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COPERNICUS-LINCOV (COPCOV) SOFTWARE INTEGRATION IN
SUPPORT OF ROBUST TRAJECTORY OPTIMIZATION

Joshua K. Geiser*, David Woffinden†, and Matt Horstman‡

Robust trajectory optimization is the process of optimizing a trajectory while ac-
counting for system uncertainty due to a variety of potential error sources. This
work highlights the development and features of a novel tool known as CopCov
to support robust trajectory optimization efforts. CopCov acts as an interface be-
tween Copernicus, a generalized trajectory design and optimization tool, and Lin-
Cov, a linear covariance analysis tool. By having a direct interface between these
two software packages, Copernicus can receive covariance information from Lin-
Cov through a direct feedback loop, thus enabling optimization of a trajectory that
is robust to trajectory dispersions and navigation errors. This paper details the ar-
chitecture of CopCov and its flexibility to operate under varying configurations,
including with both tools running locally or alternatively with the tools commu-
nicating via a remote connection. Additionally, the CopCov tool is demonstrated
on a simple Hohmann transfer reference trajectory with varying numbers of Tra-
jectory Correction Maneuvers (TCMs) and varying problem formulations. This
example scenario is used to highlight how the inclusion of the CopCov interface
affects burn placement of both major burns and minor burns (i.e., TCMs) in the
optimized solution. Results are compared against analytical solutions and against
a Genetic Algorithm (GA) optimizer for independent verification and validation.

INTRODUCTION

The trajectory design process seeks to find a flight profile that meets a set of specified mission
objectives while ensuring that any trajectory constraints imposed on the vehicle are not violated.
Most frequently, some form of numerical optimizer is used throughout the trajectory design process
to generate a feasible trajectory that is optimal with respect to a specified performance index, such
as propellant usage or total ∆V. This process informs the timing and placement of major burns (i.e.,
nominally non-zero ∆V) along the flight path as well as other trajectory events, such as Sphere of
Influence (SOI) changes, eclipses, flybys, etc. The resulting trajectory is often used as a reference
or baseline to support other subsystem analyses.

Another important aspect of the mission design process is the analysis of a spacecraft’s Guidance,
Navigation, and Control (GN&C) system. In reality, no GN&C system is capable of perfectly flying
its intended reference trajectory. A variety of error sources are introduced during flight, including
navigation errors, maneuver execution errors, unmodeled dynamics, and more. This reality necessi-
tates the ability to characterize the performance of the GN&C system in the presence of these error
sources through preflight integrated simulations. Traditionally, Monte Carlo1 simulations and/or
linear covariance techniques2, 3 are used to assess GN&C system performance. These analyses can,
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for example, help inform placement of minor correction burns (i.e. nominally zero ∆V) in order
to correct dispersions from the reference trajectory. This inclusion of covariance analyses leads to
the notion of robust trajectory optimization, where a trajectory is optimized while accounting for
system uncertainty.4–13

The completion of the trajectory design process independent of the integrated GN&C analyses is
not uncommon. For example, a generalized trajectory design and optimization tool (e.g., Coperni-
cus14) is used to support trajectory design work, while the integrated GN&C performance analysis
evaluating the proposed trajectory’s feasibility is accomplished with a separate Monte Carlo or lin-
ear covariance (LinCov) analysis tool. While there are advantages to this workflow due to some
natural delineation between these two fields of flight mechanics and GN&C system design, the pro-
cess is not fully decoupled. Depending on the flight phase, they can actually be closely coupled.
As such, this disconnect between analyses creates a few notable problems. First, if the constrained
optimization problem fails to account for the proposed GN&C system and the inherent uncertainty,
the optimal solution is typically situated on the boundaries of the design space defined by the con-
straints, leaving little to no margin for error. This eventual discovery, which is often later in the
design process, forces a redesign manifesting in additional cost and schedule slip. Secondly, this
iterative design process ultimately requires data products being passed back and forth between the
trajectory design tool (e.g., Copernicus) and the GN&C system analysis tool (e.g., LinCov) to con-
verge on a final end-to-end trajectory design. This integration gap between the two tools causes
unnecessary and significant delays. Substantial time and effort is often required to develop the out-
put data products from one tool, send those to a separate team, have that team rerun their analysis
and send updates back, and so on. Lastly, if this capability is to be extended to real-time operational
support for burn targeting and trajectory optimization, then these two tools need to be more tightly
integrated so that they are able to communicate in a fast, automated, and reliable fashion.

This paper highlights the development and testing of the CopCov tool which seeks to address
the above issues by filling the gap in integration between Copernicus and LinCov. First, a brief
background is given into the Copernicus and LinCov tools as well as a discussion on how these
tools have traditionally been used to support robust trajectory optimization work to illustrate the
current challenges in the design process. The next section highlights the initial architecture of the
CopCov tool and how this architecture supported its development and initial verification purposes.
Next, details are provided on an end-to-end CopCov architecture that can allow more flexibility
in communication between Copernicus and LinCov over a remote server. The following sections
provide verification and validation of the tool through reference trajectory testing and comparison of
results using multiple options, including a mission map, an integrated GN&C performance emulator,
the full LinCov tool in-the-loop, and a Genetic Algorithm (GA) optimizer.15 Last, a conclusion is
provided to summarize the work completed on the CopCov tool thus far and highlight future work
to extend its capabilities.

BACKGROUND

To demonstrate the challenges and dependencies between the flight mechanics trajectory design
and the vehicle’s GN&C system design, a brief overview of the Copernicus and LinCov tools is
provided, as well as how they have traditionally been used to support robust trajectory design and
optimization efforts.
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Copernicus

Copernicus16, 17 is a generalized spacecraft trajectory design and optimization tool that serves as
the backbone for many trajectory design efforts within NASA. To construct a trajectory, users spec-
ify different trajectory segments which may delineate various phases throughout the flight, such as
finite burns, impulsive burns, coasts, sphere-of-influence (SOI) changes, gravity assists, and more.
One of the most powerful features of Copernicus is the ability to setup constrained optimization
problems and produce solutions in the form of reference trajectories. Copernicus comes with a
variety of off-the-shelf numerical optimizers installed (e.g., SNOPT18) to support direct targeting
and/or optimization efforts. A user can specify optimization variables (e.g., burn durations, burn
directions, perilune pass altitude, etc.), constraints on the trajectory (e.g., entry interface conditions,
state continuity between segments, etc.), and an objective function (e.g., total ∆V minimization).
With these parameters specified and a reasonable initial guess for the trajectory, a user can “Iterate”
with the selected optimizer to converge on an optimized trajectory solution.

Figure 1. Copernicus GUI with an example mission. Note the (empty) Plugins pane
on the bottom-left.

Copernicus also provides support for calling external plugins as a part of the propagation and
optimization processes.14 These plugins are user-developed scripts to provide extended capabilities
not native to Copernicus or they can act as interfaces to other software packages. Copernicus con-
tains a Python19 Application Programming Interface (API) that allows it to efficiently call Python
plugins by treating the plugin as a Python package that can be called from the already-running
Python instance.20 A user adds plugins from the Copernicus Graphical User Interface (GUI), and
these plugins affect the optimization problem and its resulting trajectory solution.

LinCov

LinCov is a MATLAB21-based linear covariance analysis tool used for integrated GN&C analy-
sis. The tool utilizes both augmented state and onboard state covariance matrices to produce navi-
gation errors and trajectory dispersions. Used extensively over the past several decades, LinCov can
support numerous flight phases, including powered ascent, rendezvous, proximity operations, and
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docking (RPOD), cis-lunar and interplanetary, aerocapture, attitude control, and entry, descent, and
landing (EDL).22–40 Whereas Copernicus is used to generate nominal reference trajectories, LinCov
is able to assess how well a particular GN&C system can follow the desired reference profile given
the complex system uncertainty connected with the trajectory design. This uncertainty quantifica-
tion allows LinCov to support the identification of the optimal placement of translational burns that
minimize not only the nominal ∆V, but rather the total ∆V. This total ∆V includes both the nominal
∆V (typically derived from the trajectory design tool such as Copernicus) and the expected 3σ ∆V
dispersions.

A substantial benefit of using a LinCov tool is speed. Key performance metrics of a closed-loop
GN&C system are reliably obtained in a single simulation run, as opposed to Monte Carlo tech-
niques that traditionally take hundreds or thousands of runs to obtain similar statistical information.
These metrics include true dispersions, navigation dispersions, true navigation error, and onboard
navigation error. In particular, the metrics highlighted in this paper are the 3σ position dispersions
(i.e., how precisely the GN&C system can follow the reference trajectory in position) and the 3σ
∆V dispersions (i.e., how much extra ∆V is expected due to the imperfect execution of maneuvers).

Figure 2. Definitions of some key performance metrics obtained using LinCov

Robust Trajectory Design Overview

Process flow schematics help provide a visual model for the complex interface between Coperni-
cus and LinCov. Figure 3 highlights both the legacy and newly developed workflows for integrating
Copernicus and LinCov to support robust trajectory optimization efforts. Figure 3(a) provides a
schematic overview of the legacy implementation. Copernicus produces a nominal profile with an
optimal reference trajectory, including the placement of major translational burns. Key information
from this trajectory is extracted using a tool known as Auto Burn Plan (ABP) to generate a burn plan
representative of the mission that identifies the timing, magnitude, and direction of each burn and
its corresponding targeting constraints. This burn plan is used by LinCov to generate the integrated
GN&C performance metrics while running in-the-loop with a Genetic Algorithm (GA) to optimize
the selected performance parameters, such as trajectory dispersions, total ∆V, or a combination of
both.

The newly developed workflow, shown in figure 3(b), replaces the GA optimizer with Copernicus
itself, leveraging its extensive optimization routines and heritage. For this architecture to function,
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it is necessary to have an interface that allows data to transfer between Copernicus and LinCov in a
fast, automated, and reliable manner. This key interface is referred to as CopCov, or the Copernicus-
LinCov plugin tool. This tool provides the capability to perform end-to-end trajectory design and
analysis during all phases of the design cycle, ranging from preliminary trajectory design to mission
operations, all while allowing the trajectory design to be robust to the vehicle’s GN&C system
design.

(a) Schematic of the legacy robust trajectory optimization workflow

(b) Schematic of the newly developed robust trajectory optimization workflow

Figure 3. Robust Trajectory Design Architectures

DEVELOPMENT ARCHITECTURE

To develop, test, and verify the CopCov tool, two different software architectures are utilized.
The complexity of LinCov introduces challenges in the development of interfacing software. First,
repeated LinCov calls increase the computation time required to test the interface, slowing down
development. Additionally, the correct processing of inputs and computation of outputs is difficult
to verify. To mitigate these challenges, a simple emulator was developed that mimics the LinCov
outputs for a given set of inputs. The initial development architecture of CopCov was then designed
to allow for flexibility in calling either the emulator or the full LinCov tool, assuming they are
available on a user’s local machine. Due to constraints regarding general access to the LinCov tool,
the end-to-end architecture (discussed further in the following sections) makes accomodations to
incorporate the use of a remote connection to the full LinCov tool.

LinCov Emulator

The LinCov Emulator supports initial development and verification efforts and may also prove to
be a long term solution that incorporates the concept of using pre-generated LinCov data to reduce
run time. The LinCov Emulator contains the same interface as the actual LinCov tool but returns
a fast and specified functional output. Due to its simplicity, the Emulator drastically reduces the
runtime of individual calls to the CopCov plugin by Copernicus. The LinCov Emulator essentially
treats the LinCov tool as a black box where a predetermined set of inputs x⃗ and outputs y⃗ are known.
It then calculates the set of outputs y⃗ = f(x⃗) for a set of inputs x⃗ from Copernicus. Consequently,
the only difference between LinCov and the LinCov Emulator is the internal mapping function f(x⃗)
which can be characterized to varying levels of fidelity.
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Figure 4. Illustration of the quadratic functions used by the LinCov Emulator for a
variable number of burns

For early development and testing, quadratic functions were used as the primary mapping func-
tion of inputs to outputs in the LinCov Emulator, as illustrated in Figure 4. Due to their smooth-
ness and convexity, they optimize well with the gradient-based optimization algorithms internal
to Copernicus. Additionally, they provide an easy and intuitive way to scale to multivariate input
spaces and place minima at specified locations. Figure 16 in the Appendix provides an example
of how quadratic functions were initially used to strategically place the optimized solution given a
multi-dimensional input space. Due to the flexibility of the Emulator, these quadratic functions are
easily replaced with multivariate polynomial fits of more realistic dispersion functions, as discussed
and illustrated later in the results.

Data Flow Pipeline

All the overhead cost of opening Python and MATLAB instances is completed upon Copernicus
startup and plugin initialization, speeding up the actual optimization process. Figure 5 illustrates
how CopCov handles the flow of data for each iteration of Copernicus’ optimization routine.

Figure 5. Initial software architecture for local data flow between Copernicus and the
LinCov Emulator / LinCov

First, Copernicus passes raw segment data to the Python plugin (e.g., burn state vectors, burn
TIGs, target state). The plugin parses this data, extracts pertinent metrics (e.g., ∆V vectors), and
repackages it into a standardized JSON format before passing it off to the MATLAB-based Lin-
Cov Handler. The LinCov Handler repackages the input data into a more usable MATLAB-specific
format and calls either the LinCov Emulator or LinCov itself, based on user-specified flags. Since
both the Emulator and LinCov share the same set of expected inputs/outputs, they are easily inter-
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changed. Once output dispersion values are calculated, these quantities are passed back through
the pipeline from MATLAB to Python to Copernicus. Finally, Copernicus ingests this data into the
optimization algorithm and continues iterating until convergence.

END-TO-END ARCHITECTURE

For increased flexibility and ease-of-access of the proprietary LinCov tool, the end goal was
to develop a software architecture where CopCov users could make remote calls to LinCov with-
out having read/write access to the underlying source code. This created some added challenges,
as CopCov would need the ability to handle transfer of data packets across a remote connection.
However, this would ultimately allow Copernicus to communicate directly with LinCov while both
packages operate on different machines.

Connecting to a Remote Server

The Flight Sciences Laboratory (FSL) is a high performance remote computing cluster within
the Aerosciences and Flight Mechanics Division at NASA JSC. As a computer system that can be
connected to remotely via Secure Shell (SSH41) connection, the FSL made for a great environment
for testing the feasiblity of Copernicus/LinCov communication via remote calls.

Figure 6. Connecting to LinCov (running remotely) while Copernicus (running lo-
cally) performs the optimization routine. An SSH tunnel is opened to authenticate
user credentials and allow data exchange between the two softwares throughout the
optimization process.

An SSH tunnel was chosen as the underlying method in which CopCov transports data across
an encrypted SSH connection. Since the FSL is a secure computing environment protected by a
firewall, SSH tunnels provide a means for users to connect to the remote environment and securely
transfer data between local/remote machines. However, since Port 22 is reserved for SSH protocol,
Copernicus and LinCov cannot send data packets directly to these ports. Instead, they transmit
data to an unreserved high-level port (e.g. Port 65,000 in Figure 6) and use local port forwarding to
transfer the data to Port 22 and subsequently across the SSH tunnel. Once LinCov receives a data
packet from Copernicus and generates its associated output, that packet is then transmitted back
through the SSH tunnel to Copernicus running on the user’s local machine.

End-to-End Data Flow Pipeline

The end-to-end architecture consists of CopCov using a client/server model to establish a con-
nection across machines. First, a user can manually startup the server on the remote machine (Block
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4 in Figure 7), which will initiate MATLAB startup and LinCov initialization routines (Blocks 5 &
6), in addition to setting up the server model for interfacing with a local client. In the long term,
this could also be a server that continuously runs in the background, based on available computing
resources on the remote machine. This would simplify the startup process for an end user, as they
would not need to worry about manually initiating any startup routines on the remote side.

Figure 7. End-to-End architecture of Copernicus communication with LinCov
through a remote connection. Data is transferred between Copernicus and LinCov
on each iteration of the optimization process.

Once the remote server-side connection is up and running, a user can startup Copernicus (Block
1) and add the CopCov plugin to the desired ideck file (Block 2). CopCov will then automatically
startup the client model (Block 3), which will ask the user to authenticate credentials, establish the
SSH tunnel across machines (as in Figure 6), and finally connect to the server.

Blocks 1–4 have been demonstrated using the FSL, thus verifying the ability for Copernicus
to transmit/receive data across a remote connection during individual iterations of the optimization
process. The development architecture (Figure 5) was used to complete the analyses in the following
sections while the full end-to-end architecture (Figure 7) continues to be developed and tested.

ROBUST TRAJECTORY OPTIMIZATION USING COPCOV – SETUP/OVERVIEW

This section highlights the nominal reference trajectory, various optimization problem formula-
tions, and GN&C system algorithms and assumptions that were used to test and verify the robust
trajectory optimization process using the CopCov tool against existing solution methods (i.e. Ge-
netic Algorithm running in-the-loop with LinCov).

Nominal Reference Trajectory

Due to its simplicity and known optimal solution, the Hohmann transfer scenario was selected as
the reference trajectory of choice to test and verify the CopCov tool.42 The Hohmann transfer is an
optimal two-impulse transfer between two circular coplanar orbits. The optimal solution consists
of an impulsive burn (M1 in Figure 8) to place the spacecraft on the transfer trajectory, followed by
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a coast period with a 180-degree transfer angle, and finally a second impulsive maneuver (M2) to
re-circularize the orbit.

Figure 8. Reference Hohmann transfer trajectory with variable number of TCMs
used for testing and verification of the CopCov tool

The Hohmann transfer is ∆V optimal from one circular orbit to another assuming an ideal nomi-
nal trajectory. However, depending on the selected targeting algorithms, navigation system, vehicle
disturbance accelerations, and initial orbit insertion errors, the optimal transfer trajectory may look
different when the integrated GN&C performance is considered. To illustrate, a spacecraft is chosen
to transfer from a 10, 000 km circular orbit to a 20, 000 km circular orbit at a specific point (M2) and
specific final time. If burn M1 occurs with a 180-deg transfer angle, as is the case with a Hohmann
transfer, the corresponding transfer time would be ∼2.54 hours. However, what is the optimal trans-
fer time (or location) to perform the M1 burn in the presence of trajectory dispersions and navigation
errors? Initially, no additional trajectory correction maneuvers are assumed. However, as Figures 8
and 16 illustrate, a variable number of TCMs can be considered due to the generality of the Cop-
Cov interface. From a nominal trajectory perspective, the number and placement of the TCMs is
inconsequential since they are nominally zero. However, what is the optimal number and placement
of these correction burns if they were added? The emphasis of the remaining sections of this paper
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is to highlight the utility of CopCov in answering these rather simple yet relevant questions using
robust trajectory design techniques.

Problem Formulations

To answer the conditions of optimality, the definition of optimal must first be quantified. Four
different formulations are proposed and evaluated, each having different objective functions and
constraints as summarized in Table 1. The initial problem formulation, Problem #0, attempts to only
minimize the nominal ∆V, neglecting any resulting trajectory or ∆V dispersions. Under these con-
ditions, the expected optimal solution should converge to the 180-degree Hohmann transfer profile.
Problem #1 minimizes the total ∆V (i.e. nominal ∆V plus 3σ ∆V dispersions) while constraining
the final position dispersions (at point M2 in Figure 8) to be below some user-specified threshold
(i.e. 3 km in Table 1), 3σ RSS. Problem #2 is the inverse, where the objective function minimizes
the final position dispersions at M2 while constraining the total ∆V to be below a specified thresh-
old of 3.0 km/s. Lastly, Problem #3 minimizes a weighted sum of final position dispersions and
total ∆V where each parameter is weighted equally.

Table 1. Optimization Problem Formulations

Formulation Objective Function (minimization) Constraint

Problem #0 Nominal ∆V —
Problem #1 Total ∆V (Nominal + 3σ Disp) Final RSS 3σ Position Disp < 3.0 km
Problem #2 Final 3σ Position Disp Total ∆V (Nom + 3σ Disp) < 3.0 km/s
Problem #3 Weighted Sum (w∆v = 0.5, wr = 0.5)

of Final 3σ Position Disp & Total ∆V
—

Once the integrated GN&C system performance is considered as part of the optimization problem,
the optimal solution will likely no longer be the traditional 180-deg transfer. With the problem
formulations established, the answers to the previous optimality questions can now be determined,
once details regarding the selected GN&C system are established.

GN&C Algorithms and Performance Specifications

Table 2. GN&C Performance Specifications

Uncertainty Parameter 3σ Units

Initial Position Dispersions (per axis) 100 km
Initial Velocity Dispersions (per axis) 11 m/s
Initial Position Nav Error (per axis) 50 m
Initial Velocity Nav Error (per axis) 5 cm/s
Maneuver Execution Error (per axis) 75 mm/s
Disturbance Accelerations (per axis) 1 mm/s/

√
s

GPS Position Measurements (per axis, once every 30 sec) 200 m

For the notional Hohmann transfer scenario, it is assumed the vehicle’s GN&C system utilizes
a Lambert targeting algorithm43 to compute the required ∆V to transfer to the desired final M2
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position at the fixed final time. Although other targeting techniques exist for this type of circular
orbit transfer, the selection of this particular algorithm (which has known limitations for multiples
of 180-deg transfer angles44) emphasizes how the actual GN&C system can impact the trajectory
design. This is particularly pronounced when uncertainty is included.

A summary of the GN&C performance parameters is provided in Table 2. The navigation system
utilizes the Global Positioning System (GPS) with absolute position measurements processed every
30 seconds at an accuracy of 200 m (3σ, per axis). The disturbance acceleration acting on the
spacecraft is 1 mm/s/

√
s (3σ, per axis). The maneuver execution error is 75 mm/s (3σ, per axis).

The initial navigation error in position is 50 m (3σ, per axis) with a velocity navigation error of 5
cm/s (3σ, per axis). The initial trajectory position dispersions are 100 km (3σ, per axis) and initial
velocity dispersions are 11 m/s (3σ, per axis).

ROBUST TRAJECTORY OPTIMIZATION USING COPCOV

To motivate, demonstrate, and validate the concept of robust trajectory optimization using the
CopCov tool, this section will solve the various optimization problem formulations (Problems #0-
#3) for the Hohmann transfer scenario using four different techniques: 1) Mission Maps, 2) CopCov
with a Polynomial-Fit LinCov Emulator, 3) CopCov with LinCov In-the-Loop, and 4) Genetic Al-
gorithm with LinCov In-the-Loop. Detailed results are presented for the case with only major burns
(i.e. no TCMs).

LinCov Pre-Generated Mission Map

A mission map provides a graphical depiction of the sensitivity of the optimization variable to
the various optimization performance metrics such that an operator or engineer can draw immedi-
ate intuition to the problem and determine the optimal solution graphically. For simple problems
like the one posed, this is feasible and provides valuable insight, intuition, and confirmation of nu-
merical solutions derived subsequently. For the Hohmann transfer scenario, Figure 9 provides a
pre-generated mission map where a scan of possible transfer times are evaluated as inputs along
the x-axis. The corresponding performance metrics, provided on the y-axes, include the final 3σ
position dispersions at M2 (blue line), the nominal ∆V (magenta line), the total ∆V (orange line),
and the weighted sum of the final 3σ position dispersions and total ∆V (green line).

One quick trend that is observed from the mission map is that shorter transfer times reduce the
final trajectory dispersions whereas longer transfer times typically reduce total ∆V. Another key
observation is that the transfer time for the 180-deg transfer, indicated with the dashed vertical
black line at 152.4 minutes (2.54 hours), corresponds with the minimum nominal ∆V as expected.
However, due to limitations with the selected Lambert targeting algorithm, it also represents the
transfer time that has the largest total ∆V when trajectory dispersions and navigation errors are
considered.

Given these performance sensitivities from the mission map, optimal solutions for the various
problem formulations can be identified using a manual approach with the graphical data, as illus-
trated in Figure 10. For example, the solution to Problem #0 can quickly be seen on the graph (when
zoomed in closely) to be 152.359 minutes, which is the lowest point on the dashed magenta-line.
Similarly, for Problem #1 the solution which minimizes the total ∆V subject to a constraint on final
position dispersions is deduced from the plot to be 142.600 minutes. Notice, the transfer time that
minimizes the total ∆V is actually 144.9 minutes, but the corresponding final 3σ trajectory disper-
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Figure 9. Mission Map for a Hohmann transfer problem with no Trajectory Correction Maneuvers

sions are greater than the 3 km constraint. For the Problem #2 objective function, minimizing the
final 3σ position dispersions using less than 3 km/s occurs with a transfer time of 118.243 min-
utes based on the mission map plots. Lastly, for Problem #3, the transfer time that minimizes the
weighted sum of the final position dispersions and the total ∆V is 137.358 minutes as derived from
a simple visual inspection of the plotted data.

Figure 10. Mission Map Optimization Results

Geometrically, Figure 11 depicts the optimized trajectory and corresponding transfer burn place-
ments for each different problem formulation. Figure 11(a) shows the burn location and resulting
trajectory profile for Problem #0 that minimizes the nominal ∆V, Figure 11(b) summarizes the
optimized profile for Problem #1 that minimizes the total ∆V given a final position dispersion con-
straint of 3 km, Figure 11(c) shows the Problem #2 optimized trajectory that reduces final position
dispersions given a maximum total ∆V of 3 km/s, and Figure 11(d) depicts the optimized profile
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for Problem #3 that reduces the weighted sum of the final position dispersions and the total ∆V.
Although each solution is different, each is optimal for the given optimization criteria. Tables 3-5
provide comparisons of these visually-derived results against the numerical optimization algorithms
described in the following subsections.

(a) Problem #0: Minimize Nominal ∆V (b) Problem #1: Minimize Total ∆V

(c) Problem #2: Minimize Final Position Disp (d) Problem #3: Minimize Total ∆V & Final Pos Disp

Figure 11. Optimized solutions for each problem formulation using Mission Maps

LinCov Emulator with CopCov

Given a priori information generated from LinCov (such as the previously derived mission maps),
the LinCov Emulator can replicate comparable performance metric values using a polynomial fit of
the resulting output dispersion data. This is demonstrated in Figure 12 where polynomials were
fit to each curve in the mission map. These continuous and smooth polynomial functions can then
be used by a gradient-based optimizer such as SNOPT to converge on an optimal solution. For
this specific test case, a 5th degree polynomial was used to model the position dispersions and a
20th degree polynomial was found to sufficiently represent the total ∆V trends. Additionally, this
process provides the capability to scale pre-generated mission maps to multivariate input spaces due
to the flexibility of polynomial curves to be fit to input spaces of arbitrary dimension.
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Figure 12. Polynomial fits of pre-generated LinCov mission map data across varying transfer times

With these polynomial curves embedded into the LinCov Emulator, Copernicus could quickly
converge trajectories to realistic solutions at a fraction of the runtime as having the full LinCov
tool in-the-loop. Figure 13 summarizes the converged solutions obtained using the polynomial-
fitted LinCov Emulator. The results for the different objective functions in Problems #0-3 are very
similar to those derived from the mission map and differ on the order of less then several seconds.
Comparison tables of these results with the remaining cases are included in Tables 3-5.

Figure 13. Optimized burn placement times using the LinCov Emulator with CopCov

As can be readily seen, with dispersion information being fed back to Copernicus using the
objective functions in Problems #1-3, the optimized solution no longer converges to the standard
180-degree Hohmann transfer solution. Instead, in each case, it is suggested that the time of the first
burn should be delayed such that the ∆V dispersions and final position dispersions are sufficiently
reduced. This trend is consistent with the LinCov data in Figure 12 and the mission map results
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discussed previously. As total ∆V dispersion values peak around a transfer time of ∼152 minutes,
an adjusted transfer time is necessary to reduce the total potential propellant usage.

LinCov with CopCov

Figure 14. Optimized burn placement times using LinCov with CopCov

Given the insight and intuition from the mission maps and the LinCov Emulator, this section
summarizes the results when CopCov connects Copernicus directly with the LinCov simulation
tool to complete the optimization loop as outlined in Figure 3(b). This represents the first time this
complete process has been demonstrated. The corresponding results are summarized in Figure 14,
which are consistent with the solutions derived previously. The actual optimization time of Coperni-
cus with LinCov in-the-loop was slower (increased from a few seconds with the Emulator to several
minutes with the actual LinCov tool). Comparison tables of these results with the other cases are
included in Tables 3-5.

LinCov with Genetic Algorithm

As mentioned previously and displayed in Figure 3(a), many of the robust trajectory optimization
applications utilized a Genetic Algorithm (GA) in conjunction with the LinCov tool. This initial
and near-term work flow has provided valuable insights into an assortment of space flight problems
ranging from rendezvous and docking, lunar landing, aerocapture, and cis-lunar flight phases. To
demonstrate that this earlier optimization approach also provides consistent results as Copernicus
with LinCov in-the-loop, the GA solutions are provided in this section. This serves to confirm
both processes work, each having their strengths and limitations. Using a population size of 250
candidates and 5 iterations, the solutions produced using a GA are provided in Figure 15.

It is important to note that the GA optimizer converged on the same solution as Copernicus to
within several seconds of transfer time. The computational burden required for this strategy was
noticeable. Several minutes were required to converge to a solution using multiple computational
cores in parallel. Comparison data for these cases is included below in Tables 3-5.
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Figure 15. Optimized burn placement times using LinCov with GA optimizer

Comparison of Results

As can be seen from Tables 3-5, each of the different optimization methodologies converges to
similar solutions, often to within only a few seconds difference in transfer time. This provides strong
evidence that each of the newly proposed optimization techniques (i.e. Mission Maps, CopCov +
Emulator, CopCov + LinCov) provides consistent results that align well with the heritage method
of using a Genetic Algorithm + LinCov in-the-loop.

Table 3. Comparison of Results – Problem #1

Case Transfer Time (H:M:S) Total ∆V (m/s) Position Disp (m)

LinCov Mission Map 2 hr 22 min 36.0 sec 1379.0 3000.0
LinCov Emulator + CopCov 2 hr 22 min 44.5 sec 1372.2 3000.0
LinCov + CopCov 2 hr 22 min 41.5 sec 1372.7 3000.0
LinCov + GA 2 hr 22 min 38.5 sec 1374.0 2990.4

Table 4. Comparison of Results – Problem #2

Case Transfer Time (H:M:S) Total ∆V (m/s) Position Disp (m)

LinCov Mission Map 1 hr 58 min 14.6 sec 3000.0 1956.2
LinCov Emulator + CopCov 1 hr 58 min 14.6 sec 3000.0 1956.2
LinCov + CopCov 1 hr 58 min 15.2 sec 3000.0 1960.8
LinCov + GA 1 hr 58 min 22.5 sec 2987.6 1961.9

CONCLUSIONS AND FUTURE WORK

Robust trajectory optimization techniques were demonstrated on a Hohmann-like transfer trajec-
tory using the novel CopCov tool. By providing a direct interface between Copernicus and LinCov,
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Table 5. Comparison of Results – Problem #3

Case Transfer Time (H:M:S) Total ∆V (m/s) Position Disp (m)

LinCov Mission Map 2 hr 17 min 21.5 sec 1552.3 2743.2
LinCov Emulator + CopCov 2 hr 17 min 39.9 sec 1552.3 2758.2
LinCov + CopCov 2 hr 17 min 41.5 sec 1554.1 2748.8
LinCov + GA 2 hr 17 min 40.5 sec 1554.8 2748.6

dispersion information from LinCov could be fed back into the optimization routine and affect
the optimized solution. A variety of different optimization problem formulations and optimization
methodologies were proposed and tested. Results aligned closely for each case, indicating that each
of the new methodologies (Mission Maps, CopCov + Emulator, CopCov + LinCov) has validity
and potential for providing fast solutions to the robust trajectory optimization problem. Mission
maps provide an intuitive graphical approach for easily visualizing the optimal solution assuming
that LinCov data can be produced offline. Use of the Emulator with polynomial fits of LinCov data
extended this capability to arbitrarily-sized input dimensions for multi-burn and multi-TCM cases.
Lastly, CopCov operating in-the-loop with LinCov provided the full capability for Copernicus to
optimize trajectories that are robust to trajectory dispersions and navigation errors from imperfect
GN&C system performance.

Future work revolves around further maturing the CopCov software package to handle a wide
variety of generalized trajectories. While impulsive burns were used in the Hohmann reference
trajectories here, more work needs to be done in order for CopCov to properly handle finite burn
maneuvers. Additionally, the end-to-end architecture is still yet to be fully tested and verified,
which would prove that the two software packages could communicate across machines via remote
connection. Lastly, if the maneuver partials (i.e. sensitivity of dispersions to maneuver timing)
could be pre-calculated between Copernicus and CopCov, then LinCov could use this information
directly rather than calling its own targeting algorithm to produce the partials. These features would
provide additional capability that would allow these robust trajectory optimization techniques to be
applied to real mission profiles and spacecraft GN&C systems.
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APPENDIX

(a) Initial Guess (b) Converged Solution

Figure 16. Example 5-TCM Hohmann transfer case with LinCov Emulator running in-the-loop

To demonstrate the capability of Copernicus running end-to-end with a MATLAB-based tool in-
the-loop, CopCov was first demonstrated using the quadratics-based LinCov Emulator on a 5-TCM
case with Problem Formulation #3. Figure 16 illustrates both the initial guess trajectory and the
optimized solution.

The initial guess was set to a 180-degree Hohmann transfer, with TCM initial guesses occuring
at arbitrary times. Note that this is the solution that Copernicus would have converged to in the
absence of the CopCov plugin, since the Hohmann transfer is optimal assuming no dispersions.
Additionally, the TCMs would not have affected the objective function since they nominally have
∆V = 0, thus they also would have converged to arbitrary locations.

However, in the optimization process, dispersion information from the LinCov Emulator is fed
back to Copernicus which informs placement of both TCMs and major burns. The optimized solu-
tion suggests that with dispersions accounted for, a delayed TIG of the first major burn is optimal
in terms of minimizing total ∆V and final position dispersions. Additionally, each of the TCMs is
optimized to a specific location, each occuring exactly 1000 seconds apart as specified (arbitrarily)
by the ai and bi coefficients of the quadratic functions within the LinCov Emulator. It is important
to note that while these results are arbitrarily defined, they demonstrate the flexibility and capabil-
ity of Copernicus to adjust its solution for a variety of generalized trajectories based on numerical
feedback received through the CopCov interface.
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