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Abstract:
We present a novel data-driven approach for prediction of the estimated time of arrival (ETA) of
aircraft in the terminal area via the implementation of a Random Forest regression model. The
model uses data fused from a number of sources (flight track, weather, flight plan information,
etc.) and provides predictions for the remaining flight time for aircraft landing at Dallas/Fort
Worth (DFW) International Airport. The predictions are made when the aircraft is at a distance
of 200-miles from the airport. The results show that the model is able to predict estimated time
of arrival to within ± 5 min for 90% of the flights in the test data with the mean absolute
error being lower at 145 seconds. This paper covers the entire pipeline of data collection, pre-
processing, setup and training of the ML model, and the results obtained for DFW.

Keywords: machine learning, random forest regression, estimated time of arrival, air traffic
management

1. INTRODUCTION

Improving terminal descent and approach is a key element
of the Federal Aviation Administration (FAA) Next Gen-
eration Air Transportation System (NextGen). According
to FAA (2013), improvements in this phase of flight will
result in a better utilization of the National Airspace Sys-
tem (NAS), improve efficiency of the runways, reduce fuel
usage and costs, and most importantly increase safety. One
improvement that aligns with the goals of the NextGen
program is the development of more accurate arrival time
predictions. Accurately predicting estimated time of ar-
rival (ETA) for aircraft landing at an airport is a crucial
enabler for efficient airspace operations that can benefit
several stakeholders in the aviation ecosystem. Airlines can
provide additional value to their customers by providing
more accurate time of arrival, especially if passengers or
crew need to make connecting flights. Airport operators
can use such predictions to schedule any services and main-
tenance required for inbound aircraft. Traffic management
personnel can utilize it to safely manage the airspace and
maintain efficient flow of arriving aircraft by using it to
determine the sequence and schedule of arrival flights.
It can also improve runway efficiency by minimizing the
amount of time runways have to be reserved for landing
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flights. This could, in turn, reduce flights having to go into
holding patterns that requires more fuel to be burnt, and
increases flight times.

Due to the various uses for accurate landing time pre-
dictions, several previous efforts have focused on improv-
ing these estimates using either physics-based models,
machine learning (ML) models, or a combination of the
two. Several existing ground-based decision-support tools
provide predictions of landing times such as the FAA’s
Time Based Flow Management (TBFM) or Traffic Flow
Management System (TFMS). These new systems improve
FAA legacy systems that were composed purely on physics
based models and static look-up tables based on limited
historical data. Arrival times produced by various existing
systems can be for different purposes and therefore, might
not be identical or consistent across different systems.
For physics-based models, while the physics of trajectory
prediction is well-established for conventional fixed-wing
aircraft, it requires knowledge of aircraft performance pa-
rameters (e.g., drag coefficients) and operating procedures
(e.g., descent speed, flap schedule) for the flight being
predicted. This information may not always be accurately
available and could limit the applicability of these models.
The work presented in this paper uses historical flight data
from the Dallas/Fort Worth (DFW) International Airport
and applies the Random Forest (RF) regression machine



learning algorithm to predict remaining flight time. For
this paper, the RF predicts the remaining flight time once
an aircraft is approximately 200-miles from the airport.
The 200-mile radius was selected as this is approximately
the top of descent (ToD) for flights landing at DFW.

ML algorithms have become more widely applied in air
traffic management research domain because it has an
abundance of data from many sources such as flight track
data, flight plan information, meteorological data, traffic
flow management data, etc. that provides a rich source
for data driven methods. This data consists of numerical
data (aircraft speed, position, etc.) and categorical data
(desired approach vector, day of the week, etc.). The
different types of data the ML algorithms can be trained
on typically have relationships and patterns that are
not easily detected by people. Examples of ML within
the air traffic management domain, not related to ETA
prediction, can be seen with flight deviation detection and
prediction as seen in Bleu Laine et al. (2022), identification
and mitigation of loss of separation events as seen in
Hawley and Bharadwaj (2018) and finally airspace sector
occupancy seen in Brito et al. (2021).

In the domain of ETA prediction, current methods can
be broken down into pre-flight and in-flight methods. Pre-
flight methods assign estimated arrival times when flights
are initially scheduled. According to Jha et al. (2012),
the scheduling process starts when airlines request flight
plans to be developed via the Flight Operations Centers
(FOCs). This process can start at midnight the day of the
flight or a minimum of 45 minutes prior to flight. FOCs
develop flight plan requests that are then passed to the
Air Traffic Control System Command Center (ATCSCC)
for approval. These flight plans take into consideration
predicted NAS usage and weather and are subject to
change after approval based on evolving conditions. Even
with the pre-flight planning, arrival times can change,
especially during flight, thus there is a need for accurate
in-flight prediction methods to be developed.

Current in-flight prediction methods depend heavily on
aircraft performance models (APMs). One such model
developed and maintained by Eurocontrol and widely used
in ATM research is the Base of Aircraft Data (BADA)
models, see Nuic et al. (2010). BADA uses total energy
models along with vehicle-specific parameters to model the
aircraft during flight. These models are then used to esti-
mate the performance of the aircraft, that can then be used
to estimate landing times. Limitations to BADA include
incomplete information about aircraft parameters such as
drag coefficients and its inability to capture airspace spe-
cific procedures. One way to improve BADA is to develop
new performance parameters based on historical data as
seen in Fernandes et al. (2023).

Yan et al. (2012) used a Random Forest (RF) model for
prediction and quantification of aircraft landing times at
DFW. Their work focused on aircraft 60 nautical miles
(nm) away from the airport and closer. With the RF they
implemented, they were able to achieve a mean absolute
error bar of 75.4 seconds when the aircraft was 60 nm
away. This RF was trained on 4, 011 flights. The data on
which the RF model was trained consisted of Euclidean
distance from the aircraft to the airport, latitude, longi-

tude, altitude, heading, speed, track start location, time
of day, sample times, visual flight rules vs. instrument
flight rules and assumed runway availability. The study
does not report explicit hyperparameter tuning or usage
of flight plan data in making predictions. This work aims
to improve on these predictions by providing the estimated
landing times much further out (≈ 174nm).

The work in Strottmann Kern et al. (2015) uses a RF
model that consists of 100 trees and was trained on 24, 787
flights. This paper modeled the full flight instead of just
the terminal descent portion. It also was not limited
to aircraft landing at one airport. With the RF they
implemented, they were able to reduce the mean absolute
error of the FAA Enhanced Traffic Management System by
42.7%, however the actual prediction errors by the model
were unclear.

Basturk and Cetek (2021) explore applications of RF and
deep neural networks for predicting ETA. Both machine
learning algorithms were able to predict ETA after an
aircraft takes off and then again once it enters the terminal
maneuvering area. The ML algorithms were trained with
63, 460 commercial flights and were able to achieve an
Mean Absolute Error (MAE) of less than 3 minutes upon
entering the Terminal Maneuvering area.

Silvestre et al. (2021) use Long-Short Term Memory
(LSTM) Neural Networks (NN) to predict arrival times
and focus on the last 2 hours of flight data. With their
trained network, they were capable of getting a MAE of
340 seconds for the last 90 minutes of flight. The parame-
ters that the LSTM-NN was trained on included latitude,
longitude, altitude data, day of the week, the time of day
and if it was a holiday.

The algorithm presented in this paper is purely ML-based
and does not rely on physics. This provides an advantage
of being broadly applicable at multiple airports as long as
historical data is available. We use an RF to identify and
model aircraft trends without the mathematical models
that are dependent on variables such as drag coefficients,
aircraft mass and thrust settings. We used an off-the-shelf
implementation of Random Forest regression developed
by SciKit-learn library in python Pedregosa et al. (2011).
The main disadvantage with a purely ML approach is
if the system changes drastically, the AI/ML approach
will need to be retrained on new data. To address this
disadvantage, we have developed robust data preparation
methods to quickly prepare new training and testing sets
if the system changes. The RF method we are developing
is different from the literature because: it incorporates
flight plan information via the standard terminal arrival
routes (STAR), requires fewer flights than most of the
works cited, and focuses on the approximate top-of-descent
phase for aircraft (that is further out from the airport
than most prior work) and thereby provides more time for
stakeholders to make decisions. A STAR is an ATC coded
IFR arrival route established for application to arriving
IFR aircraft destined for certain airports. STAR routes
simplify clearance delivery procedures and also facilitate
transition between en-route and instrument approach pro-
cedures markers. 1 The STAR routes for DFW can be seen

1 https://www.faa.gov/air_traffic/publications/atpubs/aim_
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Fig. 1. Map showing flight trajectories with STAR routes

in figure 1. The introduction of flight plan information
via STAR routes to the RF allows us to better capture
the standard behavior of flights landing at DFW. Looking
at the top of descent pushes our prediction distance out
further that allows for more time to make crucial decisions.
Requiring fewer flights is beneficial as it means this sys-
tem can be retrained for another airport easier and more
quickly. The literature survey shows that an RF is capable
of generating ETA for commercial aircraft; however the
results obtained by the RF presented here are unable to be
directly compared with results from the literature survey
as the RF was trained using a different data set, focusing
on different airports and using a larger prediction distance.

2. PROBLEM FORMULATION

When developing an RF model for ETA prediction, we
had to clearly define what problem we were solving,
our desired outcome and the input parameters for our
system based on the data we had available. We wanted to
develop a machine learning algorithm that could fuse flight
track, metadata and weather data to generate reliable and
accurate predictions for aircraft landing at an airport. The
desired outcome of this work is to develop a framework
that could be applied at any airport, given the data.

One of the problem parameters we needed to decide was
when to make the remaining time prediction. We selected
a 200-mile radius around the airport because this was
the approximate distance from the airport that aircraft
landing at DFW started their descent (top of descent).
In addition to determining where the ETA prediction is
made, this work also had to define the point in the future
for which the ETA is calculated. In an ideal scenario,
this would be the touchdown point of the aircraft on
the runway. However, due to noisiness in the track data
near the runway surface, altitude differences between the
runways, effect of deviations in atmospheric pressure on
altitude sensors, etc. we chose the prediction point as the
one when the aircraft goes below the average altitude of
DFW airport plus 100 feet. A final parameter we had
to choose was what inputs we could use for training the
RF. The proposed system relies on historical flight data

Fig. 2. Flow Chart for Data Preparation and RF Training

to train the model; however, the goal is to eventually
implement this on real-time data, hence the RF we trained
would need to use readily available, real-time data coming
from weather facilities at the destination airport and
information received by ADS-B and other airport facilities.
In addition to only using available data, we also wanted to
limit the data we used to avoid making our model overly
complex which could take longer to train and more prone
to overfitting.

3. METHODOLOGY

3.1 Data Preparation

In order to train the RF regression model, we had to first
develop the training and testing set. To create the training
and testing set, large amounts of flight data had to be
collected and processed. Our data set had 13, 302 flights
pulled from flight data collected between March of 2019
through August of 2019. We followed the steps seen in
figure 2 to process the data and create our training and
testing set. Our training and testing sets consisted of the
input and output parameters shown in table 1. The data
we used were provided through NASA’s Sherlock Data
Warehouse that also has an open source version (Arneson
et al. (2019)). The data was downloaded on a day-by-day
basis and contained full-flight data for aircraft operating
within the NAS. After obtaining the data, we had to
identify and isolate flights landing at DFW.

After isolating the DFW flights, we applied the Haver-
sine Algorithm(Robusto (1957)) to all of the flight data.
Applying the Haversine algorithm to the data was done
to identify where the 200-mile threshold value was for
each flight. The Haversine algorithm can approximate the
great circle distance between a pair of latitude and lon-
gitude points; going from degrees latitude and longitude
to straight line distance measured in miles. The 200-mile
threshold was used as the starting index for our data
collection. Once we identified the 200-mile threshold, we
then looked at each flight to identify when the aircraft



Table 1. Parameters used in RF Training

Parameter Definition Input/Output

lat Aircraft Latitude Input
lon Aircraft Longitude Input
alt Aircraft Altitude Input
CAS Aircraft Calibrated Air Speed Input
WS Wind Speed Input
WD Wind Direction Input
Pres Atmospheric Pressure Input
Temp Atmospheric Temperature Input
STAR Standard Terminal Arrival Route Input
dt Elapsed Time Output

reached below the average altitude of DFW plus 100 feet.
The data between the 200-mile threshold and the final
point was saved for each flight. The data we saved would
further be reduced down to the first 10 latitude, longitude
and altitude points. The average of the first 10 calibrated
airspeeds was calculated and saved. Then the time elapsed
between the 200-mile threshold and landing was calculated
and used as our desired output label for the RF regression
model.

After filtering all available data, we needed to fill in any
missing data values. The main input variable that was
missing data was the Standard Terminal Arrival Routes
(STAR). To find the missing STAR values, we identified
the flights that had either initial or final STAR values
and developed a sub-training set. This sub-training set
was different from the one we are developing for the RF
and is used with a K-nearest neighbors (KNN) Classifier
algorithm. The KNN used latitude and longitude inputs
and grouped them based on the known STAR values.
The flights with unknown stars were imputed via the
neighborhood we had developed based on the flights with
known STAR data. We used the SciKit KNN-Classifier for
the development of our KNN (Pedregosa et al. (2011)).
The KNN was only used for the assignment of missing
STAR values and not directly for ETA predictions. The
KNN we trained could be applied to real-time data to
assign missing STAR values of aircraft in flight once they
reach the 200-mile radius.

After accounting for missing values, we encoded the data
using one hot encoding and min-max encoding. One hot
encoding was used on categorical data while min-max
encoding was used on numerical data. One hot encoding
converts a single feature with n unique data points into
n unique features. Each of the n features becomes either
0 or 1 values. The 0 indicates that the current feature
does not apply to a flight while the 1 value indicates that
the feature does apply. We used one hot encoding on the
wind direction and STAR values. The additional categories
generated by one hot encoding can be seen in table 2. Min-
max encoding scales numerical data in the column between
0 and 1 based on the minimum and maximum values. Min-
max encoding is applied to our data to reduce the effect
of outliers. Min-max encoding was applied to all of the
latitude, longitude and altitude data points, the calibrated
airspeed, atmospheric pressure and temperature, and the
wind speed. After encoding the data, we split the data
into two new data sets to create the training and testing
sets. We allocated 80% (10, 647 flights) of the data for
training and the remaining 20% (2, 655 flights) for testing.
The allocation was done through random assignment. The

Fig. 3. Histogram showing number of training set flights
based on remaining flight time

Fig. 4. Histogram showing number of testing set flights
based on remaining flight time

time remaining (our output label) vs. number of flights
for the training and testing sets breakdowns can be seen
in figures 3 and 4 respectively. These two plots show that
the testing set is representative of the training set and
does not include a large number of outliers or a shift in
distribution.

3.2 Random Forest Regressor

After developing the testing and training sets, we trained
the Random Forest regression model. The RF model tries
to learn the best mapping between the provided input
and output values. The learning process stops when the
individual decision trees reach a stopping criteria. The
stopping criteria in our case is either the maximum depth
or minimum number of samples at each node. After com-
pleting the training process, we applied the trained RF to
the testing set data. The RF has not seen the testing set
prior to this so it must generate the predicted ETA based
on what it has previously learned. In order to systemati-
cally select the best RF model, we completed several initial
iterations of the RF training process where we varied the
input and hyperparameters. Initially when developing our
RF, we started with a simpler set of input data consisting
of only position and speed data. We then systematically
included more parameters to achieve better results. For
the hyperparameter tuning, we used a combination of
manual and automatic parameter tuning to achieve the
best fit the random forest could achieve on our data
set. The three main hyperparameters we looked at when
training the RF included the number of trees in the forest,
the maximum tree depth, and the minimum samples at
the leafs. The automatic hyperparameter tuning we used



Table 2. Encoded Parameter Catagories

Parameter Members

Wind Direction North (N), East (E), South (S),
West (W), Northeast (NE), North-
west (NW), Southeast (SE), Southwest
(SW)

STAR BEREE1, BLOND5, BOOVE4,
BRDJE3, CABBY2, CAINE2,
COSTR3, CQY8, DAWGZ2, FINGR5,
FORNY2, HOBTT2, JEN1, JOVEM4,
PAWLZ3, SEEVR4, SHAAM2,
SOCKK3, TILLA3, UKW5, VKTRY2,
WHINY4, WILBR4

was based on a grid search algorithm to systematically
vary the parameters. To determine the best model, the
grid search parameter calculated the mean squared error
(MSE). The RF with the lowest MSE on the validation set
was recorded. In addition to looking at these metrics for
accuracy, we also had to make sure we were not overfitting
the RF. We made sure we weren’t overfitting the RF by
looking at the RF’s performance on the test and training
set. If the RF did extremely well for the training set, but
performed poorly on the testing set, we knew overfitting
was likely and readjusted the model parameters.

4. RESULTS AND DISCUSSION

The results for the RF regression model can be seen in
figures 5 through 7 and in Table 3. The results we have
presented in this paper include a feature importance plot
(figure 5), 5th through 95th inter percentile plots for the
training and testing set data (figures 6 and 7) and finally
a table showing the MAE and Mean Absolute Percentage
Error (MAPE) for the training and testing set (Table 3).

To develop the results shown, many iterations of the RF
had to be trained and tested to find the best RF. We
found the best RF for our data through the grid search
and manual tuning methods mentioned in the previous
section. The best RF had 10 estimators, 26 nodes deep
and had a minimum of 2 samples per leaf. For our data set,
training a single iteration of the RF took ≈ 0.63 seconds.
The automatic hyperparameter tuning took longer and
was dependent on the number of parameters being varied.
For each combination of the hyperparameter tuning, a new
RF had to be trained and evaluated. The training took
place on a laptop computer with an Intel Core i5 1.6GHz
processor and 8 gigabytes of RAM.

Figure 5 shows the importance of each input variable to
the best RF we found when it is generating the predicted
ETA. It can be seen from figure 5 that the position,
STAR, and wind speed are some of the most important
parameters.The importance data is useful when developing
an RF because it shows how important inputs are in
determining the final output. The importance can be
useful to gauge the impact of new parameters or to trim
down the RF to the most important inputs. The system
presented did not need to be trimmed down as it is
not constrained by complexity of the model; as adding
additional inputs did not negatively affect performance the
output.

Figure 6 and 7 show our error generated by applying the
trained RF to the training set and to the testing set.

Table 3. Training and Test Set Statistics

Data Set MAE (sec) MAPE (%)

Training Set 127.31 5.93
Testing Set 145.16 9.34

The error data shown in figures 6 and 7 is the difference
between each of the true values in the training/testing sets
and the corresponding value generated by the trained RF
for every flight. Figures 6 and 7 show that the trained
RF is capable of identifying data within the 5th through
95th inter-percentile range with maximum error bounds
from the true landing time being ± 120 seconds and ± 300
seconds, respectively. The Mean Absolute Error for the full
training set is 127.31 seconds and the MAE for the full test
set is 145.16 seconds. As expected, the errors observed in
the training set are less than the errors observed in the
testing set. The existence of the training and testing set
errors and the relatively small difference between them
shows that we did not over-fit the RF Regressor. Had the
training set error been extremely low and the testing set
error extremely high, then it would have been an indication
that we had over-fitted the system. Our RF produced more
accurate results when compared to work presented in the
introduction Yan et al. (2012).

Table 3 shows typical statistics metrics for the errors
generated by the RF model on the full data set. The
statistics we used were the Mean Absolute Error (MAE)
and Mean Absolute Percent Error (MAPE). MAE and
MAPE are useful statistics as they are less sensitive to
errors caused by outliers. MAE shows the average absolute
value of the errors while MAPE is an average of the percent
error. As expected, and as seen in figures 6 and 7, the
results for the testing set had a larger error when compared
to the training set.

The current results produced by the trained RF and pre-
sented in this paper are useful for less critical tasks such
as aircraft maintenance scheduling or ensuring baggage
handling services are at the gate when a flight arrives,
however our results are currently not accurate enough for
runway scheduling. The training and testing sets included
aircraft that went into holding patterns resulting in longer
than predicted flight times for several flights. One reason
an aircraft can go into a holding patter is due to run-
way availability and other air traffic present around the
airport. Incorporating runway availability would increase
the accuracy of our system. Removing the flights that
went into holding patterns would also increase accuracy
of our system, however would be less representative of a
real world application of our system.

5. CONCLUSION AND FUTURE WORK

We presented the development, training and testing of a
Random Forest regressor model for prediction of estimated
time of arrival for aircraft landing at the Dallas/Fort
Worth International Airport. The RF model we developed
predicted the ETA of 90% of the aircraft in the test set to
within ± 5 minutes. Incorporating the STAR parameter
in the RF has increased the accuracy of the system
because the STAR parameter contains a large amount
of information about the future flight track which helps
improve the time estimate.



Fig. 5. Input Value (Feature) Relative Importance for RF
model prediction

Fig. 6. 5th to 95th Percentile Training Set Errors

Fig. 7. 5th to 95th Percentile Testing Set Errors

Future work includes exploration of additional model
parameters to see if we can further increase the prediction
accuracy. Other parameters to explore include: flight rules
(instrument vs. visual), aircraft type, runway availability,
current traffic in the vicinity and current precipitation.
Another avenue of future work is to extend the RF model
to other airports and test its performance capabilities and
limitations.
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M.A., and Álvarez Esteban, P.C. (2021). On the use
of deep neural networks to improve flights estimated
time of arrival predictions. Engineering Proceedings,
13(1). doi:10.3390/engproc2021013003. URL https://
www.mdpi.com/2673-4591/13/1/3.

Strottmann Kern, C., de Medeiros, I.P., and Yoneyama,
T. (2015). Data-driven aircraft estimated time of arrival
prediction. In 2015 Annual IEEE Systems Conference
(SysCon) Proceedings, 727–733. doi:10.1109/SYSCON.
2015.7116837.

Yan, G., Jordan, R., and Ishutkina, M. (2012). A tree-
based ensemble method for the prediction and uncer-
tainty quantification of aircraft landing times. 10th
Conference on Artificial Intelligence Applications to En-
vironmental Science, 10.


