𝑦 conjunction plane 1-sigma values of the marginalized joint relative position PDF 

 𝜏𝑎, 𝜏𝑏  begin and end times for the conjunction duration 

 𝜙, 𝜃 azimuthal and axial angles that span the unit sphere 

CARA Conjunction Assessment Risk Analysis 

CA close approach 
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HBR hard-body radius 

LEO low Earth orbit 

MMD modified Mahalanobis distance 

MVN multi-variate normal 

PDF probability density function 

RCS radar cross section 

TCA time of closest approach 
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