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Abstract 
 
Space 2.0 is a promising frontier for scientific exploration and the advancement of commerce, security, and technology 
[1]. To effectively harness this potential, it is imperative to establish a multifunctional, resilient, and sustainable 
infrastructure that enables the maintenance and production of space-based systems. This capability is a driver for 
mission success on-orbit and for interplanetary travel to other celestial bodies. Central to this infrastructure is the 
establishment of orbital manufacturing facilities, referred to as 'factories-in-space' (FiS) [2], which serve as critical 
nodes in the supply chain for the servicing, assembly, and production of systems essential for space-based operations. 
This paper presents a framework for understanding the key principles and design considerations underpinning FiS. 
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1. Space Infrastructure 2.0 
 
Sustainable human existence in space requires robust 
infrastructure to support survival and growth [3]. 
Essential infrastructure includes logistics, supply 
chain management, and the delivery of services for the 
assembly and manufacturing of crucial systems for 
safe habitation and commercial advancement. 
Traditionally, these tasks were performed in factories, 
warehouses, and distribution centers [4]. However, the 
space frontier demands a new paradigm, "space 
infrastructure 2.0," emphasizing concepts like 
factories, hubs, or nodes in space, which is the focus 
of this paper. 
 
Notably, the key factors driving space infrastructure 
growth include: (1) resource consumption limits due 
to population growth [5]; (2) human exploration 
advancements [1]; (3) declining launch costs [6]; (4) 
evolving in-space policies [7]; (5) geopolitics [8]; (6) 
advanced spacecraft accessibility [9]; and (7) demand 
for space technology platforms [10]. Unique 
opportunities stem from microgravity, vacuum 
environments, and valuable ores [11]. 
 
2. Factories In-Space 
 
The "factory" concept, originating in the 17th and 18th 
centuries, enabled mass production and assembly 
using power-driven machinery [12]. Factories support 
service, assembly, and manufacturing processes 
tailored to end-product and customer needs [13]. In the 
Industry 4.0 era, factories have evolved into diverse 
physical and digital configurations, depending on 
products, processes, materials, and supply chains [14]. 

Traditionally, servicing, assembly, and manufacturing 
(SAM) platforms provide large-scale, mass-
customized products and services, focusing on the 3Rs 
(reliability, reproducibility, repeatability) and 3Ps 
(producibility, productivity, profitability) [15][16]. 
Similarly, in-space SAM (ISAM) employs physical 
and digital processes above the Kármán Line for 
service delivery, assembly, and production, leveraging 
in situ space conditions for sustainable activity 
[17][18][19][20]. 
 
A “Factory-in-Space” (FiS) is defined as a physical or 
digital facility above the Kármán Line, executing 
autonomous or semi-connected ISAM processes for 
servicing, assembly, and manufacturing. FiS can be 
stationary or mobile, delivering ISAM products and 
services. Earlier NASA operations, like Skylab, are 
precursors, providing fundamental insights into space 
materials science and engineering [21]. The 
construction of space infrastructure relies on a 
comprehensive foundation of scientific, engineering, 
and economic principles established on Earth, with 
“space infrastructure 1.0,” also like the International 
Space Station  (ISS), serving as a knowledge base; 
however, with the ISS's decommissioning, “space 
infrastructure 2.0” development, like Axiom Station 
and Orbital Reef, must accelerate [22][23]. 
 
3. A Framework for ISAM Capabilities 
 
In-space manufacturing can be sub-categorized into 
four domains (Figure 1): (1) enhancing terrestrial 
production through space-based systems, e.g. satellite-
based communication and IOT networks for global 
logistics [24]; (2) utilizing the natural properties of 
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space for making products with Earth-bound 
applications, e.g., the highest-quality fiber optics and 
pharmaceuticals [25][26]; (3) fabricating equipment 
dedicated for space,  e.g. habitats, spacecraft, servicing 
stations [27]; and (4) producing goods for human or 
industrial bases in other extraterrestrial environments, 
e.g. the Moon or Mars [28]. 
 

 

Figure 1: A framework for ISAM. 
 

This paper emphasizes constructing space-based 
factories for sustained space presence, reducing costs 
and launch times, enabling autonomous repair to delay 
obsolescence, and reclaiming space debris [29][30]. It 
highlights managing equipment risk, lowering entry 
barriers [31], and calling for innovative solutions to 
address challenges posed by extreme space 
environments. The paper identifies priority research 
areas, including autonomous production technology, 
materials, logistics, and satellite development, while 
illustrating the "factory" concept's importance in 
creating a resilient and sustainable space 
infrastructure. 
 
4. Motivation for Factories-in-Space (FiS) 
 
Presently, most space operations rely on Earth-based 
infrastructure for servicing, assembly, and 
manufacturing [31]. As permanent habitation and 
demand for objects like satellites grow, developing 
infrastructure beyond the Kármán line becomes 
necessary, since the costs of escaping Earth's gravity 
for maintaining extensive networks are unsustainable 
long-term [32][33]. 
Constructing reliable space infrastructure requires 
accommodating vast operational environments, 
extreme conditions, and flexibility in servicing diverse 
needs at distributed points-of-need (PoN) [34]. A 

proposed edge distribution network features modular 
service fulfillment centers on-orbit for faster, cost-
effective “direct-to-consumer” (DTC) delivery. To 
meet these demands, a modular, interoperable, and 
distributed platform called “Factory-in-Space” (FiS) is 
envisioned, serving as a space hub addressing 
location-specific functional needs (Figure 2). 
 

 

Figure 2: Authors’ vision of a factories-in-space, 
with separate nodes for various applications. 

 
5. Key Focus Areas 
 
FiS and ISAM methodologies must tackle extreme 
conditions such as limited resources, scarce materials, 
energy constraints, and minimal human involvement. 
Frugal engineering solutions should ensure 
modularity, flexibility, adaptability, sustainability, and 
resilience for space infrastructure development. 
Addressing fundamental questions is essential for a 
long-term vision (Figure). 
 

 

Table 1: Examples of fundamental questions for 
building Factories-in-Space (FiS). 

5.1 System Inputs 
Raw materials and molding feedstock availability are 
crucial for producing finished products in FiS, 
especially considering payload expenses [35][36]. In-
situ resource utilization (ISRU) is vital for material 
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extraction and can reduce costs and increase 
sustainability by utilizing local resources [37][38]. 
 
5.2 Energy Management 
Energy requirements for FiS comprise operational 
energy and energy for material transformation [39]. 
Solar energy is a popular choice; however, nuclear and 
hydrogen-based energy may complement solar 
harvesting [40]. Material processing involves 
selecting energy sources like lasers, microwaves, and 
other electromagnetic radiation forms [41]. 
 
5.3 Environmental Shielding 
Space poses challenges such as temperature 
fluctuations, variable gravity, electromagnetic fields, 
and radiation, potentially causing component failures 
[42]. Electronic components are prone to radiation 
damage, and lunar dust (an abrasive oxide ceramic) 
causes accelerated deterioration of exposed structures 
[43][44][45]. Additionally, the biological toxicity of 
lunar dust is enhanced due to the amount of 
“nanophase Fe” which has magnetic properties [46]. 
 

 

Figure 3: Left– Apollo 17 lunar dust taken by 
electron microscope [47]. Right– Apollo astronaut 
Harrison “Jack” Schmitt’s space suit was covered 

with lunar dust, which is razor sharp [48][49]. 
 
5.4 Autonomous & Digital Operations 
Autonomous systems and digital twin technology 
significantly improve efficiency and safety in space 
manufacturing processes [50][51]. NASA's Apollo 
program used digital twins to replicate orbital flight 
conditions on Earth using two identical shuttles, one 
mimicking the other [52]. First published use by 
NASA in 2010, a digital twin is defined as, “a set of 
virtual information constructs that fully describes a 
potential or actual physical manufactured product 
from the micro atomic level to the macro geometrical 
level.” [53][54] Autonomous operations also require 
minimal human intervention, maximizing safety [55]. 
 
While the adoption of autonomous systems in space 
has been slow, when applied, success in operations has 
followed [56]. Efficient, reliable, and cost-effective 
ISAM at focused sites like FiS could lead to 
sustainable and scalable space industrialization. 

Digital twins help predict microgravity material 
behavior, optimize 3D printed designs, and simulate 
complex space assembly [57][58]. Virtual presence is 
also crucial for complex scientific and production 
tasks, as increased distances necessitate remote 
connection to platforms, like FiS [59]. 
 
5.5 Modularity 
The modularity of FiS advances ISAM by enabling 
flexible, efficient, and resilient robotic systems [60]. 
Modular space hardware and equipment enhance the 
scalability and flexibility of manufacturing operations 
through standardized interfaces, building blocks like 
modular robots, 3D printed parts, and plug-and-play 
components. Modular designs simplify repair and 
maintenance, as faulty modules can be replaced easily 
[27]. 
 
5.6 Repair & Maintenance 
Efficient repair and maintenance are crucial for in-
space manufacturing equipment's long-term 
functionality [27]. On-orbit servicing (OOS) has 
already been employed in missions like Skylab, 
Hubble Space Telescope, and International Space 
Station [61]. The Space Shuttle program advanced 
OOS technology, with developments including robotic 
servicing of geostationary satellites, Phoenix, and 
space infrastructure servicing [61]. Space's harsh 
environment necessitates routine maintenance, 
accounting for challenges like limited resources and 
accessibility [62][63]. Predictive maintenance 
techniques prevent failures, and advanced robotics and 
digital twin capabilities enable remote repairs and 
predictive maintenance [64][65].  
 
5.7 Material & Product Qualification 
Materials for space applications must withstand harsh 
conditions [1]. To tackle challenges in microgravity 
and extreme environments, further research must 
focus on developing new manufacturing approaches, 
such as materials and design methods that can endure 
harsh conditions and techniques to optimize 
production in low-gravity environments [66]. 
Rigorous performance standards are crucial for 
material and product qualification [67]. Quality 
assurance and verification procedures must ensure the 
reliability and safety of manufactured products and 
assembled structures in space [1]. 
 
5.8 On-Orbit Logistics & Supply Chain Management 
Effective logistics and supply chain management are 
crucial for optimal FiS operations, including on-orbit 
transportation, storage, and waste management [1]. 
Waste management strategies enable the reuse, 
recycling, or repurposing of manufacturing waste 
within limited resources [1][41]. 
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5.9 Regulatory Framework 
Regulatory compliance is crucial for safety and 
success in space operations [68][69]. Long-term 
operations and human safety rely on incorporating 
sustainability and environmental, social, and 
governance (ESG) considerations [70]. Developing 
economic models and supportive ecosystems is vital 
for sustainable space infrastructure [1]. Space-based 
regulations tackle issues like space debris mitigation, 
orbital safety, commercial activities licensing, 
intellectual property, and resource management 
[48][71][72][73]. Public-private partnerships foster 
Factories-in-Space (FiS) growth and the broader space 
infrastructure ecosystem [47]. International 
cooperation is essential for an equitable space 
ecosystem. 
 
6. Conclusion 
 
Factories-in-Space (FiS) are critical components of 
space infrastructure for sustainable human presence in 
space, enabling robust, multifunctional, and resilient 
infrastructure for servicing, assembly, and 
manufacturing. The continued development and 
evolution of the FiS concept will be instrumental in 
overcoming the challenges of space exploration, 
habitation, and commerce, paving the way for a 
thriving and sustainable space-based economy. 
However, the development of FiS currently faces 
challenges that need to be addressed, such as 
developing efficient in-space manufacturing and 
assembly technologies capable of operating under 
extreme conditions, establishing sustainable and 
scalable supply chains, enhancing communication and 
coordination among distributed nodes, investigating 
advanced materials and fabrication techniques like 
additive manufacturing, and exploring the integration 
of artificial intelligence for improved decision-making 
and operations management. Immediate efforts should 
focus on addressing these challenges to advance in-
space servicing, assembly and manufacturing 
capabilities. 
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