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ABSTRACT
SAR imagery is traditionally produced in range-Doppler ge-
ometry. While such algorithms are computationally efficient,
they require multiple assumptions regarding signal properties.
Time-domain backprojection (TDBP) SAR focusing meth-
ods require fewer assumptions and are considerably more ro-
bust to perturbations in flight paths and target geometry. Fur-
thermore, TDBP produces single-look complex (SLC) im-
agery that is directly geocoded, which simplifies subsequent
analysis compared to range-Doppler products. With modern
improvements in computational power, TDBP SAR-focusing
methods have become viable alternatives to range-Doppler.
However, TDBP-formed imagery can be sensitive to inaccu-
racies in global DEMs. Here, we investigate the so-called
multi-depth multi-focusing algorithm that has been proposed
to correct for DEM errors. We analyze changes in the de-
tection of persistent scatterers (PS) and find that while depth-
averaged SLCs yield fewer PS, depth-optimized SLCs yield
more PS and produce higher-quality interferograms compared
with unoptimized SLCs. We conclude by discussing the im-
plications for improved time-series InSAR analysis.

Index Terms— interferometric synthetic aperture radar
(InSAR), persistent scatterers, digital elevation models (DEMs)

1. INTRODUCTION

Time-domain backprojection (TDBP) algorithms are a robust
alternative to traditional frequency-domain methods for fo-
cusing SAR imagery. While traditionally viewed as computa-
tionally intensive, TDBP methods are straightforward to im-
plement — they only require accurate knowledge of both the
flight/orbital path of the imaging aircraft or spacecraft and an
estimate of the target location, usually given by a digital ele-
vation model (DEM) [1]. Because TDBP methods solve ex-
plicitly for complex flight or orbital geometry, they are highly
resistant to unknown perturbations and also produce images
directly in regularly gridded map coordinates [2, 3]. Recent
advances — in particular, the accuracy of modern flight and
orbit trackers and recent advances in computing such as GPU-
accelerated parallelization [4–7] — have virtually eliminated

conventional barriers to implementing TDBP methods. As
a result, TDBP methods have gained traction for use in dif-
ferential interferometric SAR (DInSAR) and time-series In-
SAR applications with the introduction of geocoded SLCs,
which reduce storage requirements and vastly simplify inter-
ferogram formation for end-users [8, 9]. Previous work has
also shown that the density of persistent scatterers (PS) in-
creases when SLCs are directly geocoded to map geometry
due to more accurate interferogram coregistration [10].

One drawback of TDBP methods is the requirement for
fairly accurate estimates of source and receiver geometry. A
DEM error of 10 m, which is common in widely used global
DEMs for InSAR processing [11], results in a 4 mm error in
deformation estimates [12]. This measurement accuracy can
be insufficiently sensitive when fine deformation estimates
are required, including for studies of moderate fault creep and
coastal subsidence. Furthermore, a 10-m DEM error may re-
sult in a drop in SNR when targets are offset from the assumed
scattering cell center, resulting in suboptimal focusing [1].

The so-called multi-depth multi-focusing technique has
previously been proposed as a possible method to correct
for positioning errors in TDBP SAR imagery [13]. Because
TDBP focuses radar returns directly in geodetic coordinates
given known positions of the source (from orbit informa-
tion) and targets (from a DEM), the focusing “depth” (i.e.,
the line-of-sight distance from the source to the target) can
be easily adjusted during the image formation procedure.
Thus, the multi-depth multi-focusing algorithm proposed to
form a set of depth-offset SLCs per single SLC by varying
the focusing depth relative to the DEM, then averaging all
depth-offset slices to form a depth-averaged SLC. The possi-
bility of forming a depth-optimized SLC, where each SLC is
focused to the depth that maximizes the observed signal-to-
noise ratio (SNR), was also raised but not further investigated.
Preliminary results showed that the depth-averaged SLC im-
proved the observed SNR, with a speckle-reducing effect
similar to multi-looking without a loss in spatial resolution.
Fig. 1 shows an example of the improvement in SNR for a
multi-focused SLC over a depth range of −20 to 20 m using
ALOS-1 (L-band) data over Cambodia [13].



Single SLC 0 m Multi-focused -20/+20 m

a) b)

Fig. 1. The ruins of a temple complex in the heavily forested
Prasat Bakan in Cambodia for a) an unoptimized SLC and
b) a multi-focused (depth-averaged) SLC from −20 to 20 m
using ALOS-1 data, reproduced from [13]. The SNR of the
depth-averaged SLC is clearly much higher.

Here, we extend previous work by analyzing the applica-
bility of depth-averaged and depth-optimized SLCs for time-
series PS-InSAR analysis.

2. METHODOLOGY AND DATA

A simple model suffices to demonstrate the multi-depth ef-
fect. Suppose we have i = 1, ..., N (non-deforming) scenes.
Then each scene si can be described as the sum of a real cor-
related component c and a noise component ni [14, 15]:

si = c+ ni = aie
j 4π

λ ϕi (1)

where the alternate phasor notation is also presented, with am-
plitude ai, phase ϕi, and imaging wavelength λ. In this work,
we assumed that c is exponentially distributed in power with
a mean of 1/2 and that ni is a circularly symmetric Gaussian.
We then added a phase noise term ϕn, such that

si = aie
j 4π

λ (ϕi+ϕn). (2)

For simplicity, we introduced ϕn as a spatial linear ramp
across all pixels in our simulations, using a range of −20 to 20
m over 100,000 pixels. Then, to compute the depth-averaged
SLC, we formed si such that

si =
∑
k

aie
j 4π

λ (ϕi+ϕn+dk) (3)

where dk are the depth offsets. We formed uniformly spaced
SLCs with a step size of 2 m and depth ranges of 4 and 20
m. To compute the depth-optimized SLC, we used a linear
global search with the same step size and depth ranges as the
depth-averaged case but instead formed si such that

si = aie
j 4π

λ (ϕi+ϕn+dopt) (4)

where dopt was chosen as the value of d that maximized the

0 0.05 0.1 0.15 0.2 0.25
Prob(false alarm)

0

0.2

0.4

0.6

0.8

1

Pr
ob

(d
et

ec
tio

n)

Receiver Operating Characteristic Curve

Depth-optimized
Unoptimized

0 0.05 0.1 0.15 0.2 0.25
Prob(false alarm)

0

0.2

0.4

0.6

0.8

1

Pr
ob

(d
et

ec
tio

n)

Receiver Operating Characteristic Curve

Depth-optimized
Unoptimized

0 0.05 0.1 0.15 0.2 0.25
Prob(false alarm)

0

0.2

0.4

0.6

0.8

1

Pr
ob

(d
et

ec
tio

n)

Receiver Operating Characteristic Curve

Depth-averaged
Unoptimized

0 0.05 0.1 0.15 0.2 0.25
Prob(false alarm)

0

0.2

0.4

0.6

0.8

1

Pr
ob

(d
et

ec
tio

n)

Receiver Operating Characteristic Curve

Depth-averaged
Unoptimized

Focusing depth range: 20 mFocusing depth range: 4 m

D
ep

th
-a

ve
ra

ge
d

D
ep

th
-o

pt
im

iz
ed

Phase perturbation: -20 to 20 m

a) b)

c) d)

Fig. 2. Receiver operating characteristic (ROC) curves of true
PS detection for depth-averaged SLCs (a and b) and depth-
optimized SLCs (c and d) for different focusing depth ranges.
A deeper focusing depth range decreases PS detection in the
depth-averaging case but improves PS detection in the depth-
optimized case.

signal-to-clutter ratio (SCR, γ) as estimated using the para-
metric phase-based maximum likelihood (MLE) PS detector
using Gaussian scattering assumptions [16]:

dopt = argmax
d

γest

= argmax
d

[argmax
γ

f(γ|ϕn1 + d, · · ·ϕnN + d)]. (5)

When applied to real data, the SLCs should be focused
using a traditional TDBP method (e.g., as described in Ze-
bker [9]) with the depth offsets dk or dopt included as an ad-
ditive phase term during SLC resampling to the DEM. Specif-
ically, the focused signal for each resolution element can be
expressed as the sum of the signal from all contributing scat-
terers, Dn, where n ∈ N , corrected by the propagation phase
ϕprop, which is given by the difference of the distance from
the zero-Doppler source point s0(x, y, z) to the target position
p(x′, y′, z′) and perturbed by the depth offset d:

si =
∑
n∈N

Dne
j 4π

λ |s0(x,y,z)−p(x′,y′,z′)+d| (6)

For this study, we examined TDBP-focused Sentinel-1
imagery over select areas on the islands of Kilauea, Hawai’i
and Tutuila, American Samoa from 2015-2022. Both is-
lands are volcanic, though Tutuila is smaller, more vegetated,
and overall less temporally coherent compared with Kilauea.
We formed unoptimized SLCs at native resolution that were
geocoded using NASADEM, then formed depth-averaged
and depth-optimized SLCs. We implemented a parallelized
GPU-accelerated workflow to minimize the increase in com-



Table 1. PS Density (count/km2) for depth-averaged (“Avg.”)
and depth-optimized (“Opt.”) SLCs

Kilauea Tutuila
Focus Rng. Avg. Opt. Avg. Opt.
0 m (None) 352.07 352.07 4.23 4.23

4 m 298.74 532.65 2.71 8.18
20 m 272.30 606.25 2.49 26.32

putational load. To identify PS, we used the Maximum Likeli-
hood PS detector with a parametric Gaussian model [16]. We
repaired decorrelated portions of the interferograms with the
phase similarity PS interpolation algorithm using the standard
20-pixel search window [17].

3. RESULTS AND DISCUSSION

Our simulations predicted a decrease in the rate of PS de-
tection with depth-averaged SLCs and an improvement in
the rate of PS detection with depth-optimized SLCs, with a
greater difference with a larger focusing depth range. Fig.
2 shows the receiving operating characteristic (ROC) curves
for depth-averaged and depth-optimized SLCs.

Our data were consistent with these predictions. Table 1
shows the comparison of PS density for averaged vs. depth-
optimized SLCs over both Kilauea and Tutuila Islands. In
both areas, depth-averaged SLCs yielded fewer PS, especially
for a larger focusing range. By contrast, depth-optimized
SLCs yielded significantly more PS. In Kialuea, the 20 m
depth-optimized SLC yielded roughly 2x the PS density com-
pared to the unoptimized version, and in Tutuila, the 20 m
depth-optimized SLC yielded more than 6x the density.

Figs. 3 and 4 show the original, PS-interpolated, depth-
optimized, and both PS-interpolated and depth-optimized in-
terferograms for Kilauea and Tutuila. The depth-optimized
algorithm drastically improves the interferogram quality and
is able to fill decorrelated gaps in both areas, which in turn
significantly enhances PS-interpolated interferograms com-
pared to the original.

4. CONCLUSIONS AND FUTURE WORK

Our study demonstrates the promise of using depth-optimized
SLCs for improving interferogram quality over two diverse
terrain types. We obtained good results even using a simple
global search method. Our observations from simulated and
real data demonstrated that our algorithm results in up to a 6x
densification of PS, with improvements primarily observed in
mid-to-high correlation regions.

Future work will compare the quality of time-series re-
sults derived from PS-InSAR using depth-optimized SLCs
compared with unoptimized SLCs. We will also analyze
changes in the quality of multilooked interferograms that can
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Fig. 3. Detail over Kilauea of four variants of the same
interferogram formed between scenes acquired on October
29, 2018, and November 10, 2018. a) Original, uninter-
polated, unoptimized interferogram. b) Unoptimized inter-
ferogram with PS interpolation following Wang and Chen
[17], where decorrelated regions are masked out in black.
c) Uninterpolated, depth-optimized interferogram. d) Depth-
optimized and PS-interpolated interferogram. Both interfero-
gram quality and PS interpolation are significantly improved
with depth-optimized SLCs.

be used in small baseline subset (SBAS) time-series methods.
Further studies are also needed to understand the relationship
of the technique with elevation correction and to investigate
opportunities for integration with 3D focusing methods such
as tomographic SAR [18, 19]. We have observed in prelimi-
nary tests that using depth-optimized SLCs reduces variations
in the derived time-series results from different DEMs (e.g.,
the NASADEM and Copernicus products), but further work
is needed to understand these results.

Overall, depth-optimized SLCs exhibit a strong potential
to improve the quality of deformation measurements that can
be produced using easily accessible global DEMs from TDBP
InSAR time-series analysis, which will play a critical role in
expanding the accessibility of powerful user-friendly tools for
imaging subtle geophysical phenomena around the globe.
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Fig. 4. Same as Fig. 3, but over Tutuila, with four vari-
ants of the interferogram formed between the scenes acquired
on October 24, 2018, and November 5, 2018. a) Origi-
nal unimproved and uninterpolated interferogram. b) Orig-
inal and unoptimized but PS-interpolated interferogram. c)
Depth-optimized but uninterpolated interferogram. d) Depth-
optimized and PS-interpolated interferogram. The depth-
optimized SLC significantly improves the quality of the in-
terferogram, even in challenging terrain.
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