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Where Are Uniform Measurement Errors Present?
• Many of our estimation and simulation efforts focus on Gaussian measurement noises

• Indeed, many (most) systems are well-represented using Gaussian statistics!

• However, some prevalent systems are corrupted by uniform measurement errors
◦ Quantization, thermal noise, clock errors, emerging quantum devices, PFA/PFR
◦ Subjective observations, polling, broad input measurements

• In this case, the classic Kalman filter can be used safely (and it often is)
◦ A common misconception is that the Kalman filter requires Gaussian noises
◦ It is the optimal MMSE estimator so long as noise statistics are known sufficiently

• However, does the application need stronger optimality (better estimation performance)?
◦ Other methods exist to obtain stronger (usually Bayesian) optimality, i.e., PF, GMF, etc.
◦ Generally, however, these methods consume much, much more computational throughput
◦ This paper derives a new, efficient (approximately) Bayes-optimal sequential filter.
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But What About The Central Limit Theorem?
• It is common to lean upon the Central Limit Theorem to justify Gaussian methods

◦ There is nothing wrong with this! But is it the best for the application?
◦ The moments may well be matched by a Gaussian, but what about their frequency content?
◦ (The CLT is be nuanced and complex, but here seek to emphasize it’s not a catch-all)

• Consider the 10,000,000 sample demo below, sampled from randomly selected uniforms
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System Design and Requirements: Intent v. Realization
• Another key observation (though anecdotal) is in the community interpretation of “3σ”

◦ There is a tendency in system and requirements design to interpret 3σ as a “maximum error”
◦ Designers often intend it to be used as a “bound”, often with little other specification
◦ Sometimes it may be safer to interpret as uniform rather than matching a Gaussian 3σ

• There’s a disconnect between the design intent and what gets designed/flown
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The Masreliez Filter (1)

• In an astounding though seemingly forgotten work in 1975, Masreliez derived an extremely
general solution to (approximate) Bayesian estimation for arbitrary noise densities

m+
x,k = m−

x,k + P−
xx,kH T

x,kgk(zk)

P+
xx,k = P−

xx,k − P−
xx,kH T

x,kGk(zk)Hx,kP−
xx,k

• This relies “solely” upon computing very tricky likelihood derivatives (often impossible)

gi,k(zk) = −
[
∂p(zk |Z1:k−1)

∂zi,k

]
1

p(zk |Z1:k−1)
, [Gk(zk)]i,j =

∂gi,k(zk)

∂zj,k

• Approximation to Bayes rule that yields very similar results to the true Bayes posterior1

• Despite its appearance, it’s a nonlinear estimator (in contrast to the KF/EKF/UKF/etc.)
◦ However, for Gaussian noises... These derivatives just give us the Kalman filter!

1M. Brunot recently used this to produce a recursion for Gauss-uniform noises, but the result is unwieldy for our purposes (especially for onboard applications).
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The Masreliez Filter (2)
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A New Filter for Uniform Measurement Noises
• This paper takes all the ugly derivatives to compute gk(zk) and Gk(zk) for uniform noises

• The result winds up being surprisingly tidy and is of the form
gk(zk) = S−T

k ξk

Gk(zk) = S−T
k ΞkS−1

k

• Above, Sk is the square-root factor of Hx,kP−
xx,kH T

x,k and

ξk , ψk sinh{bT
k βk}

Ξk , diag{ψk � ζk + ξ}

• This only requires a few more operations than the trusty Kalman filter but provides
approximately Bayes-optimal estimation performance

• Simply plug gk(zk) and Gk(zk) into the previous updates for m+
x,k/P+

xx,k and you’re done
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Implementation Considerations
1. What was odd to me was that hyperbolic trigonometry pops out of the derivatives

◦ This can actually be tricky and/or expensive for spaceflight-grade CPUs...
◦ However, lookup tables are handily implemented with great accuracy
◦ A total non-issue for modern computing architectures

2. Computing ξk requires evaluating a function containing error functions

φi,k , erf

{
bi,k − βi,k√

2

}
+ erf

{
bi,k + βi,k√

2

}
◦ Anyone who has messed with error functions knows that they can be troublesome numerically
◦ However, this is an age-old problem with a myriad of attractive solutions, even for lean CPUs

3. Covariance matrices are inherently plagued by floating point arithmetic
◦ Loss of symmetric positive semidefiniteness (PSD) makes any covariance-based filter collapse
◦ Square-root and UDU factorized representation are derived in the paper
◦ These all but solve any symmetry or PSD concerns for the covariance matrix
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Numerical Studies
• 10,000 trial Monte Carlos

• These runs compare perf. of
1. Kalman filter with different

assumptions
2. optimal Gaussian mixture filter
3. this paper’s uniform filter

• Case 1: True noise is uniform, KF
with true uniform stats.

• Case 2: True noise is uniform, KF
with 3σ matched to uniform

• Case 3: Notched Gaussian noise

• Case 4: Heavy-tailed noise

• Note that the KF has all the standard
“bells and whistles”

Case 1

Case 3

Case 2

Case 4
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Case 1: Uniform Noise, Ideal Kalman Filter

Case 1
Filter Total RMSE Avg. Norm. Time

Kalman 3165.8 1.0
Gaussian Mixture 2725.2 15704.4

Uniform 2690.0 16.0
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Case 2: Uniform Noise, Matched Kalman Filter

Case 2
Filter Total RMSE Avg. Norm. Time

Kalman 3584.6 1.0
Gaussian Mixture 2724.1 15188.3

Uniform 2688.9 15.9
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Case 3: Notched Measurement Noise

Case 3
Filter Total RMSE Avg. Norm. Time

Kalman 4599.3 1.0
Gaussian Mixture 2571.7 2851.6

Uniform 2851.6 16.1
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Case 4: Heavy-Tailed Noise

Case 4
Filter Total RMSE Avg. Norm. Time

Kalman 14207.8 1.0
Gaussian Mixture 3993.2 2236.1

Uniform 8170.1 5.2
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Conclusions
• This paper presents a new sequential estimator for uniform measurement noise

◦ Produces approximately Bayes-optimal estimation performance
◦ Very efficient, slightly more computationally burdensome than the Kalman filter
◦ Numerical stability adjustments developed, including factorized formulations

• Numerical studies are compelling and illustrate its advantages
◦ Demonstrates ideal performance when estimating with uniform measurement noises
◦ Also demonstrates improvements upon KF to accomodate robust estimation strategies

• All proofs provided explicitly in the paper (including the key likelihood function)

• These results build upon Masreliez’s key discovery and Brunot’s recent findings

• A similar strategy could be used to develop a filter for uniform process noise

• Seems to be room to discover ideal strategies for accommodating those error functions
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Any Questions?
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