

1

Oxidation of Advanced Environmental Barrier Coatings

Rebekah Webster

NASA Glenn Research Center, Cleveland, OH University of Virginia, Charlottesville, VA

High Temperature Corrosion Gordon Research Conference July 19, 2023

Acknowledgements

- Elizabeth Opila at the University of Virginia
- Rolls-Royce and program manager Dr. Robert Golden
- Analytical Instrumentation Facility (AIF), NC State University
- Kang Lee, Bernadette Puleo, and Bryan Harder of the Environmental Effects and Coatings Branch at NASA Glenn Research Center
- Transformational Tools & Technologies (TTT) Project
- Hybrid Thermally Efficient Core (HyTEC) Project

- 1. Background
- 2. Current-generation environmental barrier coatings (EBCs)
 - Oxygen diffusion pathways
 - As-sprayed Y₂Si₂O₇
 - As-sprayed vs. annealed $Yb_2Si_2O_7$
- 3. Next-generation EBCs
 - Oxide bond coat
 - Topcoat development

The growing demand for improved engine efficiency and performance has resulted in significant increases in aircraft turbine operating temperatures.

- Metallic hot-section materials (Ni-base superalloys) are reaching their temperature limit
 - Thermal barrier coatings (TBCs) and cooling technologies allow Ni-base superalloys to operate at gas temperatures that exceed their melting point

The growing demand for improved engine efficiency and performance has resulted in significant increases in aircraft turbine operating temperatures.

 SiC/SiC ceramic matrix composites (CMCs) are less dense and can withstand higher operating temperatures without the need for TBC → increased efficiency

• SiC forms a slow-growing, protective SiO₂ scale in dry oxygen

$$SiC + \frac{3}{2}O_2(g) \rightarrow SiO_2 + CO(g)$$
 Oxidation

• SiC forms a slow-growing, protective SiO₂ scale in dry oxygen

$$SiC + \frac{3}{2}O_2(g) \rightarrow SiO_2 + CO(g)$$
 Oxidation

However, in presence of water vapor (combustion environment), SiO₂ volatilizes to form a gaseous hydroxide, resulting in material recession

$$SiO_2 + H_2O(g) \rightarrow Si(OH)_4(g)$$
 Recession

- Environmental barrier coatings (EBCs) are necessary to prevent environmental degradation of SiC/SiC CMCs
 - Topcoat provides barrier to turbine environment
 - Bond coat provides bonding adhesion and acts as sacrificial layer for oxidation control

Topcoat
Bond coat (Si)
СМС

Intrinsic Material Selection Criteria

- Coefficient of thermal expansion
 Pha (CTE) match
 Low
 - Sintering resistance
 - Low H₂O/O₂ diffusivity/solubility
- Phase stability
- Low modulus
- Limited coating interaction

- Environmental barrier coatings (EBCs) are necessary to prevent environmental degradation of SiC/SiC CMCs
 - Topcoat provides barrier to turbine environment
 - Bond coat provides bonding adhesion and acts as sacrificial layer for oxidation control
 - Oxidation of bond coat (Si) results in formation of SiO₂ thermally grown oxide (TGO)

Topcoat
TGO (SiO ₂)
Bond coat (Si)
СМС

Intrinsic Material Selection Criteria

- Coefficient of thermal expansion Phase stability (CTE) match Low modulus Limited coating interaction
 - Sintering resistance
 - Low H₂O/O₂ diffusivity/solubility

9

Mullite coating NASA 1993

Lee et al. , J. Am. Ceram. Soc. (1995).

Mullite coating NASA 1993

Lee et al., J. Am. Ceram. Soc. (1995).

Gen I EBC NASA, GE, PW 1997

Lee et al., J. Am. Ceram. Soc. (2003).

Lee et al. , J. Am. Ceram. Soc. (1995).

Lee et al., J. Am. Ceram. Soc. (2003).

Lee et al., J. Eur. Ceram. Soc. (2005).

Gen II EBCs are current-generation, consist of rare earth (RE) silicate topcoat and Si bond coat. Operating temperature limited by melting point of Si (~1410°C).

Current-generation EBCs

- Low oxygen diffusivity is requirement of topcoat layer (RE₂Si₂O₇)
 - Benchmark of $1.1 \times 10^{-11} \text{ cm}^2/\text{s}$

$$D = \frac{x^2}{t} = \frac{(200 \ \mu m)^2}{10,000 \ h} = 1.1 \times 10^{-11} \frac{cm^2}{s}$$

- Diffusion coefficient of oxygen in dense β-Yb₂Si₂O₇ has been previously determined
 - ~10⁻¹⁴ cm²/s at 1400°C (Wada et al.)
- Golden reported oxygen diffusion coefficient of ~10⁻¹²-10⁻¹³ cm²/s for dense β/γ-Y₂Si₂O₇ at 1100-1300°C

Wada et al., *Acta Materialia* (2017). Golden, Ph.D. Dissertation (2016).

Ģ

Current-generation EBCs

- EBCs typically deposited by thermal spray process (air plasma spray; APS)
 - Results in complex microstructure containing pores, cracks, secondary phases

Lee et al., *J. Therm. Spray Technol.* (2021). 1000 cycles, 1316°C, steam

Ģ

Current-generation EBCs

- EBCs typically deposited by thermal spray process (air plasma spray; APS)
 - Results in complex microstructure containing pores, cracks, secondary phases
 - Richards et al. estimated diffusion coefficient of oxidizing species in steamcycled APS Yb₂Si₂O₇ to be ~10⁻⁸ cm²/s at 1316°C

Lee et al., *J. Therm. Spray Technol.* (2021). 1000 cycles, 1316°C, steam

Richards et al., Acta Materialia (2016).

Ģ

Current-generation EBCs

- EBCs typically deposited by thermal spray process (air plasma spray; APS)
 - Results in complex microstructure containing pores, cracks, secondary phases
 - Richards et al. estimated diffusion coefficient of oxidizing species in steamcycled APS Yb₂Si₂O₇ to be ~10⁻⁸ cm²/s at 1316°C

Can we monitor oxygen diffusion pathways in APS materials?

Lee et al., *J. Therm. Spray Technol.* (2021). 1000 cycles, 1316°C, steam

Richards et al., Acta Materialia (2016).

Oxygen diffusion pathways

ኇ

APS Y₂Si₂O₇ (standalone, as-sprayed) and Yb₂Si₂O₇ (on APS Si, pre-annealed and as-sprayed) investigated

- APS Y₂Si₂O₇ (standalone, as-sprayed) and Yb₂Si₂O₇ (on APS Si, pre-annealed and as-sprayed) investigated
- Samples encapsulated in fused quartz ampules for ¹⁸O₂ exchange
 - 1100°C for 75 h
 - 1200°C for 25 h
 - 1300°C for 7 h
- Resulting samples analyzed in cross-section by scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS)

Oxygen diffusion pathways – $Y_2Si_2O_7$

Deep ¹⁸O₂ penetration

٠

• Some bright areas suggesting fast paths

- Less ¹⁸O₂ penetration
- Oxygen concentrated around pores

20

Oxygen diffusion pathways – $Y_2Si_2O_7$

1300°C

- Less ¹⁸O₂ penetration
 - Oxygen concentrated around pores

• Deep ¹⁸O₂ penetration

• Some bright areas suggesting fast paths

after 1200°C exchange

as-sprayed APS Y₂Si₂O₇

Hypothesized that ¹⁸O₂ penetration greater at 1100°C due to delayed phase equilibrium, delayed "healing" of splat boundary cracks.

Bulk diffusion coefficient estimated as ~10⁻¹⁰-10⁻¹¹ (1200-1300°C) using $D = \frac{x^2}{t}$. Higher than previously reported (10⁻¹²-10⁻¹³), but analysis not robust.

23

pre-annealed

1100°C

- Oxygen has not reached bond coat by 75 hours
- ¹⁸O concentrated at pores and cracks in the coating
- No discernable correlation between phase (Yb₂Si₂O₇, Yb₂SiO₅) and oxygen diffusion

ероху

٠

pre-annealed

1100°C

- Oxygen has not reached bond coat by 75 hours
- ¹⁸O concentrated at pores and cracks in the coating
- No discernable correlation between phase (Yb₂Si₂O₇, Yb₂SiO₅) and oxygen diffusion

as-sprayed

- Oxygen reaches and reacts with bond coat to form SiO₂
- Thick ¹⁸O regions concentrated around pores and cracks
- No discernable correlation between phase (Yb₂Si₂O₇, Yb₂SiO₅) and oxygen diffusion

pre-annealed

- Oxygen reaches bond coat but no clear additional TGO formation
- Thick regions of concentrated ¹⁸O near coating defects
- No discernable correlation between phase (Yb₂Si₂O₇, Yb₂SiO₅) and oxygen diffusion

•

pre-annealed

- Oxygen reaches bond coat but no clear additional TGO formation
- Thick regions of concentrated ¹⁸O near coating defects
- No discernable correlation between phase (Yb₂Si₂O₇, Yb₂SiO₅) and oxygen diffusion

- Thick regions of concentrated ¹⁸O near coating defects
- No discernable correlation between phase (Yb₂Si₂O₇, Yb₂SiO₅) and oxygen diffusion

Oxygen diffusion pathways – takeaways

- Oxygen transport is extremely sensitive to initial condition of APS coating
 - As-sprayed EBCs contain cracks, non-equilibrium phases that can act as fast diffusion paths
 - Even after pre-anneal, defects in coating remain
- No observed effect of RE₂Si₂O₇ vs. RE₂SiO₅
 - Expected based on similar oxygen diffusion coefficients for $Y_2Si_2O_7/Y_2SiO_5$ and for $Yb_2Si_2O_7/Yb_2SiO_5$
- Uncertain why diffusion regions appear thicker at defects than at surface of material
 - Overlap in signal?

EBCs with surface temperatures ≥~1480°C are desired as new technology.

 Temperature capability of current-generation EBCs limited by melting point of silicon (~1410°C)

EBCs with surface temperatures ≥~1480°C are desired as new technology.

- Temperature capability of current-generation EBCs limited by melting point of silicon (~1410°C)
- Development of oxide bond coat (mullite-based) with higher temperature capability underway at NASA Glenn

Lee et al., J. Euro. Ceram. Soc. (2021).

Oxide bond coat

- Three-layer system with mullite-based bond coat deposited by slurry process
 - Bond coat is not sacrificial, contributes to oxidation protection
 - Slurry process allows for fine control of coating chemistry, relatively easy synthesis

IVERSITY /IRGINIA

G _C		nda	o o t			IVERSITY /IRGINIA	NASA
Ĺ		na c	Yb ₂ Si ₂ O ₇ , S HfC	Sc ₂ Si ₂ O ₇ ,	← Topcoat		
•	Three-layer s	ystem	with mullite-based k	ond coat	HfSi	04	🗕 Chemical barrier
	deposited by	slurry	process		Mullite + sin	tering aids	- Bond coat
	 Yb₂Si₂O₇ + (eutectic uti 	Al ₂ O ₃ , m lized for	ullite) or Sc ₂ Si ₂ O ₇ + (Al ₂ sintering at 1525°C	O ₃ , mullite)	TGO (Si	^{o,)} /SiC	
	Base Material	Process	Sintering Aids	Amount	US Patent # 11,3	25,869 (2022).	
	Yb ₂ Si ₂ O ₇	slurry	mullite	< 1 wt%	Yb ₂ Si	i,O, + (Al ₂ O,	, mullite) =
Topcoat	Sc ₂ Si ₂ O ₇	slurry	mullite	< 1 wt%		~ 1500°C eutectic	
Τορτοάτ	HfO ₂	PS-PVD	none	N/A			
	HfO ₂	slurry	Si, mullite	TBD	$SC_2SI_2O_7 + (AI_2O_3, MUIIIte) =$ ~1525-1550°C eutectic		, mullite) = eutectic
Chemical barrier	HfSiO ₄	slurry	Si	< 10 wt%	PS-PVD = plasma s	spray-physical v	apor deposition
Bond coat	: mullite	slurry	Yb ₂ Si ₂ O ₇ , Al ₂ O ₃ , Si, SiC	< 3 wt% (Al, Yb) < 30 wt% (Si, SiC)	baseline		
			proprietary oxide, Sc ₂ Si ₂ O ₇	< 3 wt%	improved		33

ዓ_ር	wido ho	ndc	00t			VERSITY IRGINIA	NASA	
U	viue DU		Yb ₂ Si ₂ O ₇ , S HfO	c ₂ Si ₂ O ₇ ,	← Topcoat			
• -	Three-layer s	ystem v	with mullite-based k	oond coat	HfSid	D ₄	- Chemical barrier	
(deposited by	slurry	process		Mullite + sint	tering aids	- Bond coat	
	 Yb₂Si₂O₇ + (eutectic uti 	Al ₂ O ₃ , m lized for	iullite) or Sc ₂ Si ₂ O ₇ + (Al ₂ sintering at 1525°C	O ₃ , mullite)	CMC/	SiC		
	Base Material	Process	Sintering Aids	Amount	US Patent # 11,3	25,869 (2022).		
	Yb ₂ Si ₂ O ₇	slurry	mullite	< 1 wt%				
Toncoat	Sc ₂ Si ₂ O ₇	slurry	mullite	< 1 wt%	Sinteri	Sintering aid amount/type can		
Topcoat	HfO ₂	PS-PVD	none	N/A	interest and topcoat chemistry			
	HfO ₂	slurry	Si, mullite	TBD				
Chemical barrier	HfSiO ₄	slurry	Si	< 10 wt%	PS-PVD = plasma s	spray-physical v	apor deposition	
Bond coat	mullite	slurry	Yb ₂ Si ₂ O ₇ , Al ₂ O ₃ , Si, SiC	< 3 wt% (Al, Yb) < 30 wt% (Si, SiC)	baseline			
			proprietary oxide, Sc ₂ Si ₂ O ₇	< 3 wt%	improved		34	

ዓ_ር	ida ha	ndc	001			VERSITY IRGINIA	NASA
07	RIGE DO		Yb ₂ Si ₂ O ₇ , S HfO	c ₂ Si ₂ O ₇ ,	← Topcoat		
• TI	nree-layer s	ystem v	with mullite-based k	ond coat	HfSid	D ₄	- Chemical barrier
d	eposited by	slurry		Mullite + sint	tering aids	Bond coat	
	 Yb₂Si₂O₇ + (eutectic uti 	Al ₂ O ₃ , m lized for	ullite) or Sc ₂ Si ₂ O ₇ + (Al ₂ sintering at 1525°C	O ₃ , mullite)	CMC/	SiC	
	Base Material	Process	Sintering Aids	Amount	US Patent # 11,3	25,869 (2022).	
	Yb ₂ Si ₂ O ₇	slurry	mullite	< 1 wt%			
Toppost	Sc ₂ Si ₂ O ₇	slurry	mullite	< 1 wt%	Chei	mical barrie	r prevents
Τορεσαι	HfO ₂	PS-PVD	none	N/A	direct-contact reaction betwee		tion between and mullite.
	HfO ₂	slurry	Si, mullite	TBD			
Chemical barrier	HfSiO ₄	slurry	Si	< 10 wt%	PS-PVD = plasma s	spray-physical v	apor deposition
Bond coat	mullite	slurry	Yb ₂ Si ₂ O ₇ , Al ₂ O ₃ , Si, SiC	< 3 wt% (Al, Yb) < 30 wt% (Si, SiC)	baseline		
			proprietary oxide, Sc ₂ Si ₂ O ₇	< 3 wt%	improved		35

 Yb₂Si₂O₇ + (Al₂O₃, mullite) or Sc₂Si₂O₇ + (Al₂O₃, mullite) cutectic utilized for sintering at 1525°C <u>Base Material</u> Process Sintering Aids Amount <u>Yb₂Si₂O₇ slurry mullite</u> Sc₂Si₂O₇ slurry mullite Sc₂Si₂O₇ slurry Si, mullite Sc₂Si₂O₇ Si si, mullite Si 	ም ርን • Th de	kide bo nree-layer se eposited by	nd Co ystem v slurry i	Oat with mullite-based k process	oond coat	Yb2Si2O7, Sc2Si2O7, HfO2 HfSiO4 Mullite + sintering aids TGO (SIO.)			
Base MaterialProcessSintering AldsAmountOF Patent # 11,325,869 (2022).Topcoat $Yb_2Si_2O_7$ $Slurry$ $mullite$ $< 1 wt\%$ $Sc_2Si_2O_7$ $Slurry$ $mullite$ $< 1 wt\%$ HfO_2 $PS-PVD$ $none$ N/A HfO_2 $Slurry$ $Si, mullite$ TBD $Chemical barrier$ $HfSiO_4$ $Slurry$ $Si mullite$ $PS-PVD = plasma spectrum of the spectrum of$		 Yb₂Si₂O₇ + (eutectic uti 	Al ₂ O ₃ , m lized for	iullite) or Sc ₂ Si ₂ O ₇ + (Al ₂ sintering at 1525°C	O ₃ , mullite)	CMC/			
Yb2Si2O7Slurrymullite< 1 wt%		Base Material	Process	Sintering Alds	Amount	US Patent # 11,3			
TopcoatSc_2Si_2O_7SlurryMullite<1 wt%		Yb ₂ Si ₂ O ₇	slurry	mullite	< 1 wt%				
HfO2PS-PVDnoneN/AHfO2slurrySi, mulliteTBDChemical barrierHfSiO4slurrySi<10 wt%	Townsh	Sc ₂ Si ₂ O ₇	slurry	mullite	< 1 wt%				
HfO2slurrySi, mulliteTBDChemical barrierHfSiO4slurrySi<10 wt%	lopcoat	HfO ₂	PS-PVD	none	N/A				
Chemical barrierHfSiO4slurrySi<10 wt%		HfO ₂	slurry	Si, mullite	TBD				
Bond coat mullite Yb2Si2O7, Al2O3, Si, SiC <3 wt% (Al, Yb)	Chemical barrier	HfSiO ₄	slurry	Si	< 10 wt%	PS-PVD = plasma	spray-physical	vapor deposition	
proprietary oxide, Sc ₂ Si ₂ O ₇ < 3 wt% improved ³⁶	Bond coat	mullite	slurry	Yb ₂ Si ₂ O ₇ , Al ₂ O ₃ , Si, SiC	< 3 wt% (Al, Yb) < 30 wt% (Si, SiC)	baseline			
				proprietary oxide, Sc ₂ Si ₂ O ₇	< 3 wt%	improved		36	

G C	ida ha	ndo	o o t			IVERSITY /IRGINIA	NASA
ÛX	lue po		Yb ₂ Si ₂ O ₇ , S HfC	Sc ₂ Si ₂ O ₇ , D ₂	← Topcoat		
• Tł	nree-layer s	ystem v	with <mark>mullite-based</mark> k	ond coat	HfSi	O ₄	 Chemical barrier
de	eposited by	slurry	process		Mullite + sin	tering aids	- Bond coat
	 Yb₂Si₂O₇ + (eutectic uti 	Al ₂ O ₃ , m lized for	ullite) or Sc ₂ Si ₂ O ₇ + (Al ₂ sintering at 1525°C	O ₃ , mullite)	TGO (S CMC/	o,) /SiC	
	Base Material	Process	Sintering Aids	Amount	US Patent # 11,325,869 (2022).		
	Yb ₂ Si ₂ O ₇	slurry	mullite	< 1 wt%			
Topost	Sc ₂ Si ₂ O ₇	slurry	mullite	< 1 wt%			
Ιορέοατ	HfO ₂	PS-PVD	none	N/A			
	HfO ₂	slurry	Si, mullite	TBD			
Chemical barrier	HfSiO ₄	slurry	Si	< 10 wt%	PS-PVD = plasma	spray-physical	vapor deposition
Bond coat	mullite	slurry	Yb ₂ Si ₂ O ₇ , Al ₂ O ₃ , Si, SiC	< 3 wt% (Al, Yb) < 30 wt% (Si, SiC)	baseline		
			proprietary oxide, Sc ₂ Si ₂ O ₇	< 3 wt%	improved		37

Steam oxidation-induced delamination is the most critical EBC failure mode.

- $\beta \rightarrow \alpha \text{ SiO}_2$ phase transformation (~200°C), volume reduction
- CTE α SiO₂ = ~10 x 10⁻⁶ / °C

 $SiC + 3H_2O(g) \rightarrow SiO_2 + CO(g) + 3H_2(g)$

Steam oxidation-induced delamination is the most critical EBC failure mode.

- Cyclic steam oxidation rig used to evaluate EBC viability
 - Pt-Rh hang wire and basket to hold samples
 - 90 vol% H₂O/10 vol% O₂, 10 cm/s gas velocity
 - 1 hour hot cycle and 30 min cool cycle (<200°C)

Lee et al., J. Am. Ceram. Soc. (2003).

 $SiC + 3H_2O(g) \rightarrow SiO_2 + CO(g) + 3H_2(g)$

RE₂Si₂O₇ (RE=Yb, Sc) topcoat for next-generation EBCs

Addition of proprietary oxide to bond coat allows for **1000** successful cycles of EBC with Yb₂Si₂O₇ topcoat at 1427°C. Eutectic moves from bond coat to surface of topcoat during testing.

41

Debonding observed by **67 cycles** at 1480°C. Eutectic formation and spread limits use temperature of Yb₂Si₂O₇.

No spallation after **1000 cycles** at **1480°C**. Bond coat shows some signs of distress (pore coalescence).

HfO₂ topcoat for next-generation EBCs

- Moving eutectic reacts with HfO₂ to form HfSiO₄
- Severe topcoat debonding with some spallation
- Some debonding at bond coat/TGO interface observed

PS-PVD HfO₂ topcoat

to form HfSiO₄

No debonding/spallation observed

Mullite "B" contains more $Yb_2Si_2O_7$ and Al_2O_3 in bond coat than Mullite "A".

Slurry HfO₂ topcoat

- HfO₂ has high, anisotropic CTE
 - a = ~10, b = ~-1, c = ~17 x 10⁻⁶ / °C (1450°C, monoclinic; Haggerty et al.)
 - a = ~10, c = ~13 x 10⁻⁶ / °C (1450°C, tetragonal; Haggerty et al.)
- Can we produce HfO₂ as a slurry-based coating?

• HfO_2 mixed with $HfSiO_4$ / sintering aids Si, mullite, $Yb_2Si_2O_7$

$HfO_2 + HfSiO_4 + sintering aids$
HfSiO ₄ , Si
Mullite + sintering aids
TGO (SiO ₂)
SiC

Single-layer HfO₂ topcoat

- 30 wt% HfSiO₄ + 1.5 wt% Si → limited spallation after 500 cycles at 1480°C
 - 20 wt% HfSiO₄ + 1.5 wt% Si does not survive 100 cycles
 - Addition of 2.5 5 wt% mullite + Yb₂Si₂O₇/Sc₂Si₂O₇ mixture results in "bubbling"/cracking after 100 cycles

No observable HfO₂ remaining in topcoat layer by 500 cycles. HfO₂ reacts with Si, eutectic. Some debonding observed at bond coat/TGO interface.

500 cycles, 1480°C eutectic product HfSiO_A Mallits SiC

- HfO₂ as graded topcoat layer up to five layers mixed with HfSiO₄, Si
 - Si content of \geq 1.5 wt% needed as coating addition in each layer

100 cycles, **1480°C**

x = 0 wt% Si

x = 1.5 wt% Si

SiC

100 µm

HfO₂ reacts with Si, eutectic after **100 cycles** at **1480°C**, but ~150 μm thick region containing HfO₂ remains at surface.

HfO₂ near surface of topcoat ~75 μ m thick following **500 cycles** at **1480°C**. Thin, dense HfSiO₄ layer observed at surface. Pore coalescence near bond coat/TGO.

GINIA

Future work needed to optimize sintering aid type/amount in bond coat and topcoat for graded HfO_2 to minimize reaction to form $HfSiO_4$.

Next-generation EBCs – takeaways

- Oxide-based bond coat needed to enable next-generation EBCs
 - Mullite-based bond coat with 1000 h capability at 1480°C has been successfully demonstrated
- Oxidation life and temperature capability are key challenges with mullite-based bond coat
 - Sintering aid type/concentration can be optimized
- Sc₂Si₂O₇ currently shows most promise as topcoat layer
 - Reaction of Yb₂Si₂O₇ with eutectic and HfO₂ with eutectic is current issue
 - Graded Sc₂Si₂O₇/Sc₂SiO₅/Sc₂O₃ under development
 - Sc is expensive!
- Future work entails continued EBC optimization and rigorous durability testing under temperature gradient + thermal cycling