

Uncertainty Quantification for Interpretable Constitutive Models using Genetic Programming based Symbolic Regression

Presenting Author: Donovan Birky*†

Co-Authors: Karl Garbrecht*†, John Emery†, Coleman Alleman†, Brian Lester†, Geoffrey Bomarito‡
Michael Buche†, Jacob Hochhalter*

*University of Utah, †Sandia National Laboratories, ‡NASA

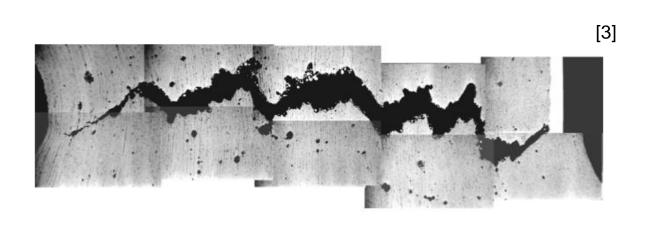
July 26th, 2023 USNCCM

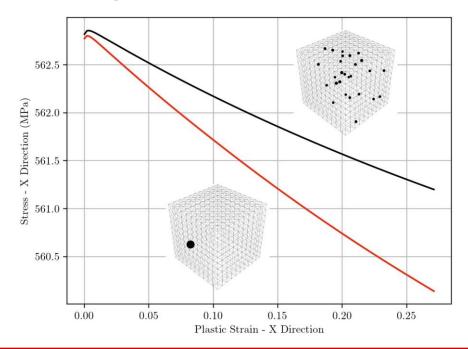
Outline

- Background
- Genetic Programming based Symbolic Regression (GPSR)
- 3. GPSR for Implicit Equations
- 4. Uncertainty Quantification (UQ) using Bayesian Statistics
- 5. GPSR for Implicit Equations with UQ
- 6. Verification Tests
- 7. Application to Constitutive Modeling

Background

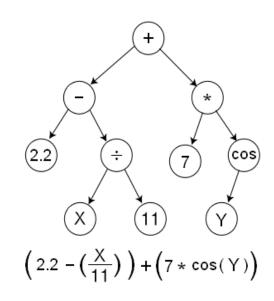
- Traditional material models often require idealizations of complex microstructures to develop closed-form solutions, e.g., Gurson [1], Cocks-Ashby [2]
- Relaxation of these assumptions can introduce stochastic variables
 - Random inclusions or voids
- Models can represent these stochastic responses through UQ





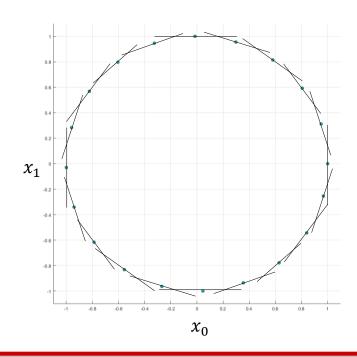
GPSR

- Symbolic regression searches space of known equations via combinations of variables and weights
- Genetic programming evolves equations based on fitness with data



GPSR for Implicit Equations

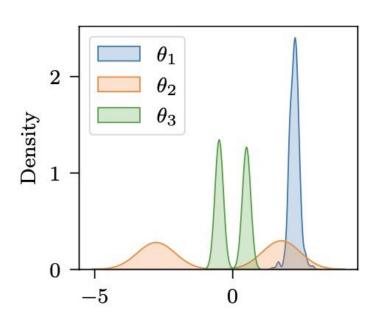
- Implicit models of the form f(X) = C prevent the use of traditional error metrics due to arbitrary solutions, e.g., $x_1 x_1 + C = C$
- Instead, fitness is defined as the difference in partial derivatives between the model and data

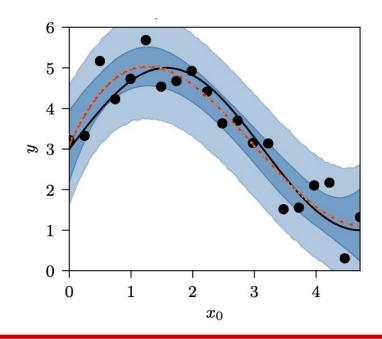


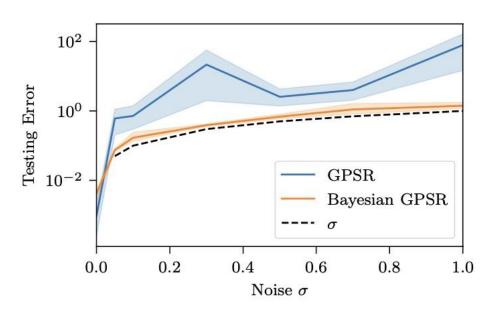
$$\Phi(f, X) = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\sum_{j=1}^{P} \frac{\partial f}{\partial x_j} \frac{\Delta x_j}{\Delta t}}{\sum_{k=1}^{P} \left| \frac{\partial f}{\partial x_k} \frac{\Delta x_k}{\Delta t} \right|} \right|^{[4]}$$

UQ for Explicit GPSR

- Bayes' theorem gives the posterior probability of parameters, θ , given observations, D, and model, f
- Compute marginal likelihood using sequential Monte Carlo (SMC)
- Has been shown to decrease model complexity and overfitting [5]







UQ for Implicit GPSR

Multi-objective approach using implicit fitness and computed marginal likelihood

Algorithm 1 Multi-objective Implicit SMC-GPSR Algorithm

- 1. Propose a model, f(X).
- 2. Calculate model fitness, $\Phi(f(X))$, based on implicit fitness.
- 3. Calculate marginal likelihood, $L = \pi(f|X)$ using SMC with y = C, where C is the constant for the proposed implicit model, f(X) = C.
- 4. Normalize the marginal likelihood, $\bar{L} \in \{0, 1\}$.
- 5. Calculate final model fitness, $F(f(X)) = \Phi + \bar{L}$.

Test Results

Circle with added noise, $\mathcal{N}(0, 0.1) - f = (x_0 - 2.3)^2 + (x_1 + 3.4)^2 = 1$

Implicit Algorithm

$$f = 268.94x_0 + \frac{x_0}{x_0 + x_1 + 2.35} + \frac{x_0}{x_0 + x_1} - 268.94x_1 = 0$$
 $f = (x_0 - 2.245)^2 + (x_1 + 3.377)^2 = 1$

-2.5-3.0 $\stackrel{7}{8}$ -3.5-4.0-4.5

2.0

 x_0

2.5

3.0

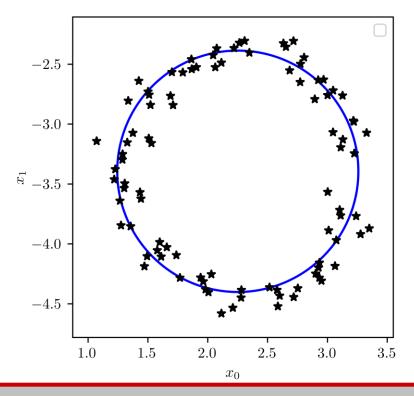
3.5

1.5

1.0

Implicit + SMC Algorithm

$$f = (x_0 - 2.245)^2 + (x_1 + 3.377)^2 = 1$$

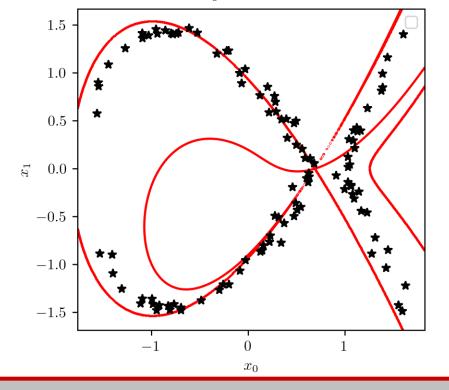


Test Results

• Elliptic curve with added noise, $\mathcal{N}(0, 0.05)$ $f = x_0^3 - 2x_0 - x_1^2 + 1 = 0$

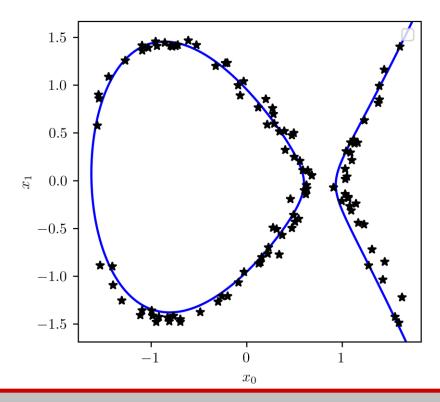
Implicit Algorithm

$$f = \frac{-x_0 + \frac{0.6x_1^2}{(x_0 - 0.7)^2} + 0.7}{\frac{x_0}{-x_0 + \frac{0.6x_1^2}{(x_0 - 0.7)^2} + 0.63} - 1.89} = 0$$



Implicit + SMC Algorithm

$$f = 0.92x_0^3 - 1.9x_0 - x_1^2 + 1 = 0$$

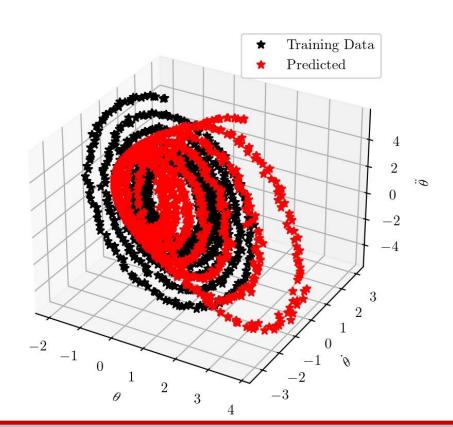


Test Results

Harmonic oscillator with added noise, $\mathcal{N}(0,0.05) - f = \ddot{\theta} - 0.1\dot{\theta} + 3\theta = 0$

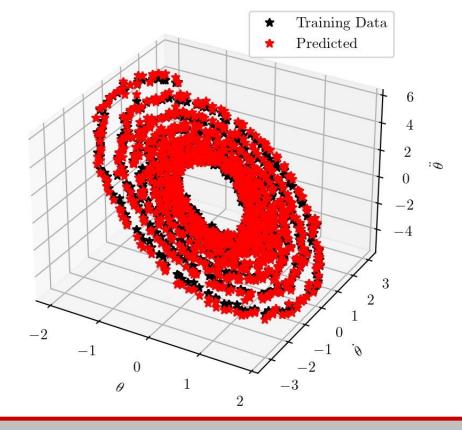
Implicit Algorithm

$$f = 678.47\theta + 226.16\dot{\theta}^2 + 77.86\ddot{\theta}^2 - 227.16\ddot{\theta} - 1026.27 = 0$$
 $f = \ddot{\theta} - 0.11\dot{\theta} + 2.9\theta = 0$



Implicit + SMC Algorithm

$$f = \ddot{\theta} - 0.11\dot{\theta} + 2.9\theta = 0$$



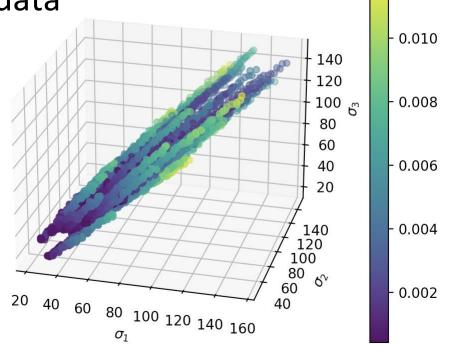
Application to Constitutive Modeling

- Testing on von Mises surface first demonstrated by Bomarito et al. [4]
 - Data generated from a FE modeled RVE
 - von Mises material with hardening
- Adding Gaussian noise, $\mathcal{N}(0, 0.1)$, scaled to data

Target Equations

$$f = (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2 - 39600\epsilon_{eq} - 1960200\epsilon_{eq}^2 = 0$$

$$\dot{\epsilon}_{ep} = \sqrt{\frac{2}{9} \left[\left(\dot{\epsilon}_{p1} - \dot{\epsilon}_{p2} \right)^2 + \left(\dot{\epsilon}_{p2} - \dot{\epsilon}_{p3} \right)^2 + \left(\dot{\epsilon}_{p1} - \dot{\epsilon}_{p3} \right)^2 \right]}$$



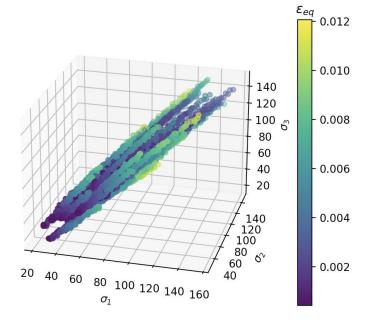
Preliminary Results

- Increased dataset size and larger models lead to much slower training times than the test cases
- Testing with parallel evaluations, fitness predictors, pytorch c++ implementations

Target Equations

$$f = (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2 - 39600\epsilon_{eq} - 1960200\epsilon_{eq}^2 = 0$$

$$\dot{\epsilon}_{ep} = \sqrt{\frac{2}{9} \left[\left(\dot{\epsilon}_{p1} - \dot{\epsilon}_{p2} \right)^2 + \left(\dot{\epsilon}_{p2} - \dot{\epsilon}_{p3} \right)^2 + \left(\dot{\epsilon}_{p1} - \dot{\epsilon}_{p3} \right)^2 \right]}$$



Conclusions

- Multi-objective approach enables UQ for implicit models, enabling learning of yield surface models
- SMC approach enables algorithm to fit noisy data better than conventional implicit approach in test cases
- Future work
 - Speeding up the algorithm for larger datasets/models
 - Training on datasets generated from random void representative volume elements (RVEs)