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Abstract
The construction of numerical schemes for (a) sta-

ble and accurate simulation of turbulence with strong
shocks, and for (b) obtaining correct propagation
speed of discontinuities in the presence of stiff source
terms share one important ingredient – minimization
of numerical dissipation while maintaining numerical
stability. The dual requirements to achieve both nu-
merical stability and minimal numerical dissipation
are often conflicting since existing shock capturing
schemes were designed mainly to be robust for rapidly
developed turbulence-free flows and for shock waves
without stiff source term. For the past two decades,
Yee and collaborators have focused on an improved
understanding of the nonlinear behavior of different
high order shock-capturing methods. It was found that
even very high order methods without proper nonlin-
ear stability and numerical dissipation control can ei-
ther numerically smear the onset of turbulence due to
excess numerical dissipation, or induce (onset) numer-
ical turbulence that is not physical turbulence due to
lack of proper numerical dissipation to improve non-
linear stability for long time integration. Our approach
is to combine (I) and (II) below for obtaining the phys-
ically correct onset of turbulence with shocks, includ-
ing problems with stiff source terms:
(I) Nonlinear dynamics is utilized to complement the
traditional linearized stability theory (Yee & Sweby,
Yee et al., Griffiths et al., Lafon & Yee, Yee, Wang et
al., Kotov et al. 1990- 2015) in order to (i) Minimize
numerically induced false transition to turbulence, (ii)
Minimize numerical instability due to long time inte-
gration of turbulent flows, (iii) Minimize numerically
induced standing wave solutions, and (iv) Minimize
wrong propagation of speed of discontinuities due to
the presence of stiff source terms.
(II) Our recently developed physical preserving (struc-
tural preserving) high order methods with improved
nonlinear stability & accuracy that are essential in
minimizing spurious numerics are used.

1 Motivation
Our motivation is to ensure a higher level of con-

fidence in the predictability and reliability of numeri-
cal simulation for multiscale complex nonlinear fluid

problems. The last two decades have been an era when
computation is ahead of analysis and when very large
scale practical computations are increasingly used in
poorly understood multiscale complex nonlinear phys-
ical problems and non-traditional fields, especially
when computations offer the only way of generating
this type of data limited simulations. At present some
of the numerical uncertainties can be explained and
minimized by traditional numerical analysis and stan-
dard CFD practices, complementing with experimen-
tal data. However, such practices, usually based on
linearized analysis, might not be sufficient for strongly
nonlinear and/or stiff problems. We need a good un-
derstanding of the nonlinear behavior of numerical
schemes being used as an integral part of code verifica-
tion, validation and certification. Unlike linear model
equations used for conventional stability and accuracy
considerations in time-dependent partial differential
equations (PDEs), there are no equivalent unique non-
linear model equations for nonlinear hyperbolic and
parabolic PDEs for fluid dynamics. On the one hand,
a numerical method behaving in a certain way for a
particular nonlinear PDE might exhibit a different be-
havior for a different nonlinear PDE even though the
PDEs are of the same type. On the other hand, even
for simple nonlinear model PDEs with known solu-
tions, the discretized counterparts can be extremely
complex, depending on the numerical methods, their
time steps, grid spacings and numerical boundary con-
dition treatments. Except in special cases, there is
no general theory at the present time to characterize
the various nonlinear behaviors of the underlying dis-
cretized counterparts.

In addition, it is common knowledge by the nu-
merical simulation of turbulent flow community that
even modern high order shock-capturing methods, that
were designed for rapidly developing flows, are too
dissipative for turbulent flow computations. The ba-
sic ingredients that are needed for efficient accurate
and reliable simulation of the subject flow are: (a) Nu-
merically preserving as much of the physical proper-
ties of the flows (e.g., positive pressure and density;
preservation of the divergence of the magnetic field,
if present; entropy conserving; momentum conserv-
ing and kinetic energy preserving), (b) Correct numer-



ically handling of stiff source terms, if present, (c) Im-
proved numerical stability but at the same time mini-
mization of added numerical dissipation for long time
integration of flows containing both the shock-free tur-
bulence regions and turbulence with shocks regions.
The new high order methods developed by our work
contain most of these desirable properties as well as
they are most suited and efficient for high performance
implementation for current modern supercomputers.

The work leverages our knowledge gained in (1)
Nonlinear behavior of numerical methods to comple-
ment the traditional linearized stability theory (Yee &
Sweby, Yee et al., Griffiths et al., Lafon & Yee, Yee,
Wang et al., Kotov et al. 1990- 2015), and (2) our new
physical-preserving (structure-preserving) high order
numerical methods in conjunction with our high order
nonlinear filter methods of Yee & Sjögreen, Sjögreen
& Yee for compressible shock-turbulence interaction
with improved nonlinear stability and accuracy. The
high order nonlinear filter methods of Yee & Sjögreen,
Sjögreen & Yee and collaborators represent the culmi-
nation of over 20 years of development. They have
been successfully used to simulate numerous exam-
ples of flows containing turbulence and shocks. These
physical preserving methods can improve nonlinear
stability and minimize aliasing error for turbulence
modeling and simulation; see [13, 15, 16, 30, 31]. In
addition, for the last decade it has been shown in the
literature that these high order methods are able to re-
duce the amount of added numerical dissipation re-
quired to avoid nonlinear instabilities from developing
in direct numerical simulations (DNS) computations.

2 Insufficient Numerical Dissipation
Without Nonlinear Stability Control Can
Induce Numerical On Set of Turbulence
that is Not Physical Turbulence

For detailed discussion, see Yee (2002) [22] and
references cited therein. Fig. 6.2 of Sections 6.3-6.3 in
[22] gives a summary of different scenarios of possible
numerical bifurcation of transition to turbulence (false
transition of a studied Reynold’s number) for a chosen
spatial and temporal discretization as a function of the
grid spacing and time step parameters. Fig. 6.2 of [22]
is included below.

Chaotic and Chaotic Transient In addition to the in-
herent chaotic and chaotic transient behavior in some
physical systems, numerics can independently intro-
duce numerical chaos, numerical chaotic transients, as
well as suppress physical chaos. Loosely speaking,
a chaotic transient behaves like a chaotic solution. A
chaotic transient can occur in a continuum or a discrete
dynamical system indicating turbulence-like behavior.
Using highly accurate methods for rapidly developed
flows for long time integration of turbulent flows, non-
linear instability can occur that resembles chaotic-like

numerical turbulence, in-distinguishable from physi-
cal turbulence. Moreover, one of the major charac-
teristics of a numerically induced chaotic transient is
that if one does not integrate the discretized equations
long enough, the numerical solution has all the char-
acteristics of a chaotic solution. The required num-
ber of time integration steps might be far beyond those
found in standard CFD simulation practice before the
numerical solution can get out of the chaotic transient
mode. Furthermore, standard numerical methods, de-
pending on the initial data, usually experience drastic
reductions in step size and convergence rate near a bi-
furcation point (e.g., transition point) of the continuum
in addition to the bifurcation points due solely to the
discretized parameters. See Yee et al., Yee & Sweby
(1990-2013) for a discussion and some numerical re-
sults. Consequently, a possible numerically induced
chaotic transient is especially worrisome in direct nu-
merical simulations (DNS) of the transition from lam-
inar to turbulent flows. Except for special situations,
it is extremely difficult to bracket closely the physi-
cal transition point by mere DNS of the Navier-Stokes
equations. Even away from the transition point, this
type of numerical simulation is already very CPU in-
tensive and the convergence rate is usually rather slow.
Due to limited computer resources, the numerical sim-
ulation can result in chaotic transients indistinguish-
able from sustained turbulence, yielding a spurious
picture of the flow for a given Reynolds number. Con-
sequently, it casts some doubt on the reliability of nu-
merically predicted transition points and chaotic flows.
It also influences the true connection between chaos
and turbulence. It is noted that due to excessive numer-
ical dissipation, some numerics can suppress physical
turbulence.
Numerical Transition Aside from illustrating numer-
ical examples on the possible numerical chaotic tran-
sients that are indistinguishable from sustained turbu-
lence, Yee and collaborators [22] illustrated many ex-
amples of the onset of numerical turbulence as a func-
tion of the chosen numerical method, time step and
grid spacing. Assuming a known physical bifurcation
or transition point, Fig. 6.2 from [22] illustrates the
schematic of four possible spurious bifurcations due
to constant time steps and constant grid spacings.

3 Wrong Propagation of Discontinuity
due to Stiff Nonlinear Source Terms

Here an unsteady non-equilibrium inviscid compu-
tation from [28, 6] is chosen as an illustration. Navier-
Stokes computations of the same test case in 1D and
2D can be found in [6]. For combustion and random
forcing terms, see [24, 28, 6, 7] and references cited
therein. In general, the reacting terms that arise from
non-equilibrium flows in hypersonic aeronautics are
less stiff than their counterparts in combustion. How-
ever, there are stiff chemical non-equilibrium flows



that are due to the reaction terms. A stiff 13-species,
one-temperature non-equilibrium model related to the
NASA Ames Electric Arc Shock Tube (EAST) exper-
iment reported in [28, 6] is briefly illustrated here for
the 1D case. See [28, 6] for extensive analysis and a
wide variety of other spurious numerics illustrations
due to presence of shock waves and stiff source terms.
The computational domain of the 1D 13-species EAST
test case has a total length of 8.5m. The left part of the
domain with length 0.1m is a high pressure region.
The right part of the domain with length 8.4m is a
low pressure region. The gas mixture consists of 13
species:

e−, He,N,O,N2, NO,O2, N
+
2 ,

NO+, N+, O+
2 , O

+, He+.

See [28, 6] for initial conditions and problem set up.

Although figures not shown, grid refinement for
four grids with ∆x = 10−3 m, 5 × 10−4 m, 5 ×
10−5 m and 2.5 × 10−5 m at time tend = 0.325 ×
10−4 sec indicated a significant shift in the shear (left
discontinuity) and the shock (right discontinuity) loca-
tions as the grid is refined. The distance between the
shear and the shock shrinks as the grid is refined. The
difference between shock locations obtained on the
grids with ∆x = 5×10−5 m and 2.5×10−5 m is less
than 0.3%. Thus the solution using ∆x = 5×10−5 m
can be considered as the reference solution.

Taking Fig. 2 from [28], the left subfigure shows a
comparison among five methods obtained on a coarse
grid (∆x = 10−3 m) with the reference solution. The
scheme’s labels are defined as follows:

• ACMTVDfi: Second-order central base scheme
using ACM flow sensor. See [20] for further in-
formation on filter schemes.

• WENO5-llf: Fifth-order WENO (WENO5) using
the local Lax-Friedrichs flux.

• WENO5P-llf: Positive WENO5 of using the lo-
cal Lax-Friedrichs flux.

• WENO5PH-llf: Positive WENO5 of using the lo-
cal Lax-Friedrichs flux.

The right subfigure shows a comparison of
ACMTVDfi using a different weight κ parameter of
the ACM flow sensor. The smaller the κ, the smaller
the amount of TVD dissipation used. Among the con-
sidered schemes, the result indicates that the least dis-
sipative scheme predicts the shear and shock locations
best when compared with the reference solution. The
results indicate that ACMTVDfi is slightly more ac-
curate than WENO5-llf. This is due to the fact that
ACMTVDfi reduces the amount of numerical dissipa-
tion away from high gradient regions. Using the sub-
cell resolution method of [24] for one reaction case by
applying it to only one of the reactions in this multi-
reaction flow does not improve the performance over
standard schemes. Further research on the generaliza-
tion of subcell resolution to multi-reactions needs to
be explored.

4 Numerical Dissipation Control and
Structure-Preserving High Order Meth-
ods

Newer turbulence/shock simulations use adaptive
blending of variant of high order ENO/WENO shock-
capturing methods and high order non-dissipative
methods in such a way that high order WENO schemes
are active only near the shock wave, and the meth-
ods free from numerical dissipation are used in the
turbulent flow away from the shock. There are ba-
sically two camps of such development: (a) The hy-
brid method that switches between high order non-
dissipative methods and high order shock-capturing
methods (e.g., high order WENO or ENO), and (b)
High order nonlinear filter method of Yee et al.,
Sjögreen & Yee, Yee & Sjögreen and Kotov et al.
[20, 10, 25, 27, 12, 29, 30, 13, 15, 16, 30, 31]. These
two general approaches, if with proper control of the
amount of numerical dissipation, usually provide a



similar accuracy. However, the nonlinear filter ap-
proach is more efficient.

The nonlinear filter methods are efficient in sup-
pressing spurious oscillations at discontinuities and
high-frequency oscillations in systems of strongly cou-
pled nonlinear equations. The idea was first intro-
duced and tested by Yee et al. [20], using an artifi-
cial compression method (ACM) of Harten as the flow
sensor. Later, multiresolution wavelet and other smart
flow sensors were developed by Sjögreen & Yee, Yee
& Sjögreen, and Kotov et al. [27, 7]. The smart
sensor flags the locations, estimates the amount of
numerical dissipation needed at these locations, and
keeps the rest of the flow field free of shock-capturing
dissipation. The nonlinear filter schemes are effi-
cient. The total computational cost for a given er-
ror tolerance is significantly lower than for standard
shock-capturing schemes or their hybrid cousins of
the same order. One important reason for their effi-
ciency is that the nonlinear shock-capturing filter dis-
sipation is applied after each full time step, whereas a
standard shock-capturing/hybrid method evaluates the
shock-capturing dissipation at each stage of the, e.g,
Runge-Kutta (R-K) time stepping scheme. Hence, the
nonlinear filter approach requires only one Riemann
solve per time step per grid point per dimension, in-
dependent of the time discretization involved. Hy-
brid schemes, which switch between high order non-
dissipative methods and high order shock-capturing
method within the same R-K stage, are less efficient
than the nonlinear filter methods.

All of the recently developed high order nonlin-
ear filter methods that use base schemes (i.e., dis-
cretizations before applying the filter) that are en-
tropy conserving, momentum conserving, kinetic en-
ergy preserving or combine two or more of these phys-
ical property preserving discretizations are already in-
cluded in our 3D ADPDIS3D computer code devel-
oped by Sjögreen & Yee. The code has been used
to simulate benchmark problems for turbulence with
shocks in gas dynamics [4, 27, 26], and for solving the
equations of MHD [23, 29, 30, 13, 15, 16, 30, 31].

An Illustration of the performance of structure-
preserving high order nonlinear filter method

The methods for comparison in this paper for spa-
tial discretizations are:

• ECHKP: Entropy conserving using
the Harten class of entropy functions
EH = −γ+α

γ−1 ρ(pρ−γ)
1

α+γ [18, 3]. It turned out
that this method in its base form also satisfies
Ranocha’s kinetic energy preservation condition
(KEP); so there is only one variant for this
method [11, 9].

• ECLOG: Tadmor-type entropy conserv-
ing method using the entropy function
EL = −ρ log(pρ−γ).

• ES: Skew-symmetric splitting of the inviscid flux
derivative that is entropy conserving and stable
using the Harten entropy function [3] and the gen-
eralized energy norm with summation-by-parts
(SBP) [21, 13, 13].

• DS: Momentum conserving Ducros et al. skew-
symmetric split of the inviscid flux derivative [2].

• KGP: Kennedy-Gruber-Pirozzoli (KGP) skew-
symmetric splitting of the inviscid flux derivative
that is kinetic energy preserving [5, 8, 1].

• ESDS: Entropy split with Ducros et al. splitting
[13].

• ESSW: Entropy split with Ducros et al. splitting
but switch to regular central near discontinuities
[14].

• ECLOGKP: Tadmor-type entropy conserving
method using the EL entropy function with Ra-
nocha’s kinetic energy preserving modification
[9].

• DSKP: Ducros Split with kinetic energy preser-
vation.

From our previous studies [13, 15, 14], the Tadmor-
type entropy conserving methods ECLOG and
ECLOGKP are the most CPU intensive methods
among the nine methods. They use approximately
twice the CPU time per time step than the ES, ESDS
and ESSW methods. DS is the least CPU intensive.
Comparison of execution times were given in previous
published works.

3D shock-free compressible turbulence gas dynam-
ics test case – 3D Taylor-Green vortex

The well-known shock-free compressible turbu-
lence test case to evaluate the stability and accuracy
for gas dynamics is the Taylor-Green vortex [19] . The
3D Euler equations of compressible gas dynamics are
solved with γ = 5/3. The computational domain is a
cube with sides of length 2π and with periodic bound-
ary conditions in all three directions. The initial data
are

ρ = 1 p = 100 + ((cos(2z) + 2)(cos(2x)+

cos(2y)) − 2) /16

u = sinx cos y cos z, v = − cosx sin y cos z, w = 0.

The problem is solved to time 20. In our previous
studies, solutions on a uniform coarse grid with 643

grid points were compared with a filtered DNS solu-
tion computed on a fine uniform grid with 2563 grid
points. Here, we use the same uniform coarse grid
to examine the nonlinear stability and accuracy of the
eight-order accurate version of the methods. The total
kinetic energy of the exact solution is constant in time.



Figure 3: 3D inviscid Taylor-Green vortex using 643 grid
points: Comparison of kinetic energy (top left),
enstrophy (top right), entropy (bottom left) and en-
tropy (closed up, bottom right) vs. time for the nine
eighth-order methods using β = 2.

The present discussion of numerical results is con-
fined to a coarse grid DNS comparison among meth-
ods. It is noted that for this Taylor-Green inviscid
problem, small scales are generated that eventually
cause large errors in the solution due to inadequate res-
olution. This occurs around T ≈ 5. Another issue is
that for very low dissipative or non-dissipative numeri-
cal methods for the simulation of turbulent flows, even
with extreme grid refinement, grid convergence can-
not be obtained as the original inviscid Euler equations
are chaotic in nature. With sufficient but not excess nu-
merical dissipations, one is then solving the equivalent
of a Navier-Stokes equations. See Yee & Sjögreen [26]
for a study. The end time is 20 instead of the standard
end time 10 to observe the solution behavior twice as
long using the same RK4 time discretization and CFL
number 0.4. Figure 3 shows the comparison of total
kinetic energy, enstrophy, and entropy vs. time for the
nine eighth-order methods. It is interesting to see the
behavior of doubling the time integration duration for
such a coarse grid DNS computation. Method ESDS
becomes unstable at around time 6, and method DSKP
becomes unstable around time 7. All other schemes
ran to completion. Again, the kinetic energy and en-
tropy results show the quantity with its value at time
zero subtracted, e.g., for the kinetic energy (Ekin(t))
the plotted quantity is Ekin(t) − Ekin(0). The ES
method starts to lose some energy at a later time. Oth-
erwise the stable results are similar. ECLOGKP and
KGS are indistinguishable, and fall on top of each
other in the zoomed in figure. One surprising result
is that method ECHKP (labeled ECH in the plots) is
expected to preserve kinetic energy in the same man-
ner but does not. The other stable methods are a little
off, but it is only visible in the closeup. Methods ES
and ECHKP fall on top of each other, as we would

expect, since these two schemes conserve the entropy
in a discretized sense. Method ECLOGKP is also on
top of ES and ECHKP, making it hard to visualize the
differences in the results.

Not shown here, studies show that the logarithmic
entropy function conserved Harten’s entropy almost
perfectly. Methods ECLOGKP and ECLOG conserve
entropy as illustrated in the figure where their solu-
tions are on top of each other. Overall, ECLOGKP,
ECLOG, ECHKP, KGS, and DS are very similar. One
has to zoom in very much on the plots to see any dif-
ferences for this test case. However, differences might
be larger for other flow problems. As can be seen,
for this test case, method ES behaves somewhat dif-
ferent. DSKP and ESDS are not performing well. It
is noted again that results by ES and ESDS are highly
dependent on the entropy splitting parameter β (which
is related to the parameter α in EH ). Only results by
β = 2 are shown based on the study in [13].

Harten’s entropy was used for all schemes ex-
cept ECLOG and ECLOGKP where we used the log-
entropy.

5 Concluding Remark
It is our assessment that a high order nonlinear

filter method with structural-preserving properties is
a viable approach to help improve the predictability
and reliability of the onset of shock-free turbulence
and turbulence with shocklets. For turbulence with
shocks, there is an even larger gain both in accuracy
and CPU time of the nonlinear filter schemes over
their standard variants of ENO/WENO counterparts or
their hybrid counterparts (by switching between non-
dissipative high order methods and high order shock-
capturing methods).
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