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Where Are Uniform Measurement Errors Present?

e Many of our estimation and simulation efforts focus on Gaussian measurement noises

Indeed, many (most) systems are well-represented using Gaussian statistics!

However, some prevalent systems are corrupted by uniform measurement errors

o Quantization, thermal noise, clock errors, emerging quantum devices, PFA/PFR
o Subjective observations, polling, broad input measurements

In this case, the classic Kalman filter can be used safely (and it often is)

o A common misconception is that the Kalman filter requires Gaussian noises
o It is the optimal MMSE estimator so long as noise statistics are known sufficiently

However, does the application need stronger optimality (better estimation performance)?
o Other methods exist to obtain stronger (usually Bayesian) optimality, i.e., PF, GMF, etc.

Generally, however, these methods consume much, much more computational throughput

This paper derives a new, efficient (approximately) Bayes-optimal sequential filter.
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But What About The Central Limit Theorem?

e It is common to lean upon the Central Limit Theorem to justify Gaussian methods
o There is nothing wrong with this! But is it the best for the application?
o The moments may well be matched by a Gaussian, but what about their frequency content?
o (The CLT is be nuanced and complex, but here seek to emphasize it's not a catch-all)

e Consider the 10,000,000 sample demo below, sampled from randomly selected uniforms
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System Design and Requirements: Intent v. Realization

e Another key observation (though anecdotal) is in the community interpretation of “30"

o There is a tendency in system and requirements design to interpret 3o as a “maximum error”
o Designers often intend it to be used as a “bound”, often with little other specification
o Sometimes it may be safer to interpret as uniform rather than matching a Gaussian 3o

e There's a disconnect between the design intent and what gets designed/flown
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The Masreliez Filter (1)

e In an astounding though seemingly forgotten work in 1975, Masreliez derived an extremely
general solution to (approximate) Bayesian estimation for arbitrary noise densities

m;—k = zk + Pxx kH kgk(zk)
P, =P, — P HYG\(2)H,,P,

zz,k zz,k Tz, zz,k
e This relies “solely” upon computing very tricky likelihood derivatives (often impossible)

3p(zk|Z1;k_1)] 1 89:.1(21)
) G )i = —Fm———
[ 0z i p(zk| Z1:5-1) [Gr(z)]ig 0z

9i(zr) = —

e Approximation to Bayes rule that yields very similar results to the true Bayes posterior!

o Despite its appearance, it's a nonlinear estimator (in contrast to the KF/EKF/UKF /etc.)
o However, for Gaussian noises... These derivatives just give us the Kalman filter!

M. Brunot recently used this to produce a recursion for Gauss-uniform noises, but the result is unwieldy for our purposes (especially for onboard applications).
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A New Filter for Uniform Measurement Noises

e This paper takes all the ugly derivatives to compute gi(zx) and Gy (z;) for uniform noises

e The result winds up being surprisingly tidy and is of the form

gr(z) = S, 1€y,
Gk(zk) = Sk‘TE.kSk‘l

e Above, S}, is the square-root factor of H, ; P_ ,

& 2 oy sinh{b] 81}
By £ diag{vyr © ¢ + €}

T
Hz?k and

e This only requires a few more operations than the trusty Kalman filter but provides
approximately Bayes-optimal estimation performance

e Simply plug gi(z;) and Gj(z) into the previous updates for mjk/P;z ,, and you're done

J. S. McCabe Filtering Uniform Measurement Noise



Background and Motivation This Paper's Findings Numerical Studies: Four Cases Conclusions
00000 oe 00000

Implementation Considerations

1. What was odd to me was that hyperbolic trigonometry pops out of the derivatives
o This can actually be tricky and/or expensive for spaceflight-grade CPUs...
o However, lookup tables are handily implemented with great accuracy
o A total non-issue for modern computing architectures

2. Computing &; requires evaluating a function containing error functions

bik — Pi bik + B
¢ivkéerf{l’kT2ﬁ’k}+erf{vafl’k}

o Anyone who has messed with error functions knows that they can be troublesome numerically
o However, this is an age-old problem with a myriad of attractive solutions, even for lean CPUs

3. Covariance matrices are inherently plagued by floating point arithmetic
o Loss of symmetric positive semidefiniteness (PSD) makes any covariance-based filter collapse
o Square-root and UDU factorized representation are derived in the paper
o These all but solve any symmetry or PSD concerns for the covariance matrix
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Numerical Studies

e 10,000 trial Monte Carlos Case 1 Case 2

e These runs compare perf. of .

1. Kalman filter with different
assumptions

2. optimal Gaussian mixture filter o

3. this paper’s uniform filter

e Case 1: True noise is uniform, KF
with true uniform stats.

e Case 2: True noise is uniform, KF
with 30 matched to uniform
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e Case 3: Notched Gaussian noise
=

00

e Case 4: Heavy-tailed noise

o0

e Note that the KF has all the standard ' » ' »
“bells and whistles” : o S S
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Case 1: Uniform Noise, ldeal Kalman Filter
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Case 2: Uniform Noise, Matched Kalman Filter
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Case 3: Notched Measurement Noise

Kalman Filter

Conclusions
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Case 4: Heavy-Tailed Noise
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Conclusions

e This paper presents a new sequential estimator for uniform measurement noise
o Produces approximately Bayes-optimal estimation performance
o Very efficient, slightly more computationally burdensome than the Kalman filter
o Numerical stability adjustments developed, including factorized formulations

Numerical studies are compelling and illustrate its advantages

o Demonstrates ideal performance when estimating with uniform measurement noises
o Also demonstrates improvements upon KF to accomodate robust estimation strategies

All proofs provided explicitly in the paper (including the key likelihood function)

These results build upon Masreliez's key discovery and Brunot's recent findings

A similar strategy could be used to develop a filter for uniform process noise

Seems to be room to discover ideal strategies for accommodating those error functions
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