
1/52

Runtime Verification with Ogma

Ivan Perez, Ph.D
ivan.perezdominguez@nasa.gov

KBR @ NASA Ames Research Center

January 19, 2023

Invited talk
University of California Santa Cruz

2/52

Runtime Verification

I Technique for monitoring systems as they run, and detect
property violations.
I Unexpected behavior of the system under study.
I Unexpected behavior of the environment.

I Online or offline.

I Normally based on temporal logic.

See: Havelund and Goldberg, ”Verify Your Runs”. 2008.

3/52

Domain of Interest

I Safety-critical systems

I Aircraft, spacecraft

I Embedded systems

4/52

Goals

I High-level

I Verifiably correct code

I Real time

I Ease of integration

5/52

The importance of using a high-level language

I Errors in the RV system can threaten the mission as a whole.

I Low-level languages may be more error-prone, and some
classes of errors are easier to make.

I A high-level, safe language can facilitate readability and
maintenance, and limit the likelihood of introducing (some)
bugs.

See: Ray et al., ”A Large Scale Study of Programming Languages
and Code Quality in Github”, 2014.

6/52

Approach

7/52

Under the hood

8/52

Copilot

I High-level Runtime Verification framework that produces hard
real-time C99.

9/52

Copilot workflow

10/52

Structure of a Copilot module

I External data

sensorData = extern ”global c value” Nothing

I Properties to monitor

undesirableProperty = sensorData >= 10

I Triggers

spec = do
tr igger ”global c handler” undesirableProperty []

11/52

Property language

I Primitives and combinators

I Based on streams

true

signal

time

...t t t t t t t

...2.22.31.2 1.2 1.2 1.2 1.2

...0 1 2 3 4 5 6

12/52

Property Language: Structure

name = expression
(stream name) −−− ˆˆˆˆ ˆˆˆˆˆˆˆˆˆˆ −−− (stream def in it ion)

13/52

Property Language: Primitives: true

true

time

...t t t t t t t

...0 1 2 3 4 5 6

14/52

Property Language: Point-wise combinators: Boolean logic

p1

p2

p1 && p2

time

...t t t f f t t

...f f f f t t t

...ttf f f f f

...0 1 2 3 4 5 6

15/52

Property Language: Primitives: addition

p1

p2

p1 + p2

time

0 1 0 2 0 3 0 ...

5 1 5 1 5 1 5 ...

5 2 5 3 5 4 5 ...

...0 1 2 3 4 5 6

16/52

Property Language: Primitives: number overloading

p1

1

p1 + 1

time

0 1 0 2 0 3 0 ...

1 1 1 1 1 1 1 ...

1 2 1 3 1 4 1 ...

...0 1 2 3 4 5 6

The expression 1 is overloaded to mean both the number 1 in one
sample, and the stream that has 1 at every sample.

17/52

Property Language: Point-wise operators

I Logic: &&, ||, not,==>, ...

I Comparison: <,>,<=, >=,==, / =, ...

I Arithmetic: +,−, ∗, /, ...
I Trigonometry: sin, cos, tan, ...

18/52

Property Language: Temporal translations: delays

fiveThenCount = [5] ++ count

count

fiveThenCount

time

...0 1 2 3 4 5 6

...5432105

...0 1 2 3 4 5 6

19/52

Property Language: Temporal translations: delays

insert2ThenCount = [5 , 10] ++ count

drop1ThenCount = drop 1 insert2ThenCount

insert2ThenCount

drop1ThenCount

time

...43210105

...54321010

...0 1 2 3 4 5 6

20/52

Property Language: Recursion

counter

time

0 1 2 3 4 5 6 ...

...0 1 2 3 4 5 6

counter = [0] ++ (counter + 1)

counter = [0] ++ (([0] ++ (counter + 1)) + 1) −− expand counter

counter = [0] ++ ([0+1] ++ (counter + 1 + 1)) −− distr ibute (+1)

counter = [0] ++ ([1] ++ (counter + 2)) −− apply additions

counter = [0 , 1] ++ (counter + 2) −− associat . append

21/52

Property Language: Temporal Logics

prop = PTLTL. alwaysBeen (counter <= 4)
prop2 = (MTL. alwaysBeen 0 3 (temperature >= 100))

&& (MTL. alwaysBeen 0 40 (airspeed >= 100)

recover = (MTL. eventuallyPrev 0 100 (airspeed < 100))
&& (MTL. alwaysBeen 0 10 (airspeed >= 100)

I Past-Time Linear Temporal Logic

I Metric Temporal Logic

I Bounded Linear Temporal Logic

22/52

Property Language: Other libraries

I Voting (used for fault tolerance)

I Statistics

I Clocks (ticking at different rates)

I Stack machines

I Regexp recognition

23/52

Property Language: Externs

Copilot

extVar = extern ”global var” Nothing

C

int global var = 0;

int main (. . .) {
// Sense data
global var = sensing operation () ;
// Check monitors
step () ;

}

24/52

Property Language: Copilot monitors can be much more
complex

counter : : Stream Int32
counter = [0] ++ (counter + 1)

elevation : : Stream Double
elevation = extern ”elevation” Nothing

−− Estimate derivative by delaying the elevation
climbrate : : Stream Double
climbrate = elevation − ([0] ++ elevation)

−− Specif ication that defines tr iggers based on streams
spec : : Spec
spec = do

let f a l l i n g : : Stream Bool
f a l l i n g = climbrate < (−6)

tr igger ” f a l l i n g ” f a l l i n g [arg counter , arg climbrate]
tr igger ”not fal len” (alwaysBeen $ not f a l l i n g) []

25/52

Arrays

temps : : Stream (Array 3 Float)
temps = constant (array [23.2 ,24.0 ,23.5])

temp2 : : Stream Float
temp2 = temps . ! ! 2 −− 23.5

26/52

Arrays

a1 :: Array 3 Int8
a1 = array [1,2,3]

a2 :: Array 2 Int8
a2 = a1

Main. hs :16:6: error :
∗ Couldn ’ t match type ‘3 ’ with ‘2 ’

Expected type : Array 2 Int8
Actual type : Array 3 Int8

∗ In the expression : a1
In an equation for ‘a2 ’ : a2 = a1

27/52

Structs

data Vec = Vec { x : : Field ”x” Float
, y : : Field ”y” Float }

sensorVec : : Stream Vec
sensorVec = extern ”vector” Nothing

sensorX : : Stream Float
sensorX = sensorVec # x

28/52

A minimal example: Copilot

import Copilot .Language
import Copilot .Language .C99
import qual i f ied Prelude hiding (<)

sampleSensor : : Stream Float
sampleSensor = extern ”sample sensor” Nothing

property : : Stream Bool
property = sampleSensor < 10

spec : : Spec
spec = do

tr igger ”handler” property []

main = do
r <− r e i f y spec
compile ”example” r

29/52

A minimal example: C

#include ”example .h”

f loat sample sensor = 0.0;

void handler(void) {
. . . // handle property here

}

int main() {
while (1) {

sample sensor = . . . ; some operation to refresh sensor value
step () ;

}
}

30/52

Installation

Debian >= 12 / Ubuntu >= 23.04:

$ sudo apt−get i n s t a l l libghc−copilot−dev

Debian < 12 / Ubuntu < 23.04:

$ sudo apt−get i n s t a l l cabal−i n s t a l l ghc
$ cabal update
$ cabal i n s t a l l −−l i b copilot

Mac:

$ brew i n s t a l l cabal−i n s t a l l
$ cabal update
$ cabal i n s t a l l −−l i b copilot

31/52

Compiling Copilot into C99

$ runhaskell Monitor . hs
$ l s
example . c example .h example types .h

32/52

From requirements to autonomous flight

I Requirements elicitation (natural language).

I Transform requirements into Temporal Logic formulas.

I Transform Temporal Logic formulas into runtime monitors.

I Generate hard real-time code for monitors.

33/52

Distance between requirements and Temporal Logic

“While flying, if the airspeed drops below 100m/s, the autopilot
shall increase the airspeed above 100m/s in less than 10 seconds.”

What is the temporal logic formula?

34/52

From requirements to autonomous flight (II)

Goal: close the gap between requirements and Copilot monitors.

35/52

FRET

Tool for requirements elicitation developed at NASA Ames.

36/52

FRETish

I FRET requirements are expressed in structured natural
language (FRETish):
scope condition component* shall* timing response*

I Example:

37/52

From FRETish to TL

I FRET produces a past-time temporal logic formula for the
requirement:

38/52

Ogma: From FRET’s TL to Copilot

I Ogma is an open-source NASA tool that transforms high level
specifications (FRET component specifications, Lustre node
specificaitons) into monitoring applications.

I Ogma has 3 modes of operation: producing standalone
Copilot monitors, producing NASA Core Flight System
applications, and producing Robot Operating System (ROS2)
monitoring packages.

I The standalone Copilot module must be linked as part of a
larger application.

I The cFS and ROS2 packages can be dropped in place as part
of a larger system. Data necessary must be made available via
the software bus.

39/52

Ogma: interface

$ ogma fret−component−spec −−fret−f i l e−name aircraftReqSpec . json
import Copilot . Compile .C99
. . .

f l i g h t : : Stream Bool
f l i g h t = extern ” f l i g h t ” Nothing

propAvoidStall : : Stream Bool
propAvoidStall = ((PTLTL. alwaysBeen ((((not (f l i g ht)) && . . .)))

. . .

40/52

Experiments: Flights with Unmanned Vehicles

Credits: K. Darafsheh / NASA

41/52

Ogma: experiments (1)

I We used FRET, Ogma and Copilot to encode and monitor a
flight simulation in X-Plane.

42/52

Ogma: experiments (1, continuation)

I The monitor is shown on the screen and reports any violations.

43/52

Ogma: experiments (2)

I FRET-Ogma-Copilot were used to monitor the C code
generated for Simulink models implementing two of the
LMCPS challenge problems: Finite State Machine, and
Control Loop Regulators (REG) LMCPS.

I The random input testing system QuickCheck was used to
generate random inputs and determine if any monitors
reported requirement violations.

I Violations reported consistently with prior experiments using
model checkers.

I Results obtained within seconds in cases where model
checkers timed out.

44/52

Ogma: experiments (2, continuation)

45/52

Future

I Upcoming release: Test generation (randomized testing)

I Ongoing: Fault injection

I Ongoing: FPrime

I Ongoing: FPGAs

I Ongoing: MC/DC

46/52

References (1)

I Perez, Mavridou, Pressburger, Will, Martin, ”Monitoring
ROS2: from Requirements to Autonomous Robots”. FMAS
2022.

I Perez, Mavridou, Pressburger, Goodloe, Giannakopoulou,
”Automated Translation of Natural Language Requirements
to Runtime Monitors”. TACAS 2022.

47/52

References (2)

Perez, Dedden and Goodloe, ”Copilot 3”, NASA TM-2020-220587,
2020.

48/52

References (3)

Perez, Dedden, Darafsheh, Goodloe, Pike, ”A Gallery of Copilot
Specifications”, 2020.

49/52

Summary

I Copilot is a high-level Runtime Verification framework that
produces hard real-time C99.

I Strongly typed and uses dependent types.

I Simple connection to systems written in C.

I Ogma can help write monitors from requirements, as well as
monitoring NASA cFS and ROS2 applications.

I NASA Class D (NPR7150.2).

I Used in experimental research with NASA, Galois, and others.

I Copilot, Ogma and FRET are all open source.

50/52

Acknowledgments

I Geoffrey Biggs, Guillaume Brat, Macallan Cruff, Kaveh
Darafsheh, Frank Dedden, Dimitra Giannakopoulou, Alwyn
Goodloe, Chris Hathhorn, Michael Jeronimo, Georges-Axel
Jolayan, Jonathan Laurent, Anastasia Mavridou, Eli
Mendelson, Robin Morisset, Sebastian Niller, Amalaye Oyake,
Lauren Pick, Lee Pike, Will Pogge, Tom Pressburger, Patrick
Quach, Ryan Scott, Kyle Smalling, Ryan Spring, Laura Titolo,
Sixto Vazquez, Nis Wegmann.

51/52

Source code

I Copilot: https://copilot-language.github.io

I Ogma: https://github.com/nasa/ogma

I FRET: https://github.com/nasa-sw-vnv/fret

https://copilot-language.github.io
https://github.com/nasa/ogma
https://github.com/nasa-sw-vnv/fret

52/52

Thank you!

Runtime Verification with Ogma

Ivan Perez, Ph.D
ivan.perezdominguez@nasa.gov

KBR @ NASA Ames Research Center

Invited talk
University of California Santa Cruz

