Runtime Verification with Ogma

Ivan Perez, Ph.D

ivan.perezdominguez@nasa.gov

KBR @ NASA Ames Research Center

January 19, 2023

Invited talk
University of California Santa Cruz

Runtime Verification

» Technique for monitoring systems as they run, and detect
property violations.

» Unexpected behavior of the system under study.
» Unexpected behavior of the environment.

» Online or offline.

» Normally based on temporal logic.

See: Havelund and Goldberg, " Verify Your Runs”. 2008.

Domain of Interest

» Safety-critical systems
» Aircraft, spacecraft
» Embedded systems

Goals

> High-level
» Verifiably correct code
> Real time

» Ease of integration

The importance of using a high-level language

» Errors in the RV system can threaten the mission as a whole.

» Low-level languages may be more error-prone, and some
classes of errors are easier to make.

» A high-level, safe language can facilitate readability and
maintenance, and limit the likelihood of introducing (some)
bugs.

See: Ray et al., "A Large Scale Study of Programming Languages
and Code Quality in Github”, 2014.

Approach

Requirements
(FRET)

Standalone
©
Module

GES)

Monitoring
Application

Robot
Operating
System
Monitoring
Application

a
¢

Under the hood

Copilot
Monitors

Requirements
(FRET)

Lustre node

CFS
Application
Code

CFS Application

Copilot

» High-level Runtime Verification framework that produces hard
real-time C99.

Copilot workflow

Link within
larger
application

c
Compile compiler

Cc99
implementation

Object file

Copilot
Specification
(eDSL)

Simulation

Structure of a Copilot module

» External data

sensorData = extern "global_c_value” Nothing

» Properties to monitor

undesirableProperty = sensorData >= 10

> Triggers

spec = do
trigger "global_c_handler” undesirableProperty []

Property language

» Primitives and combinators

» Based on streams

w“ 00O
el @ © ©

time 0 1 2

Property Language: Structure

name = expression

(stream name) —— —— (stream definition)

Property Language: Primitives: true

we QOOOOOO -

time 0 1 2 3 4 5 6

Property Language: Point-wise combinators: Boolean logic

Property Language: Primitives: addition

N ONORORORORONORE
N ONONORORORONO R
LN ONONORONORONONE

Property Language: Primitives: number overloading

N ONORORORORORORE
: LOLOLOLOLO -
AR ORONORORONONORE

time 0 1 2 3 4 5 6

The expression 1 is overloaded to mean both the number 1 in one
sample, and the stream that has 1 at every sample.

Property Language: Point-wise operators

» Logic: &&, ||, not,==>, ...
» Comparison: <,>,<=,>===/=, ..
» Arithmetic: +, —, %, /, ...

» Trigonometry: sin, cos, tan, ...

Property Language: Temporal translations: delays

fiveThenCount = [5] ++ count

count @ @ @
fiveThenCount @ @ @

time 0 1 2 3 4 5 6

ONORONONE
ONORONONE

Property Language: Temporal translations: delays

insert2ThenCount = [5, 10] ++ count

droplThenCount = drop 1 insert2ThenCount

insert2ThenCount (5) O O @ B @ -
droplThenCount @ @ @ @ @ @

time 0 1 2 3 4 5 6

Property Language: Recursion

couer () (U @) & @ & (&) -~

time 0 1 2 3 4 5 6

counter = [0] ++ (counter + 1)

counter = [0] ++ (([0] ++ (counter + 1)) + 1) expand counter
counter = [0] ++ ([0+1] ++ (counter + 1 + 1)) — distribute (41)
counter = [0] ++ ([1] ++ (counter + 2)) — apply additions

counter = [0, 1] ++ (counter + 2) — associat. append

Property Language: Temporal Logics

prop = PTLTL.alwaysBeen (counter <= 4)
prop2 = (MTL.alwaysBeen 0 3 (temperature >= 100))
&& (MTL.alwaysBeen 0 40 (airspeed >= 100)

recover = (MTL.eventuallyPrev 0 100 (airspeed < 100))
&& (MTL.alwaysBeen 0 10 (airspeed >= 100)
» Past-Time Linear Temporal Logic
» Metric Temporal Logic
» Bounded Linear Temporal Logic

Property Language: Other libraries

Voting (used for fault tolerance)
Statistics

Clocks (ticking at different rates)
Stack machines

vVvYyyvyy

Regexp recognition

Property Language: Externs

Copilot
extVar = extern "global_var" Nothing
C

int global_var = 0;

int main (...) {
// Sense data
global_var = sensing_operation ();
// Check monitors
step();

}

Property Language: Copilot monitors can be much more
complex

counter :: Stream Int32
counter = [0] ++ (counter + 1)

elevation :: Stream Double

elevation = extern "elevation” Nothing
— Estimate derivative by delaying the elevation
climbrate :: Stream Double

climbrate = elevation — ([0] 4++ elevation)

— Specification that defines triggers based on streams

spec :: Spec
spec = do
let falling :: Stream Bool

falling = climbrate < (—6)

trigger "falling” falling [arg counter, arg climbrate]
trigger "not_fallen” (alwaysBeen $ not falling) []

Arrays

temps :: Stream (Array 3 Float)
temps = constant (array [23.2,24.0,23.5])

temp2 :: Stream Float
temp2 = temps .!! 2 23.5

Arrays

al :: Array 3 Int8
al = array [1,2,3]

a2 :: Array 2 Int8
a2 =al

Main.hs:16:6: error:
* Couldn't match type ‘3" with ‘2’
Expected type: Array 2 Int8
Actual type: Array 3 Int8
* In the expression: al
In an equation for ‘a2’: a2 = al

Structs

data Vec = Vec { x :: Field "x" Float
, y :: Field "y" Float }

sensorVec :: Stream Vec
sensorVec = extern "vector” Nothing

sensorX :: Stream Float
sensorX = sensorVec # x

A minimal example: Copilot

import Copilot.Language
import Copilot.Language.C99
import qualified Prelude hiding (<)

sampleSensor :: Stream Float
sampleSensor = extern "sample_sensor” Nothing

property :: Stream Bool
property = sampleSensor < 10

spec :: Spec
spec = do
trigger "handler” property []

main = do
r <— reify spec
compile "example” r

A minimal example: C

#include "example.h”
float sample_sensor = 0.0;

void handler(void) {
... // handle property here
¥

int main() {
while (1) {
sample_sensor = ...; some operation to refresh sensor value
step();
¥
}

Installation

Debian >= 12 / Ubuntu >= 23.04:
$ sudo apt—get install libghc—copilot—dev
Debian < 12 / Ubuntu < 23.04:

$ sudo apt—get install cabal—install ghc
$ cabal update
$ cabal install

Mac:

$ brew install cabal—install
$ cabal update
$ cabal install

Compiling Copilot into C99

$ runhaskell Monitor.hs
$Is

example.c example.h example_types.h

From requirements to autonomous flight

» Requirements elicitation (natural language).
» Transform requirements into Temporal Logic formulas.
» Transform Temporal Logic formulas into runtime monitors.

» Generate hard real-time code for monitors.

Distance between requirements and Temporal Logic

“While flying, if the airspeed drops below 100m/s, the autopilot
shall increase the airspeed above 100m/s in less than 10 seconds.”

What is the temporal logic formula?

From requirements to autonomous flight (I1)

Goal: close the gap between requirements and Copilot monitors.

FRET

Tool for requirements elicitation developed at NASA Ames.

<

Dashboard

Total Projects
Requirements
Analysis Portal

Hierarchical Cluster
Import

Export

Help

. Ui requiaments

133 87.97

Requirement Size

25 10594 bytes

Recent Activity

LM_requirements FS-006
FSM_Autopilo
ap_maneuver_state & standby & good) => STATE =
ap_standby_state

hall ahways satisfy (state =

LM_requirements EUL-00TH
Euler shall always satisfy DEM321_32 = (- SinPhi * CosPsi) +
(CosPhi * SinTheta * SinPsi)

LM_requirements EUL-0018
Euler shall abways satisfy DEM321.12 = C

heta * SinPs

LM_requirements AP-003C
inroll_hold

Rollautopilot shall imrm
300=

sign{roll_angle)

LM_requirements AP-D0EE
inhdg_hold made RollAutopilot shall ahways satisfy roll_emd
= hdg_hld_mode_cmd

LM_requirements EUL-0028
Euler shall always satisfy R2_21 = VI_1 + R_21 + VI.2 A R22

+VIL3*R23

LM_requirements REG-003
Regulator shallalvr
count_yaw_output_ex

ing50 <= 100

LM_requirements TSM-0032
Triplexsignalmenitor shall always satisty FC =1 => set_val =

FRETish

» FRET requirements are expressed in structured natural
language (FRETish):
scope condition component* shall* timing responsex*

> Example:

NL: “While flying, if the airspeed is below 100 m/s, the autopilot shall increase

the airspeed to at least 100 m/s within 10 seconds.”

FRETish: in flight mode if airspeed < 100 the aircraft shall within
10 seconds satisfy (airspeed >= 100)

From FRETish to TL

» FRET produces a past-time temporal logic formula for the
requirement:

NL: “Whale flying, if the airspeed is below 100 m/s, the autopilot shall increase
the airspeed to at least 100 m/s within 10 seconds.”

FRETish: in flight mode if air
10 seconds satisfy (airspeed >= 100)

< 100 the aircraft shall within

pmLTL: H (Linflight— (Y (((0j=10) (((airspeed < 100) & ((Y (!(airspeed < 100))) |
Fin flight)) & (! (airspeed > 100)))) — (O[<10)(Finflight | (airspeed > 100)))) S
(((0[=10](((airspeed < 100) & ((Y (!(airspeed < 100))) | Fin flight)) & (!(airspeed >
100)))) — (O[<10)(Finflight | (airspeed > 100)))) & Fin flight)))) & ((!Lin flight)
S ((!Lin flight) & Fin flight)) — (((0j=10](((airspeed < 100) & ((Y (!(airspeed <
100))) | Finflight)) & (!(airspeed > 100)))) — (0j<yo)(Fin_flight | (airspeed >
100)))) S (((O[=10)(((airspeed < 100) & ((Y (!(airspeed < 100))) | Fin_flight)) &
(!(airspeed > 100)))) — (O(<10)(Finflight | (airspeed > 100)))) & Fin flight)),
where Fin_flight (First timepoint in flight mode) is flight & (FTP | Y !flight), Lin flight
(Last timepoint in flight mode) is !flight & Y flight, FTP (First Time Point) is ! Y true.

Ogma

: From FRET's TL to Copilot

Ogma is an open-source NASA tool that transforms high level
specifications (FRET component specifications, Lustre node
specificaitons) into monitoring applications.

Ogma has 3 modes of operation: producing standalone
Copilot monitors, producing NASA Core Flight System
applications, and producing Robot Operating System (ROS2)
monitoring packages.

The standalone Copilot module must be linked as part of a
larger application.

The cFS and ROS2 packages can be dropped in place as part

of a larger system. Data necessary must be made available via
the software bus.

Ogma: interface

$ ogma fret—component—spec —fret—file-—name aircraftReqSpec.json
import Copilot.Compile.C99

flight :: Stream Bool
flight = extern "flight” Nothing

propAvoidStall :: Stream Bool
propAvoidStall = ((PTLTL.alwaysBeen ((((not (flight)) && ...)))

Credits: K. Darafsheh / NASA

Ogma: experiments (1)

» We used FRET, Ogma and Copilot to encode and monitor a
flight simulation in X-Plane.

Ogma: experiments (1, continuation)

» The monitor is shown on the screen and reports any violations.

Ogma:

experiments (2)

FRET-Ogma-Copilot were used to monitor the C code

generated for Simulink models implementing two of the
LMCPS challenge problems: Finite State Machine, and
Control Loop Regulators (REG) LMCPS.

The random input testing system QuickCheck was used to
generate random inputs and determine if any monitors
reported requirement violations.

Violations reported consistently with prior experiments using
model checkers.

Results obtained within seconds in cases where model
checkers timed out.

Ogma: experiments (2, continuation)

C code generated by
Simulink

Random input

generator

Monitors

44/52

Future

Upcoming release: Test generation (randomized testing)

Ongoing: Fault injection

Ongoing: FPGAs

>
>
» Ongoing: FPrime
>
» Ongoing: MC/DC

References (1)

» Perez, Mavridou, Pressburger, Will, Martin, " Monitoring
ROS2: from Requirements to Autonomous Robots”. FMAS
2022.

» Perez, Mavridou, Pressburger, Goodloe, Giannakopoulou,

" Automated Translation of Natural Language Requirements
to Runtime Monitors”. TACAS 2022.

References (2)

Perez, Dedden and Goodloe, " Copilot 3", NASA TM-2020-220587,
2020.

NASA/TM-2020-220587

Copilot 3

Ivan Perez
National Institute of Aerospace, Hampton, Virginia

Frank Dedden
Royal Netherlands Aerospace Center, Amsterdam, The Netherlands

Alwyn Goodloe
NASA Langley Research Center, Hampton, Virginia

References (3)

Perez, Dedden, Darafsheh, Goodloe, Pike, " A Gallery of Copilot
Specifications”, 2020.

Contents

1 Introduction 3
2 Simple Engine Temperature Monitor 3
3 Home Heating System 4
4 Aircraft Health Monitoring 5
5 Fault Tolerant Monitors 8
6 Well Clear 10
7 Temporal Logic 15

8 Aircraft Collision Avoidance 17

Summary

v

Copilot is a high-level Runtime Verification framework that
produces hard real-time C99.

Strongly typed and uses dependent types.
Simple connection to systems written in C.

Ogma can help write monitors from requirements, as well as
monitoring NASA cFS and ROS2 applications.

NASA Class D (NPR7150.2).
Used in experimental research with NASA, Galois, and others.

Copilot, Ogma and FRET are all open source.

Acknowledgments

» Geoffrey Biggs, Guillaume Brat, Macallan Cruff, Kaveh
Darafsheh, Frank Dedden, Dimitra Giannakopoulou, Alwyn
Goodloe, Chris Hathhorn, Michael Jeronimo, Georges-Axel
Jolayan, Jonathan Laurent, Anastasia Mavridou, Eli
Mendelson, Robin Morisset, Sebastian Niller, Amalaye Oyake,
Lauren Pick, Lee Pike, Will Pogge, Tom Pressburger, Patrick
Quach, Ryan Scott, Kyle Smalling, Ryan Spring, Laura Titolo,
Sixto Vazquez, Nis Wegmann.

Source code

» Copilot: https://copilot-language.github.io
» Ogma: https://github.com/nasa/ogma
» FRET: https://github.com/nasa-sw-vanv/fret

https://copilot-language.github.io
https://github.com/nasa/ogma
https://github.com/nasa-sw-vnv/fret

Thank you!

Runtime Verification with Ogma

lvan Perez, Ph.D
ivan.perezdominguez@nasa.gov

KBR @ NASA Ames Research Center

Invited talk
University of California Santa Cruz

