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Motivation
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Overall Objective:

Characterize/predict effects
of etch pitting on
performance/failure of carbon
ablators

Current Objective:

« Simulate pitting of carbon
microstructures

* Analyze degradation of
relevant material
properties



Approach + Tools Overview

Pitting Simulations Material Property Calculations
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SPARTA + Active Site Implementation

Regions of continuum breakdown in reentry flow

DSMC is valid in all regimes: continuum, rarefied and
transition (however computational cost increases with
density)

DSMC (direct simulation Monte Carlo) is a stochastic,
particle-based method to solve the Boltzmann equation
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[1] Plimpton, S. J., S. G. Moore, A. Borner, A. K. Stagg, T. P. Koehler, J. R.
Torczynski, and M. A. Gallis. "Direct simulation Monte Carlo on petaflop
supercomputers and beyond." Physics of Fluids 31, no. 8 (2019): 086101.

* Open source, developed at Sandia
* Key Features:
» Parallel implementation - large domains/long times
* Reads uCT based structures = study real structures
* Ablate function for recessing solid surfaces = simulate etch
pitting
» Detailed surface collisions and chemistry = key to pitting
implementation
* New Implementation:

* Active Site Fraction (ASF) as new quantity of surface elements
- enables local reactivity differences

* Reaction rate for CO formation linked to pitting rate
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Pitting Simulation Results — Single Fiber

Simulation setup: Ablation rate dependency on defect density
e Cylindrical fiber, 10 pm diameter, 100 um length 1007
0.5 um voxel size
* Constant oxygen pressure 801
e Varying number of defects and distributions 9
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- More pits cause faster ablation Time 7

— Variance with pit distribution is inversely related to number of pits
- Pitting fragments fiber into chunks



Simulation setup:

« Three 2003 voxel substructures from FiberForm
UCT scan

 0.65 um voxel size

* Constant oxygen pressure

* Varying number of defects and distributions

Sample Simulation Video Other Substructures
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—> Variance with pit distribution generally very low
—> Variance between substructures
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PuMA Overview

Open source (https://github.com/nasa/puma) PUMA@
* Developed at NASA Ames

* Run simulation in each principal direction,
imposing known displacement on each face,
while keeping opposite face fixed (similar for
temperature gradient)

* Installation: conda install -c conda-forge puma

Software of the year

* Apply symmetry/periodic BC on other faces

* Solve stress/temperature field inside material
and obtain anisotropic elasticity tensor C, or

Numpy Arrays impor\t pumapy ( . 1 #include "puma.h" Data Struc_tures thermal CondUCtIVIty tenSOr K
Matrix (X.Y,Z) < Graphical User > 35)/ Matrix
Orientation (X,Y,Z,3 ‘ector . . .
e e Interface (GUI) . « Assuming isotropic/
Sciov and Python API C++API Linear Solvers
FENICS Solvers ErwTE— SO AT orthotropic behavior,
: . Import/Export: Import/Export: BICGSTAB )
j if, ik, st, bin [ iff, ik, st, bin [ obtain effective Young’s
[ pumapy.Workspace ]_ Image Filters & Image _[ Workspace ] moduli
| Segmentation Processing |
PRSI Microstructure Microstructure Physics Solvers
Isotropic Diffusion Generation Generation Isotropic Diffusion
Anisotropic Diffusion (MPFA) - - Anisotropic Diffusion
Stress Analysis (MPSA) Material Material Explicit Jump Diffusion
Stokes Permeability Properties Properties Random Walk Diffusion
Marching Cubes Isosurface SRR > - Marching Cubes Isosurface
Particle-based Radiation Paraview C++ functions wrapped as Material Particle-based Oxidation
Orientation Detection Visualization modules under pumapy.cpp Response Orientation Detection

[2] Ferguson, J.C., Semeraro, F., Thornton, J.M., Panerai, F., Borner, A. and Mansour,
N.N., 2021. Update 3.0 to “PuMA: The porous microstructure analysis
software”. SoftwareX


https://github.com/nasa/puma

Thermal Conductivity Results — Single Fiber

Intrinsic fiber properties
Kaxiar = 12 W/mK, kyqgiqr = 0.7 W/mK
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- Thermal conductivity drops similarly in principle directions.



kaoxiat = 12 W/mK, kyqgiqi = 0.7 W/mK

Intrinsic fiber properties
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- Influence of microstructure becomes apparent. This variance vanishes with larger
sample sizes.
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Linear Elasticity Results — Single Fiber

Intrinsic fiber properties
Eaxial = 230 GPa, Eradial = 15 GPa
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- Stiffness degrades similar to thermal conductivity.



Linear Elasticity Results — FiberForm

Intrinsic fiber properties Through the
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—> Stiffness degrades similar to thermal conductivity.



Legacy Model: Surface is consumed uniformly

—> shrinking fibers
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Pitting model introduces nonlinear degradation
- Thermal conductivity degrades much faster on a per mass basis
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Active-site-fraction feature was implemented in SPARTA to simulate pitting of carbon
ablators in all relevant flight regimes

* PuMA has been utilized to observe degradation of material properties of single carbon
fibers and carbon fiber microstructures

* Degradation due to pitting introduces nonlinear material behavior, unlike legacy
shrinking model

* Pitting potentially introduces new failure mode due to fragmentation of fibers into
chunks

Future Work:

* Fully homogenize results by simulating larger structures following Representative
Volume Element (RVE) method

* Develop pitting model for effective material properties on macroscopic level
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