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Runtime Verification

I Technique for monitoring systems as they run, and detect
property violations.
I Unexpected behavior of the system under study.
I Unexpected behavior of the environment.

I Online or offline.

I Normally based on temporal logic.

See: Havelund and Goldberg, ”Verify Your Runs”. 2008.
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Domain of Interest

I Safety-critical systems

I Aircraft, spacecraft

I Embedded systems
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Goals

I High-level

I Verifiably correct code

I Real time

I Ease of integration
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The importance of using a high-level language

I Errors in the RV system can threaten the mission as a whole.

I Low-level languages may be more error-prone, and some
classes of errors are easier to make.

I A high-level, safe language can facilitate readability and
maintenance, and limit the likelihood of introducing (some)
bugs.

See: Ray et al., ”A Large Scale Study of Programming Languages
and Code Quality in Github”, 2014.
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Approach
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Under the hood
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Copilot

I High-level Runtime Verification framework that produces hard
real-time C99.
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Copilot workflow
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Structure of a Copilot module

I External data

sensorData = extern ”global c value” Nothing

I Properties to monitor

undesirableProperty = sensorData >= 10

I Triggers

spec = do
tr igger ”global c handler” undesirableProperty [ ]
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Property language

I Primitives and combinators

I Based on streams

true

signal

time

...t t t t t t t

...2.22.31.2 1.2 1.2 1.2 1.2

...0 1 2 3 4 5 6
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Property Language: Structure

name = expression
(stream name) −−− ˆˆˆˆ ˆˆˆˆˆˆˆˆˆˆ −−− (stream def in it ion )
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Property Language: Primitives: true

true

time

...t t t t t t t

...0 1 2 3 4 5 6
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Property Language: Point-wise combinators: Boolean logic

p1

p2

p1 && p2

time

...t t t f f t t

...f f f f t t t

...ttf f f f f

...0 1 2 3 4 5 6
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Property Language: Primitives: addition

p1

p2

p1 + p2

time

0 1 0 2 0 3 0 ...

5 1 5 1 5 1 5 ...

5 2 5 3 5 4 5 ...

...0 1 2 3 4 5 6
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Property Language: Primitives: number overloading

p1

1

p1 + 1

time

0 1 0 2 0 3 0 ...

1 1 1 1 1 1 1 ...

1 2 1 3 1 4 1 ...

...0 1 2 3 4 5 6

The expression 1 is overloaded to mean both the number 1 in one
sample, and the stream that has 1 at every sample.
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Property Language: Point-wise operators

I Logic: &&, ||, not,==>, ...

I Comparison: <,>,<=, >=,==, / =, ...

I Arithmetic: +,−, ∗, /, ...
I Trigonometry: sin, cos, tan, ...
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Property Language: Temporal translations: delays

fiveThenCount = [5] ++ count

count

fiveThenCount

time

...0 1 2 3 4 5 6

...5432105

...0 1 2 3 4 5 6
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Property Language: Temporal translations: delays

insert2ThenCount = [5 , 10] ++ count

drop1ThenCount = drop 1 insert2ThenCount

insert2ThenCount

drop1ThenCount

time

...43210105

...54321010

...0 1 2 3 4 5 6
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Property Language: Recursion

counter

time

0 1 2 3 4 5 6 ...

...0 1 2 3 4 5 6

counter = [0] ++ (counter + 1)

counter = [0] ++ (([0] ++ (counter + 1)) + 1) −− expand counter

counter = [0] ++ ([0+1] ++ (counter + 1 + 1)) −− distr ibute (+1)

counter = [0] ++ ([1] ++ (counter + 2)) −− apply additions

counter = [0 , 1] ++ (counter + 2) −− associat . append
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Property Language: Temporal Logics

prop = PTLTL. alwaysBeen (counter <= 4)
prop2 = (MTL. alwaysBeen 0 3 (temperature >= 100))

&& (MTL. alwaysBeen 0 40 ( airspeed >= 100)

recover = (MTL. eventuallyPrev 0 100 ( airspeed < 100))
&& (MTL. alwaysBeen 0 10 ( airspeed >= 100)

I Past-Time Linear Temporal Logic

I Metric Temporal Logic

I Bounded Linear Temporal Logic
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Property Language: Other libraries

I Voting (used for fault tolerance)

I Statistics

I Clocks (ticking at different rates)

I Stack machines

I Regexp recognition
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Property Language: Externs

Copilot

extVar = extern ”global var” Nothing

C

int global var = 0;

int main ( . . . ) {
// Sense data
global var = sensing operation () ;
// Check monitors
step () ;

}
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Property Language: Copilot monitors can be much more
complex

counter : : Stream Int32
counter = [0] ++ (counter + 1)

elevation : : Stream Double
elevation = extern ”elevation” Nothing

−− Estimate derivative by delaying the elevation
climbrate : : Stream Double
climbrate = elevation − ( [0 ] ++ elevation )

−− Specif ication that defines tr iggers based on streams
spec : : Spec
spec = do

let f a l l i n g : : Stream Bool
f a l l i n g = climbrate < (−6)

tr igger ” f a l l i n g ” f a l l i n g [ arg counter , arg climbrate ]
tr igger ”not fal len” (alwaysBeen $ not f a l l i n g ) [ ]
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Arrays

temps : : Stream (Array 3 Float)
temps = constant ( array [23.2 ,24.0 ,23.5])

temp2 : : Stream Float
temp2 = temps . ! ! 2 −− 23.5
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Arrays

a1 :: Array 3 Int8
a1 = array [1,2,3]

a2 :: Array 2 Int8
a2 = a1

Main. hs :16:6: error :
∗ Couldn ’ t match type ‘3 ’ with ‘2 ’

Expected type : Array 2 Int8
Actual type : Array 3 Int8

∗ In the expression : a1
In an equation for ‘a2 ’ : a2 = a1
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Structs

data Vec = Vec { x : : Field ”x” Float
, y : : Field ”y” Float }

sensorVec : : Stream Vec
sensorVec = extern ”vector” Nothing

sensorX : : Stream Float
sensorX = sensorVec # x
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A minimal example: Copilot

import Copilot .Language
import Copilot .Language .C99
import qual i f ied Prelude hiding (<)

sampleSensor : : Stream Float
sampleSensor = extern ”sample sensor” Nothing

property : : Stream Bool
property = sampleSensor < 10

spec : : Spec
spec = do

tr igger ”handler” property [ ]

main = do
r <− r e i f y spec
compile ”example” r
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A minimal example: C

#include ”example .h”

f loat sample sensor = 0.0;

void handler(void) {
. . . // handle property here

}

int main() {
while (1) {

sample sensor = . . . ; some operation to refresh sensor value
step () ;

}
}
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Installation

Debian >= 12 / Ubuntu >= 23.04:

$ sudo apt−get i n s t a l l libghc−copilot−dev

Debian < 12 / Ubuntu < 23.04:

$ sudo apt−get i n s t a l l cabal−i n s t a l l ghc
$ cabal update
$ cabal i n s t a l l −−l i b copilot

Mac:

$ brew i n s t a l l cabal−i n s t a l l
$ cabal update
$ cabal i n s t a l l −−l i b copilot
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Compiling Copilot into C99

$ runhaskell Monitor . hs
$ l s
example . c example .h example types .h
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From requirements to autonomous flight

I Requirements elicitation (natural language).

I Transform requirements into Temporal Logic formulas.

I Transform Temporal Logic formulas into runtime monitors.

I Generate hard real-time code for monitors.
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Distance between requirements and Temporal Logic

“While flying, if the airspeed drops below 100m/s, the autopilot
shall increase the airspeed above 100m/s in less than 10 seconds.”

What is the temporal logic formula?



34/52

From requirements to autonomous flight (II)

Goal: close the gap between requirements and Copilot monitors.
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FRET

Tool for requirements elicitation developed at NASA Ames.
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FRETish

I FRET requirements are expressed in structured natural
language (FRETish):
scope condition component* shall* timing response*

I Example:
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From FRETish to TL

I FRET produces a past-time temporal logic formula for the
requirement:
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Ogma: From FRET’s TL to Copilot

I Ogma is an open-source NASA tool that transforms high level
specifications (FRET component specifications, Lustre node
specificaitons) into monitoring applications.

I Ogma has 3 modes of operation: producing standalone
Copilot monitors, producing NASA Core Flight System
applications, and producing Robot Operating System (ROS2)
monitoring packages.

I The standalone Copilot module must be linked as part of a
larger application.

I The cFS and ROS2 packages can be dropped in place as part
of a larger system. Data necessary must be made available via
the software bus.
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Ogma: interface

$ ogma fret−component−spec −−fret−f i l e−name aircraftReqSpec . json
import Copilot . Compile .C99
. . .

f l i g h t : : Stream Bool
f l i g h t = extern ” f l i g h t ” Nothing

propAvoidStall : : Stream Bool
propAvoidStall = ((PTLTL. alwaysBeen (((( not ( f l i g ht )) && . . . )))

. . .
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Experiments: Flights with Unmanned Vehicles

Credits: K. Darafsheh / NASA
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Ogma: experiments (1)

I We used FRET, Ogma and Copilot to encode and monitor a
flight simulation in X-Plane.
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Ogma: experiments (1, continuation)

I The monitor is shown on the screen and reports any violations.
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Ogma: experiments (2)

I FRET-Ogma-Copilot were used to monitor the C code
generated for Simulink models implementing two of the
LMCPS challenge problems: Finite State Machine, and
Control Loop Regulators (REG) LMCPS.

I The random input testing system QuickCheck was used to
generate random inputs and determine if any monitors
reported requirement violations.

I Violations reported consistently with prior experiments using
model checkers.

I Results obtained within seconds in cases where model
checkers timed out.



44/52

Ogma: experiments (2, continuation)
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Future

I Upcoming release: Test generation (randomized testing)

I Ongoing: Fault injection

I Ongoing: FPrime

I Ongoing: FPGAs

I Ongoing: MC/DC
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Summary

I Copilot is a high-level Runtime Verification framework that
produces hard real-time C99.

I Strongly typed and uses dependent types.

I Simple connection to systems written in C.

I Ogma can help write monitors from requirements, as well as
monitoring NASA cFS and ROS2 applications.

I NASA Class D (NPR7150.2).

I Used in experimental research with NASA, Galois, and others.

I Copilot, Ogma and FRET are all open source.
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Source code

I Copilot: https://copilot-language.github.io

I Ogma: https://github.com/nasa/ogma

I FRET: https://github.com/nasa-sw-vnv/fret

https://copilot-language.github.io
https://github.com/nasa/ogma
https://github.com/nasa-sw-vnv/fret
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