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JETTISON AND DISPOSAL FROM NEAR  
RECTILINEAR HALO ORBITS, PART 1: THEORY 

Stephen T. Scheuerle,* Diane C. Davis,† Emily M. Zimovan-Spreen,‡  
Brian P. McCarthy,§ Damennick B. Henry**, and Kathleen C. Howell†† 

The proposed Gateway spacecraft in a Near Rectilinear Halo Orbit (NRHO) will 

be a human outpost in cislunar space. The baseline mission may experience the 

deployment of visiting vehicles, cubesats, and on-orbit debris. Departure from the 

NRHO and cislunar space is nontrivial due to the complex gravitational environ-

ment that persists in and around Gateway. Long-term disposal orbits in heliocen-

tric space offer safe destinations for deployed objects. To mitigate risks associated 

with conjunctions between Gateway and deployed objects, strategies to identify 

risk-avoidant paths to heliocentric space are necessary for Gateway mission oper-

ations.  

INTRODUCTION 

Knowledge of the dynamical regime is crucial for successful cislunar mission operations. One facet of 

mission design considers on-orbit object or debris jettison. Jettisoned material from a spacecraft may aid the 

primary mission in reducing vehicle mass, deploying scientific experiments (such as cubesats), or end-of-life 

disposal. Proper jettison procedures are essential to avoid collisions, satisfy planetary protection constraints, 

and minimize the accumulation of space debris, which can pose significant risks to future missions and the 

Gateway itself. The demand for a strategy is amplified due to the challenges faced by cislunar debris tracking 

capabilities. The aim of this investigation is to identify the procedures necessary to properly dispose of or 

jettison objects from cislunar space. 

The guiding motivation behind this analysis is to generate strategies for the proposed Gateway crew out-

post. The baseline orbit for Gateway is an L2 southern Near Rectilinear Halo Orbit (NRHO) with a 9:2 reso-

nance with the Earth-Moon-Sun synodic period. The orbit relies on the gravitational forces of the Earth and 

Moon to complete each revolution, as it is a periodic solution in the Earth-Moon Circular Restricted Three-

body Problem (CR3BP). As Gateway will operate in cislunar space, jettisoned objects will be exposed to the 

same complex regime as the outpost. Identifying disposal strategies is necessary to mitigate collision risks. 

A characteristic of the Earth-Moon system is that with proper departure conditions, deployed objects escape 

to heliocentric space along ballistic arcs. To preserve heritage sites on the lunar surface and avoid passage 

near the Earth, heliocentric escape offers a long-term debris mitigation strategy if both short- and long-term 

trajectory behavior is carefully considered. A key challenge in accomplishing heliocentric escape is effec-

tively leveraging the Sun-Earth and Earth-Moon dynamics. The aim of this investigation is to introduce a 
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jettison strategy such that with a single deterministic maneuver from the NRHO, an object departs to helio-

centric space. 

Previous studies introduce the idea and demand for NRHO disposal capabilities. Olikara et al. explore 

long-term heliocentric disposal from Sun-Earth libration point orbits. Strategies include utilizing manifold 

structures off Lyapunov and Halo orbits to reach heliocentric space, and the cost associated with a cleanup 

maneuver to avoid future returns to the Earth.1 Further analysis by Colombo et al. in 2014 explore several 

mission end-of-life strategies for spacecraft in Sun-Earth libration point orbits, one option being a heliocen-

tric disposal strategy.2 In 2015, Whitley and Martinez explore possible staging orbit options in cislunar space 

to enable future missions to the surface of the Moon. The analysis presents the NRHO as an orbital outpost 

option for upcoming crewed cislunar program, later named Gateway and the Artemis program.3 In 2017, 

Williams et al. investigate long-term mission capabilities for an operational crewed outpost in an Earth-Moon 

NRHO. The study contains a preliminary look into the disposal dynamics from the NRHO. The analysis 

presents seven disposal types: interior, exterior, Moon-crossing, near-Moon, Earth impact, Moon impact, and 

heliocentric escape. Of the seven disposal types, three are defined to be ‘permanent options’, heliocentric 

escape, Earth-impact, and Moon-impact.4 To both maintain the NRHO structure, and identify motion depart-

ing the orbit, a metric that indicates an object is escaping the orbit is necessary. Guzzetti et al. introduce a 

modified momentum integral to signal motion departing from a NRHO.5  

Risk-avoidant escape to heliocentric space from the Earth-Moon NRHO requires the culmination of sev-

eral stages of flight. The demand to identify operational strategies in the NRHO grew as the orbit became the 

baseline for the Gateway program. In 2018, Boudad et al. presents NRHO disposal strategies that employ the 

Bicircular Restricted Four-body Problem (BCR4BP). The strategies apply energy-like metrics, solar tidal 

effects, and mapping techniques to illuminate trends in departing flow from the Earth-Moon system. The 

analysis also includes cases that impact the Earth and Moon prior to heliocentric escape.6 In 2019, Davis et 

al. explore the capabilities of NRHO disposal for both lunar impact and escape to heliocentric space. The 

strategy considers the time to depart the NRHO and tidal influence of the Sun. To avoid potential conjunction 

hazards, a strategy to mark safe maneuvers directions from Gateway is introduced. Given the name ‘recontact 

map’, the purpose of the tool is to illustrate maneuver directions that could pose a threat for future conjunc-

tions.7 The construction of recontact maps requires computational resources; Phillips et al. explore the po-

tential for cloud computing in the NRHO to construct such maps.8 A Hamiltonian map is introduced by Davis 

et al. to illustrate transfer options with sufficient energy to reach heliocentric space. The analysis also explores 

strategies for disposal through lunar impact.9 In 2021, Guardabasso et al. inspect the probability of various 

disposal strategies for jettison maneuvers along the velocity and anti-velocity directions.10 One challenge that 

persists is the dimensionality of the problem. With the ability to change maneuver direction, magnitude, and 

location along the orbit, classifying trends is nontrivial. Thus, for the lunar impact study, Davis et al. apply 

three-dimensional maps to illustrate the repeating, cyclic pattern in maneuver behavior. The work explores 

the probability of lunar impact at varying maneuver magnitudes and directions.11 In 2022, Davis et al. com-

bine insights from the dynamics and a sensitivity analysis through the Cauchy-Green strain tensor to charac-

terize ‘green zones’ for Cubesat deployment from the NRHO. The analysis compares Cubesat range infor-

mation with respect to the linear stretching principal directions and defines a flip geometry in range plots.12 

There is extensive analysis into the different phases and types of disposal strategies from the NRHO. As the 

object departs to heliocentric space, the problem focuses on avoiding returns to the Earth-Moon system. 

Analysis into the stability of different orbital resonances and maps aids in classifying the dominating the 

dynamics. Anderson et al. explore the orbital resonance structures in the Jupiter-Europa system to a quaran-

tine region in the vicinity of the Galilean moons. The methodology considers several Poincaré maps to char-

acterize stable islands.13 Understanding the proper methods to combine the phases of the disposal into one 

end-to-end transfer is crucial to providing long-term, risk-adverse paths to heliocentric space.  

JETTISON STRATEGY 

Characteristics that govern passage through the Earth-Moon and Sun-Earth dynamical regimes offer in-

sight into identifying cislunar disposal strategies. The jettisoned object is assumed to follow a ballistic path 

after the initial maneuver away from the reference spacecraft. Therefore, recognizing how properties of the 

transfer evolve over time offers insight into the long-term disposal problem. The main objective is to mitigate 

conjunction or impact events between the jettisoned object and other spacecraft, the Earth, or the Moon. 
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Thus, the strategy aims to identify the ideal jettison maneuver direction for a given location on the NRHO, 

maneuver size, and epoch. The jettison strategy introduced in this investigation is separated into three phases. 

The phases are NRHO departure, heliocentric escape, and Earth evasion. Previous work explores each of 

these phases independently, but the aim is to combine each strategy to create one end-to-end method. A 

jettison is treated as an impulsive maneuver starting from a state along the 9:2 NRHO. An overview of the 

three separate phases is as follows:  

1. Departure from the NRHO is the first disposal phase. Due to the linear stability properties of the 9:2 

NRHO being characterized as slightly unstable, a small perturbation from the orbit causes objects to 

asymptotically depart over time. The time to depart from the NRHO is a function of the jettison 

location along the NRHO, maneuver magnitude, and maneuver direction. Zimovan-Spreen et al. 

identify that Gateway departs from the NRHO between 45 and 72 days if no orbit maintenance ma-

neuvers are performed.14 A small jettison maneuver from Gateway causes an object to depart over 

several months. However, during this timeframe, the jettisoned object may pass close to Gateway on 

future revolutions of the orbit. During this timeframe, it is necessary to determine whether a conjunc-

tion between Gateway and the jettisoned object will arise. A sample trajectory of that departs the 9:2 

NRHO is illustrated in Figure 1. The jettison maneuver is 2 m/s at an osculating true anomaly (TA) 

of 200o. The trajectory is modeled in the CR3BP, where the arrows indicate the direction of motion 

along the blue arc. The aim for the NRHO departure phase is to identify jettison directions that avoid 

possible conjunction events.  

2. The heliocentric escape phase aims to ensure the deployed object escapes from the Earth-Moon vicinity. 

After NRHO departure, an object may remain near the Moon, travel toward Earth interior to the Moon, 

or depart exterior to the Moon, away from the Earth. A transfer that remains in the vicinity of the Earth-

Moon system may encounter lunar passes that influence the long-term behavior of the trajectory or may 

risk conjunction with other spacecraft or the Earth itself. Thus, to avoid impacting the Earth, Moon, or 

other spacecraft, exterior departures in the Earth-Moon system are desired. The heliocentric escape phase 

begins once the object is exterior to Moon in the Earth-Moon system (> 450,000 km from Earth) and ends 

when the object leaves the Earth’s sphere of influence. The energy of the spacecraft at the start of the 

heliocentric escape phase, as well as the orientation of the Earth-Moon-Sun system at NRHO departure, 

govern patterns in escaping to heliocentric space. A sample trajectory that successfully escapes to helio-

centric space is illustrated in Figure 2. The blue trajectory departs from the NRHO and voyages through 

the L1 portal toward heliocentric space. The transfer is modeled in the BCR4BP and depicted in the Sun-

B1 rotating frame, centered at the Earth-Moon barycenter (B1). The trajectory in Figure 2 is the continu-

ation of the NRHO disposal transfer from Figure 1. The investigation aims to achieve direct escapes, i.e., 

transfers that escape without additional revolutions within the Earth-Moon system. Such access to helio-

centric space is a function of the energy of the object post-lunar departure and the influence of solar 

perturbations, i.e., relative orientation of the Sun. 

Figure 1: Example of the NRHO Disposal phase in the Earth-Moon rotating frame 

(modeled in the CR3BP): a) xy-projection, b) xz-projection, c) yz-projection 
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3. Long-term Earth evasion is the goal of the third phase of disposal. Sun-Earth resonant structures offer 

insight into long-term passes of the disposed object and Earth. The motion of the escaping object is pri-

marily governed by the Sun once it departs from the Earth (greater than three million km from Earth). 

However, over 50 to 100 years, the slight differences in orbital period between the object and Earth lead 

to approaches on regular intervals (every 10-20 years). Although the close approach is certain, the dis-

tance varies as a function of the phase and orbital resonance of the deployed object. A sample departure 

transfer is illustrated in Figure 3. The trajectory is modeled in the BCR4BP and depicted in the Sun-

centered, Sun-B1 rotating frame. The path is propagated for 16-years and is the continuation of the trans-

fers illustrated in Figure 1 and Figure 2. The Earth evasion phase aims to identify strategies that enable 

long term disposal strategies that avoid returns that traverse near the Earth. 

DYNAMICAL MODELS 

The Circular Restricted Three-body Problem (CR3BP) and the Bicircular Restricted Four-body Problem 

(BCR4BP) model the motion of jettisoned objects in this investigation. The Earth-Moon CR3BP models the 

motion of an object during the NRHO departure phase. Beyond 450,000 km from Earth, the BCR4BP be-

comes the underlying dynamical model. Once the object departs the Earth-Moon system, the Sun-Earth 

CR3BP is applied. The implementation of the four-body problem aids in describing solar perturbations near 

the Earth-Moon system. 

The CR3BP is a paramount in constructing initial guesses and identifying patterns for complex trajectory 

design in a multi-body regime. Consider three bodies defined as P1, P2, and P3, with masses M1, M2, and M3, 

respectively. Each body is assumed to be a point mass. In this study, P1 is the Earth, P2 is the Moon, and P3 

is spacecraft. The CR3BP relies on a set of simplifying assumptions that reduce the complexity of the three-

body problem. Assume the mass of the spacecraft is negligible compared to the other two celestial bodies, 

i.e., M3 ≪ M1, M2 such that the motion of P1 and P2 is independent of the spacecraft. Also assume that the 

Earth and Moon traverse in circular orbits about their mutual barycenter (B1). A rotating coordinate frame is 

considered, where the origin is the barycenter B1, and the primaries P1 and P2 lie on the x-axis. To aid in 

numerical methods, the system is nondimensionalized such that the distance between the Earth and Moon is 

equal to one, and the sidereal period of the Earth-Moon system is 2π. The position of the primary bodies is a 

function of the mass parameter µ, computed as 𝜇 =  
𝑀2

𝑀1+𝑀2
. The position of the Earth is at (-𝜇 , 0 ,0), while 

the Moon resides at (1- 𝜇 ,0 ,0). The governing equations of motion of the spacecraft are second order, cou-

pled, nonlinear differential equations. Formulating the equations relative to a reference frame rotates with the 

larger primary bodies (Earth and Moon) yields the following time-independent equations,   

𝑥̈ = 2𝑦̇ + 𝑥 −
(1 − 𝜇)(𝑥 + 𝜇)

𝑟13
3 −

𝜇(𝑥 − 1 + 𝜇)

𝑟23
3  

𝑦̈ = −2𝑥̇ + 𝑦 −
(1 − 𝜇)𝑦

𝑟13
3 −

𝜇𝑦

𝑟23
3  

Figure 2: Heliocentric escape trajectory in the Sun-B1 rotating 

frame, centered at B1 (modeled in the BCR4BP) 

Figure 3: Sample Earth evasion 

transfer in the Sun-B1 rotating frame 
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𝑧̈ = −
(1 − 𝜇)𝑧

𝑟13
3 −

𝜇𝑧

𝑟23
3   

( 1 ) 

The quantities rij are the scalar radial distance from primary Pi to Pj. The terms (𝑥̇, 𝑦̇, 𝑧̇) and (𝑥̈, 𝑦̈, 𝑧̈) are the 

velocity and acceleration terms in the rotating frame, respectively.  

As the object leaves the immediate vicinity of the Moon, gravity perturbations from the Sun increase. 

Therefore, the Earth-Moon-Sun BCR4BP is applied. The BCR4BP follows similar assumptions to the 

CR3BP, where the model describes the motion of a spacecraft about the gravitational influence of a star-

planet-moon system. The Earth and Moon follow circular orbits about their mutual barycenter (B1), and the 

Sun and B1 traverse in circular orbits about the mutual barycenter (B2). The Earth-Moon and Sun-B1 orbital 

planes are assumed to be coplanar. Unlike in the CR3BP, the equations of motion for the BCR4BP cannot be 

written in terms of a time-independent system. However, the model is periodic with the synodic period of the 

Earth-Moon-Sun system. The position of the Sun relative is 

𝑟4 = [𝑎𝑆𝑐𝑜𝑠(𝜃𝑆)       𝑎𝑆 sin(𝜃𝑆)        0] 
( 2 ) 

where 𝑎𝑆 is the scalar distance between the Sun and Earth-Moon barycenter, and 𝜃𝑆 is called the Sun angle, 

that orients the Sun in the Earth-Moon rotating frame. The angular rate of the Sun equals the difference 

between the mean motion of the Sun-B1 system and the Earth-Moon system, i.e., 𝜃̇𝑆 = 𝑛𝑆𝐵1
- 1 for a system 

that is nondimensionalized by the Earth-Moon orbital period. The equations of motion are  

𝑥̈ = 2𝑦̇ + 𝑥 −
(1 − 𝜇)(𝑥 + 𝜇)

𝑟13
3 −

𝜇(𝑥 − 1 + 𝜇)

𝑟23
3 −

𝑚𝑠(𝑥 − 𝑎𝑆 cos(𝜃𝑆))

𝑟43
3 −

𝑚𝑠 cos(𝜃𝑆)

𝑎𝑠
2

 

𝑦̈ = −2𝑥̇ + 𝑦 −
(1 − 𝜇)𝑦

𝑟13
3 −

𝜇𝑦

𝑟23
3 −

𝑚𝑠(𝑦 − 𝑎𝑆 sin(𝜃𝑆))

𝑟43
3 −

𝑚𝑠 sin(𝜃𝑆)

𝑎𝑠
2

 

𝑧̈ = −
(1 − 𝜇)𝑧

𝑟13
3 −

𝜇𝑧

𝑟23
3 −

𝑚𝑠𝑧

𝑟43
3  

( 3 ) 

The term 𝑚𝑠 is the mass of the Sun relative to the Earth-Moon system, i.e. , 𝑚𝑠 =
𝑀4

𝑀1+𝑀2
. For the Earth-

Moon-Sun system the relative mass of the Sun is 𝑚𝑠 ≈ 328900. It is often advantageous to view trajectories 

in the BCR4BP within both the Earth-Moon and Sun-B1 rotating frame to recognize patterns.  

    Energy-like quantities offer insight into accessible regions of space and disposal strategies. The CR3BP 

has an integral of the motion denoted the Jacobi Constant value. The Jacobi Constant (𝐽𝐶) is expressed as,  

𝐽𝐶 =  −(𝑥̇ + 𝑦̇ + 𝑧̇)2 + (𝑥2 + 𝑦2) + 2 (
1 − 𝜇

𝑟13

+
𝜇

𝑟23

) 

( 4 ) 

The Jacobi Constant provides an energy-like metric as a basis of comparison between trajectories. The Jacobi 

Constant inversely related to the energy of the object, i.e., an increase in the Jacobi Constant corresponds to 

a reduction in energy. A similar quantity exists in the BCR4BP, denoted the Earth-Moon Hamiltonian. Unlike 

the Jacobi Constant, the Hamiltonian is not an integral of the motion, due to the explicit time dependency in 

the equations of motion. However, much like the Jacobi Constant, the Hamiltonian acts as a metric of com-

paring the energy between transfer geometries, as well as the capability to traverse through the Earth-Moon-

Sun system. The Hamiltonian is defined as,  

𝐻 =  −(𝑥̇ + 𝑦̇ + 𝑧̇)2 + (𝑥2 + 𝑦2) + 2 (
1 − 𝜇

𝑟13

+
𝜇

𝑟23

+
𝑚𝑠

𝑟43

−
𝑚𝑠

𝑎𝑠

(𝑥𝑐𝑜𝑠(𝜃𝑆) + 𝑦𝑠𝑖𝑛(𝜃𝑆))) 

( 5 ) 

Previous work connects the variation in the Earth-Moon Hamiltonian with the position of the spacecraft in 

the Sun-B1 rotating frame.15 The Jacobi Constant and Hamiltonian values govern zero velocity surfaces. The 

zero velocity surfaces enable passage through the Earth-Moon and Sun-B1 rotating frames.16 The energy-like 

quantities offer valuable insight into the disposal structures to heliocentric space.  
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MANEUVER FRAME 

Describing the jettison direction in a maneuver frame enables repeatable geometry across revolutions in 

the NRHO. For mission operations, defining a maneuver relative to an inertial reference frame provides clar-

ity across subsystems. As the 9:2 NRHO is not periodic in an inertial frame, the maneuver direction changes 

each revolution. To provide consistency across revolutions, the maneuvers are defined relative to a Velocity, 

Normal, and Binormal (VNB) frame. The coordinate frame is constructed by the following unit vectors, 

𝑁⃗⃗⃗𝐼 = 𝑟23
𝐼 × 𝑉⃗⃗𝐼 

𝐵̂𝐼 = 𝑉⃗⃗𝐼 × 𝑁⃗⃗⃗𝐼 

𝑉̂𝐼 =
𝑉⃗⃗⃗𝐼

|𝑉⃗⃗⃗𝐼|
, 𝑁̂𝐼 =

𝑁⃗⃗⃗𝐼

|𝑁⃗⃗⃗𝐼|
, 𝐵̂𝐼 =

𝐵⃗⃗𝐼

|𝐵⃗⃗𝐼|
 

where arrow overbar indicates a vector, whereas the carrot overbar is a unit vector. The superscript I marks 

the vector in a Moon-centered, inertial reference frame. The velocity, binormal, and normal unit vectors are 

𝑉̂𝐼, 𝑁̂𝐼, and 𝐵̂𝐼, respectively. The investigation defines the maneuver relative to the VNB frame with yaw 

(Ψ) and pitch (Θ) angles. Yaw orients the maneuver relative to the 𝑉̂𝐼−𝐵̂𝐼 plane, while pitch inclines the 

maneuver out of the  𝑉̂𝐼−𝐵̂𝐼 plane and into 𝑁̂𝐼. The yaw and pitch angles are illustrated in Figure 4. 

Maneuver execution maps are employed to identify valuable jettison directions. Jettison from the NRHO 

is often restricted by operational constraints. For a disposal that is limited by maneuver magnitude and loca-

tion along the NRHO, a map is generated to associate a unique direction with a desired outcome. The map is 

fixed with a specific maneuver magnitude, and location along the 

NRHO. The map scans between 0 and 360 degrees in yaw, and -90 

and 90 degrees in pitch, representing maneuvers in any direction. 

Two different strategies are applied to discretize points along the 

map. The first approach builds a grid of points the resolution of two 

degrees, yielding 90 rows of points (pitch), and 180 columns (yaw). 

The second technique applies a Fibonacci spiral distribution to dis-

tribute points (5000) across a sphere.4,17 The grid strategy is often 

advantageous for visual inspection and selecting points off the map. 

The Fibonacci spiral more evenly distributes the points across the 

entire sphere, which offers insight into the probability of achieving a 

specified outcome. Where the grid strategy is utilized for maneuver 

design and operations, the Fibonacci spiral aids in identifying larger 

trends for mission design. The placement of points along a sphere for 

the grid and Fibonacci spiral are illustrated in Figure 5.  

NRHO DEPARTURE 

The upmost priority for jettison and disposal strategies is to avoid conjunctions. The chaotic dynamics 

present in cislunar space, partnered with the navigation and maneuver execution errors, result in a large var-

iance for a disposed object. Especially for debris analysis, it is unlikely the ejected material will be operational 

for tracking and orbit determination. Thus, modelling the precise conjunction of two objects in cislunar space 

is a challenge. To address the uncertainty, Davis et al. introduce the recontact analysis with Gateway.3  

Figure 4: Yaw (Ψ) and pitch an-

gles (Θ) in the VNB maneuver 

frame 

Figure 5: Points along a sphere for a grid (a) and Fibonacci spiral (b) 
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Recontact and range flip conditions are two conjunction events to be avoided. The investigation analyzes 

the risk of conjunction by recording the range between Gateway and the jettisoned object and signifying 

cases that approach within a set distance. Recontact is defined when a jettisoned object that departs the vi-

cinity of Gateway returns within a keep-out sphere. The radius is assumed to be a constant, scalar value 

denoted the recontact distance. An object is classified as a recontact if, after jettison, it exits the keep-out 

sphere and subsequently reenters. Waiting until the object departs the keep-out zone ensures that recontacts 

are not flagged immediately after jettison. The selection of a larger recontact distance allows for a more 

conservative risk-mitigation strategy. In this analysis, the recontact distance is set to 100 km. Another con-

junction hazard is denoted a range flip, or flip for short. For low energy jettison strategies, i.e., transfers 

explored in this analysis, the deployed object remains in the vicinity of the NRHO for several revolutions. 

While departing the NRHO, conjunction events near perilune are to be avoided. As the velocity peaks near 

perilune, the range between Gateway and the jettisoned object is subject to change rapidly. For a majority of 

perilune passages the range increases, however, on occasion the two objects rapidly approach each other near 

perilune. The name ‘flip’ is given to label the quick change in range. Mathematically, a flip is defined when 

the range at perilune is less than the range at the previous apolune and within 1000 km. Although the 

flip may not pass within the recontact distance, perturbations to the states may lead to the miss distance to 

shrink. Three sample range measurements are depicted in Figure 6 to demonstrate nominal, recontact, and 

flip patterns. The range is computed in the CR3BP by computing the distance between the jettisoned object 

and the position of Gateway. The motion of Gateway is assumed to follow the 9:2 synodic resonant NRHO. 

Each of the three arcs represent jettisons that occur at apolune with a maneuver magnitude of 1 m/s. The 

jettison direction is different for the three trajectories. The time along the arc is measured in units of revolu-

tions past jettison, where one revolution is approximately 6.56 days in duration. The range axis is scaled 

logarithmically to illustrate general trends. The horizontal line at 100 km marks the recontact zone. Perilune 

passes occur at each half-integer. The red arc returns within the 100 km recontact distance near apolune 

approximately two revolutions after jettison. The green trajectory marks a transfer that has two flips at the 

first (0.5 revolution) and third (2.5 revolution) perilunes. The blue trajectory is a nominal NRHO departure: 

over the first three revolutions the transfer does not return within the recontact sphere nor experience a flip. 

Note that all three trajectories remain in the vicinity of the NRHO after the third revolution, i.e., approxi-

mately 19.5 days.  

Recontact and flip maps aid in identifying favorable 

jettison directions. The range plot in Figure 6 aids in visu-

alizing the progression of distance from Gateway over 

time, however, trends between maneuver direction and re-

contact are not easily identified from such lots. Therefore, 

range information from a set of disposal trajectories is pro-

jected onto a grid of points in the maneuver frame. A sam-

ple recontact map is illustrated in Figure 7. The map is 

generated by propagating 180 by 90 points, distributed in 

a grid pattern (see Figure 5). Each jettison occurs at apo-

lune with a maneuver magnitude of 1 m/s. The range be-

tween the jettisoned object and the Gateway is assessed 

for a time horizon of 90 days. The yaw and pitch angles 

are defined relative to the VNB maneuver frame with re-

spect to the inertial velocity. The white regions indicate 

locations where recontact does not occur. The colors rep-

resent the distance for solutions that recontact. For cases 

where multiple recontacts occur, the closest approach is 

selected.     

Figure 6: Three sample Gateway-object 

range plots computed in the CR3BP; 

blue, green, and red arcs are nominal, 

flip, and recontact cases, respectively 
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Recontact characteristics offer insight into risks associated with regions on the map. Taking the same 

sample scenario from Figure 7, three more maps are depicted in Figure 8. The map in Figure 8a demonstrates 

the relative velocity between the jettisoned object and Gateway during the closest approach. The number of 

recontacts over the horizon time is portrayed in Figure 8b, with 14 recontacts being the most occurrences 

over the 90-day time horizon. The location along the NRHO where recontacts occur is expressed in Figure 

8c. Coloring the maps offers vast insight into the different types of recontacts. For example, examining Figure 

8a and Figure 8c demonstrate that there is a higher 

relative recontact velocity when the recontact oc-

curs near perilune. Likewise, comparing Figure 8b 

and Figure 8c highlights a relationship between re-

contact locations near apolune and high numbers 

of recontacts within a given trajectory. A range 

flip map appears in Figure 9 for the same sample 

case. Recall a flip is defined to have an approach 

distance within 1000 km. Thus, each point colored 

black in Figure 9 represents a flip departure. Note 

that both recontacts and flips must be avoided for 

an NRHO departure phase to be considered suc-

cessful. Therefore, a desired NRHO departure 

transfer is acquired by overlaying the two maps 

and picking a jettison direction that avoids recon-

tact and flips. Note that the map is dependent on 

the jettison maneuver magnitude and location 

along the NRHO. Changing one or both quantities 

influence the resulting maps.  

 

 

Figure 8: Recontact maps depicting the a) veloc-

ity at recontact, b) number of recontacts, and c) 

time past perilune for the recontact location 

a) 

b) 

c) 

Figure 9: Range flip map generated in the 

CR3BP, jettison of 1 m/s at apolune 

Figure 7: Recontact map for a jettison at apolune with a maneuver magnitude of 1 m/s 
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HELIOCENTRIC ESCAPE 

 Once the jettisoned object departs the NRHO, it may remain near the Moon, pass through the Earth-

Moon L1 portal toward Earth, or depart exterior to the Earth-Moon system through the Earth-Moon L2 portal. 

To avoid impacting the Earth, Moon, or other spacecraft, exterior departures from the Earth-Moon system 

are desired. Access to heliocentric space is a function of the energy of the object post-lunar departure.2 The 

Sun-Earth Jacobi Constant is a direct indicator of whether ballistic arcs have sufficient energy to pass through 

the L1 and L2 regimes in the Sun-Earth system. Although the energy restricts or enables access to heliocentric 

escape, it does not guarantee escape. The relative orientation of the Sun with respect to the Earth and Moon 

influences solar gravity perturbations. Past analysis noted specific conditions for desired escape for maneu-

vers placed at perilune.2 The current investigation continues the analysis to evaluate the Sun-Earth Jacobi 

Constant value and epoch conditions to enable heliocentric escape.  

Jettison geometry within cislunar space influences the Sun-Earth Jacobi Constant value attained one the 

object passes into heliocentric space. Recall the Jacobi Constant value is an integral of the motion for the 

CR3BP. For a trajectory near the Earth-Moon system, such as the NRHO and neighboring cislunar structures, 

the Earth-Moon Jacobi Constant value remains constant along a ballistic arc. For a transfer in heliocentric 

space, far from the Moon, the Sun-Earth Jacobi constant remains constant along the trajectory. However, if 

the Sun-Earth Jacobi constant is evaluated for a trajectory modeled in the Earth-Moon CR3BP, the value 

varies. This variation in the Sun-Earth Jacobi Constant ultimately enables transfers to heliocentric space. The 

NRHO departure phase illustrated in Figure 1 demonstrates that a jettisoned trajectory includes several passes 

of the Moon prior to heliocentric escape. In the Sun-Earth rotating frame, the lunar passes are equivalent to 

flybys that deliver or remove energy from the system. The aim is to identify NRHO departure conditions that 

mimic energy-increasing flybys and result in desirable energy characteristics. Previous analysis employs the 

use of Hamiltonian maps.9 A similar Jacobi Constant map is generated by propagating a grid of 180 by 90 

points until each transfer reaches 450,000 km from Earth. If the trajectory remains within 450,000 km from 

Earth for 90 days, then the jettison either remains near the Moon or departs through the Earth-Moon L1 

Gateway towards Earth; such a jettison is labeled a non-departure. Distance from Earth (rather than distance 

to the Moon) is designated as the departure condition to differentiate between interior and exterior paths from 

the lunar vicinity. Jettisons that depart from the Earth-Moon system are rotated into the Sun-Earth rotating 

frame, and the instantaneous Sun-Earth Jacobi Constant is determined. The current analysis assumes the 

intended jettison follows a direct escape, where the transfer does not have lunar flybys after the first departure 

from cislunar space. Recall the sample scenario described previously, in which an object is jettisoned from 

Gateway at apolune, with a maneuver magnitude of 1 m/s. The Jacobi Constant map for the sample scenario 

is illustrated in Figure 10. As the Jacobi Constant value is inversely related to an energy-like quantity, the 

blue regions indicate a higher energy. The areas of the map that are not colored are jettison directions that do 

not yield lunar departure, i.e., do not reach 450,000 km from Earth within 90 days. To reach heliocentric 

space from the Earth-Moon system, the trajectory must pass through the Sun-Earth L1 or L2 portals. A Jacobi 

Constant value below that of the respective Lagrange points is required. The Jacobi Constant value for Sun-

Earth L2, 𝐽𝐶𝐿2
=3.000886, is applied as a more conservative metric. Reconsider the map depicted in Figure 

10. Any point with a value greater than 3.000886 is not feasible for direct, heliocentric escape. The map is 

Figure 10: Sun-Earth Jacobi Constant map for 

a 1 m/s jettison at apolune 
Figure 11: Energy departure map for a 1 m/s jet-

tison at apolune. Green regions yield sufficient 

Jacobi Constant values for heliocentric escape 
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regenerated in Figure 11 to emphasize regions with sufficient energy to depart. The green regions mark ma-

neuver directions in the VNB frame that achieve the desired Sun-Earth Jacobi Constant value. Conversely, 

yellow points mark the jettison directions resulting in trajectories with insufficient energy to pass through the 

L1 or L2 portals with a direct escape.  

One challenge with identifying the trend in the Sun-Earth Jacobi Constant is the indirect relationship with 

Earth-Moon rotating states. Building intuition into the dynamics, and possible constraints, aids in the jettison 

design strategy. Consider a sample scenario where a jettisoned spacecraft is located in position space at the 

Earth-Moon L2 point. The aim is to identify a velocity direction that maximizes the energy in the Sun-Earth 

rotating frame, which is equivalent to maximizing the Sun-Earth rotating velocity. The Sun-Earth rotating 

velocity vector is written as  

𝑣⃗𝑆𝐸 = 𝑟𝐸𝑀𝐶̇ +  𝑣⃗𝐸𝑀𝐶 

The terms 𝑣⃗𝑆𝐸 and 𝑣⃗𝐸𝑀 are the velocity vectors in the Sun-Earth and Earth-Moon rotating frames, respec-

tively. The vector 𝑟𝐸𝑀 is the position vector of the object in the Earth-Moon rotating frame, relative to the 

Earth-Moon barycenter. The direction cosine matrix 𝐶 maps states from one rotating frame to the other, and 

is written as  

𝐶 =  [
𝑐𝑜𝑠(𝜃𝑆) − 𝑠𝑖𝑛(𝜃𝑆) 0

𝑠𝑖𝑛(𝜃𝑆) 𝑐𝑜𝑠(𝜃𝑆) 0
0 0 1

] 

Recall the angle 𝜃𝑆 orients to the two rotating frames. The derivative of the rotation matrix (𝐶̇) is,  

𝐶̇ = 𝑛 [
−sin(𝜃𝑆) − cos(𝜃𝑆) 0

co𝑠(𝜃𝑆) − sin(𝜃𝑆) 0
0 0 0

] 

The variable 𝑛 is the mean motion of the Sun-Earth system relative to the Earth-Moon rotating frame. Note 

that the matrix 𝐶 is unitary while the derivative 𝐶̇ is not. To maximize the Sun-Earth rotating velocity 𝑣⃗𝑆𝐸, 

the sum of 𝑟𝐸𝑀𝐶̇ and 𝑣⃗𝐸𝑀𝐶 must also be maximized. The combination of two vectors is maximized when the 

vectors are aligned. Taking the dot product between 𝑟𝐸𝑀𝐶̇ and 𝑣⃗𝐸𝑀𝐶 yields,  

𝑛(−𝑥𝑠𝑖𝑛(𝜃𝑆) − 𝑦 cos(𝜃𝑆)) ∗ (𝑥̇ cos(𝜃𝑆) − 𝑦̇ sin(𝜃𝑆)) + ⋯ 

𝑛(𝑥𝑐𝑜𝑠(𝜃𝑆) − 𝑦 sin(𝜃𝑆)) ∗ (𝑥̇ sin(𝜃𝑆) + 𝑦̇ cos(𝜃𝑆)) = 𝑛(𝑥𝑦̇ − 𝑦𝑥̇) 

ℎ𝑧 =  (𝑥𝑦̇ − 𝑦𝑥̇) 

Note that the cartesian states are in the Earth-Moon rotating frame. The term ℎ𝑧 is the z-component of angular 

momentum of the object in the Earth-Moon rotating frame. The result illustrates that maximizing the Sun-

Earth energy, i.e., reducing the Jacobi Constant value, is obtained by maximizing ℎ𝑧. To illustrate the angular 

momentum term, a map for a 1 m/s jettison at apolune is constructed in Figure 12. The color scale indicates 

ℎ𝑧 of the trajectory at the departure state (450,000 km from the Earth), where yellow regions signify large 

values. The regions in white do not reach 

450,000 km from Earth in the 90-day 

timeframe. Comparing Figure 10 to Figure 12 

demonstrates the inverse relationship between 

the Sun-Earth Jacobi Constant value and ℎ𝑧. 

One benefit to the connection between energy 

and angular momentum is the simplicity of tar-

geting ℎ𝑧 in the Earth-Moon rotating frame. For 

a jettison maneuver with a fixed magnitude, tar-

geting a value of ℎ𝑧 > 0 (prograde) at 450,000 

km from Earth yields transfers that have the 

necessary Sun-Earth energy to escape through 

the L1 and L2 portals.  

Figure 12: Earth-Moon angular momentum map for a 

1 m/s jettison at apolune 
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Disposal strategies require suitable timing to escape to heliocentric space. One challenge is associated with 

connecting the jettison epoch with a sufficient phase of the Earth-Moon-Sun system. The process includes 

several components: initial epoch identification, time to depart, and orientation.  

1 Initial epoch identification matches the selected location along the orbit with a given orientation of the 

Earth-Moon-Sun system. The CR3BP is time-independent, however, the introduction of the Sun with the 

BCR4BP creates a time-dependency. One condition that is leveraged is the synodic resonance of the 9:2 

NRHO. Since the geometry is resonant with the Earth-Moon-Sun synodic period, jettison patterns repeat 

every two months. Although the patterns repeat, the phase of the NRHO is still required. The NRHO phase 

describes the alignment of the 9:2 structure with the Earth-Moon-Sun system. For Gateway, the NRHO is 

placed in a specific geometry for long-term eclipse avoidance.18 The geometry places a perilune precisely 

when the Moon falls between the Sun and Earth, i.e., 𝜃𝑆 = 0𝑜. For ease, the perilune at 𝜃𝑆,𝑛 is defined as 

revolution n, where revolution one starts at 𝜃𝑆,1 = 0𝑜. Since the Sun traverses clockwise relative to the 

Earth-Moon system, the remaining perilunes occurs every -80 degrees, i.e., revolution 2 starts at 𝜃𝑆,2 =

−80o, revolution 3 starts at 𝜃𝑆,3 = −160o, etc. Likely a jettison occurs away from perilune, thus, the time 

past perilune (𝑡𝑝𝑝) multiplied by the angular rate yields the angle swept over that timeframe (𝜃𝑆(𝑡𝑜) =

𝜃𝑆,𝑛 + 𝜃̇𝑆 𝑡𝑝𝑝. For example, consider a jettison maneuver at apolune on the 5th revolution of the NRHO. 

The angle of perilune on the fifth revolution equates to 𝜃𝑆,5 =  −80 ∗ 5 =  −400 =  −40𝑜. Apolune oc-

curs at a time past perilune of 3.28 days, while the angular rate of the Sun about the Earth-Moon system 

is -12.19 degrees per day. Thus, the initial Sun angle for a jettison at apolune of revolution 5 is 𝜃𝑆(𝑡𝑜) =
−40 − (12.19) ∗ 3.28 =  −80𝑜. A way to validate this process is the dual resonance of the NRHO; a 

perilune for one month should equate to an apolune for the next. For example,  the perilune of the second 

revolution has the same Earth-Moon-Sun orientation as the apolune on the fifth revolution.  

2 The time to depart from the NRHO ties the initial jettison epoch with the relative phase of the Earth-Moon-

Sun system at departure. Following the same procedure as the Jacobi Constant map, a grid of jettison 

directions is applied for a fixed location along the NRHO and a fixed jettison maneuver magnitude. The 

time it takes for each trajectory arc to reach 450,000 km is denoted the time to depart and given the symbol 

𝑡𝑑. A time to depart map for the 1 m/s jettison at apolune sample scenario appears in Figure 13. The 

shortest time to depart in this example is 46 days. Recall the white areas of the map do not result in depar-

tures exterior to the Moon over the 90-day time horizon. The time to depart is coupled with the mean 

motion of the Sun to determine the evolu-

tion of the Earth-Moon-Sun geometry 

while the objects traverse through cislunar 

space. The change in Sun angle over the 

timeframe is computed using Δ𝜃𝑆 =  𝜃̇𝑆 𝑡𝑑. 

Take for example a transfer that requires 

60 days to reach the departure condition. 

Recall, the angular rate of the Sun about 

the Earth-Moon system is -12.19 degrees 

per day. For a 60-day trajectory, the 

change in Sun angle is Δ𝜃𝑆 = −731.4o, or 

reduced to Δ𝜃𝑆 =  −11.4𝑜. 

3 Heliocentric escape requires proper orien-

tation to pass through the L1 and L2 portals. The relative location of the departure state in the Sun-Earth 

system dictates whether a trajectory performs a direct escape or completes additional revolutions within 

the Earth-Moon system. In the planar CR3BP, the stable and unstable manifold structures are separatrices 

for planar periodic orbits.19 The L1 and L2 Lyapunov orbit manifolds bound motion between near-Earth 

and heliocentric space. To identify the proper disposal method, the stable manifold structures are explored. 

An assumption made to assess the bounding manifold flow is that the departing motion from the NRHO 

lies in the ecliptic plane. The L1 and L2 Lyapunov orbits are constructed for a Sun-Earth Jacobi Constant 

value of 3.0007. Recall the departure state is defined at the location 450,000 km from Earth. Trajectories 

along the stable manifolds of the two Lyapunov orbits are propagated in reverse time. A Poincaré section 

Figure 13: Time to depart map for a 1 m/s 

jettison at apolune 
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of a circle with radius 450,000 km from Earth is 

employed. Each time a trajectory along the mani-

fold passes through the section, the state is rec-

orded. Polar coordinates centered at the Earth are 

employed to evaluate the manifold typology. The 

angle Γ measures the position of the state relative to 

the +x-axis in the Sun-Earth rotating frame, cen-

tered at Earth. The angle is termed the Moon angle, 

as it orients the approximate position of a departing 

object and the Moon within the Sun-Earth frame at 

a given epoch. An illustration of the typology is de-

picted in Figure 14. The blue and orange points cor-

respond to the stable manifold crossings associated 

with the L1 and L2 Lyapunov orbits, respectively. 

Both orbits have a Sun-Earth Jacobi Constant value 

of 3.0007. The manifold structures bound passage 

to heliocentric space. Therefore, a point within the 

blue curves traverses out L1 interior to the Sun-Earth system. Likewise, a departure state from the orange 

curve moves through the L2 portal, exterior to the Sun-Earth system. Note that the sections evolve as the 

Sun-Earth Jacobi Constant value changes. In addition, the radial velocity is likely to change with each 

departure state. Therefore, the Poincaré section from Figure 14 acts as a reference, where a conservative 

estimate on escape states is selected. The orientation of the departure state is tied to the angle range for the 

Moon angle Γ. The escape sets selected are ΓL1
= [20𝑜, 135𝑜], and ΓL2

= [−160𝑜, −45𝑜]. 

Insights from the initial epoch selection, time to depart, and orientation enable a strategy for direct heliocen-

tric escape. The goal is to determine the position of the Sun relative to the Earth-Moon system when the jetti-

soned object reaches the departure state (450,000 km from Earth). The Sun angle at the departure state is strictly 

a function of the initial Sun angle and time to depart, i.e., 𝜃𝑆(𝑡𝑑 + 𝑡0) =  𝜃𝑆(𝑡0) + θ̇𝑆𝑡𝑑. Rotating the departure 

state from the Earth-Moon to the Sun-Earth rotating frame enables a comparison to the orientation analysis. 

The state is projected onto the ecliptic plane, and the Moon angle Γ is determined. If the Moon angle is in either 

escape sets ΓL1
 or ΓL2

, then the departure orientation is sufficient for heliocentric escape. Return to the sample 

scenario of a 1 m/s jettison at apolune. Assume the jettison occurs on either revolution 1 or revolution 2 of the 

NRHO. The maps in Figure 15 illustrate jettison maneuver directions that predict escape through the L1 or L2 

portals. The areas in blue signify transfers that have the proper orientation to depart through the L1 portal, 

interior to the Sun-Earth system, while the orange regions predict jettison directions that yield orientations that 

may escape through the L2 portal and traverse exterior to the Sun-Earth system. Revolution 1 and 2 are depicted 

by Figure 15a and Figure 15b, respectively. It is apparent that the orientation jettison options change from 

revolution to revolution. Note that the map does not include information about the energy at departure, there-

fore, Figure 15 does not predict escape. Although the immediate dynamics of the departure phase are not pri-

marily governed by the Sun, once the object reaches the departure state, the relative orientation of the Sun has 

a large influence in the potential for heliocentric escape.  

Figure 14: Poincaré section to assess heliocen-

tric escape leveraging stable manifolds off the 

L1 and L2 Lyapunov orbits. (JC = 3.0007) 

Figure 15: Sun-Earth orientation maps to escape through the L1 and L2 portals, revolution 1 (a) and 2 (b) 

a) b) 
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Jettison maneuver analysis is influenced by errors observed in operational flight. The applications com-

plementing analysis of this analysis involves the introduction of maneuver execution errors and navigational 

errors from the initial jettison state.20 The findings identify a desired jettison geometry that is less perturbed 

by errors. The geometry is denoted a ‘corner turn’; an example  is illustrated in Figure 1. A method to differ-

entiate the geometry from other transfers is to assess if the departure state has a z-component greater than 

zero. The 3D maps in Figure 16 represent the maneuver directions (yaw and pitch) that yield corner turn 

departures for TA values from 0⁰ to 360⁰ around the NRHO. Three values of jettison Δv magnitude are rep-

resented, 1.7 m/s, 5 m/s, and 15/ m/s. Each point on the map represents a single jettison location and direction 

that results in a corner-turn departure from the NRHO. Since each point in Figure 16 represents a corner-turn 

departure, the points are colored according to the NRHO time to depart, measured in terms of revolutions in 

the NRHO. It is apparent that a larger maneuver generally leads to a faster departure. As observed in previous 

studies, the fastest departures are achieved by maneuvers in a lobe centered around the velocity direction 

(yaw = pitch = 0⁰) at perilune (TA = 0⁰). It is also notable that each lobe or shell within the 3D maps is 

comprised of a set of maneuvers that tend to depart after the same time-of-flight. These maps demonstrate 

that a given desired behavior is available at a range of locations along the NRHO if the maneuver direction 

or magnitude is varied. Similarly, the same behavior is available across various jettison Δv magnitudes if the 

direction and/or TA are adjusted. The behavior of trajectories departing the NRHO is cyclic in TA, Δv, and 

maneuver direction. 

Combining feasible jettison directions from the Sun-Earth Jacobi Constant map and the orientation map 

yields a strategy to identify direct heliocentric escapes. Sufficient energy and proper Sun-Earth departure 

orientation is required to escape to heliocentric space. Return to the sample scenario of a 1 m/s jettison ma-

neuver at apolune along the NRHO. The Jacobi Constant map from Figure 17 illustrates jettison directions 

that yield sufficient energy to pass through the L1 or L2 portals. Likewise, the orientation maps included in 

Figure 17 signify jettison directions that result in the correct Sun-Earth orientations. Based on the revolution 

of the NRHO, Figure 17 illustrates heliocentric escape maps. Heliocentric escape maps are generated for the 

first four revolutions of the NRHO, labeled Figure 17a) through d), respectively. The green regions represent 

jettison maneuver directions that predict heliocentric escape. It is apparent that there are repeated trends from 

revolution to revolution. 

JETTISON MAP  

Jettison from NRHO requires careful selection of the maneuver from the baseline NRHO. Recall the first 

two phases of NRHO disposal are NRHO departure and heliocentric escape. Operational and dynamical con-

straints must be considered to avoid conjunctions and escape to heliocentric space. Overlaying recontact, 

range flip, heliocentric escape, and corner turn information onto one map offers a visual for selecting initial 

jettison directions. Assume the sample scenario case of a 1 m/s jettison at apolune (associated with revolution 

1). The jettison map is illustrated in Figure 18. The title of the plot indicates the revolution of the maneuver 

and the Moon angle Γ at the time of jettison. The yaw and pitch are relative to an inertial VNB frame. The 

regions in red refer to jettison directions that result in a recontact, i.e., return within the keep-out-zone of 100 

Figure 16: Maneuver directions that yield corner-turn departures for 

 1.7 m/s (a), 5 m/s (b), and 15 m/s (c) jettisons 
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km. The areas marked by pink dots signify jettison directions that have a perilune range flip. The blue points 

result in disposal geometry that matches a desired corner turn behavior but does not guarantee the proper 

orientation. The green regions yield heliocentric escape. The aim is to select a jettison location (or regions) 

where the blue points overlap a green region, while avoiding the red and pink areas. It becomes apparent that 

heliocentric disposal without conjunction events it a nontrivial task to predict when treated as a single prob-

lem. However, separating each phase into different challenges reduces the complexity of the problem.    

 

 

PROBABILITY OF CONJUNCTION 

      Identifying the probability of recontact and range flip offers insight into mission planning. Inadvertent 

jettisons could be the result of maneuver execution errors, an emergency abort, or miscellaneous debris from 

cislunar operations. Due to the dimensionality of the problem, a similar mapping technique is employed at 

different locations along the NRHO. Assume debris is inadvertently jettisoned from Gateway with a maneu-

ver magnitude of 1 m/s. The maps from Figure 7 and Figure 9 provide an illustration for possible jettison 

directions. Without knowledge of the maneuver direction, it is uncertain if a recontact or flip will occur. 

Rather than constructing a map using the grid technique, a Fibonacci spiral with 5000 points is employed. 

Figure 17: Heliocentric escape maps for 1 m/s jettison at apolune, revolution 1 (a), 2 (b), 3 (c), and 4 (d)  

a) 
b) 

c) d) 

Figure 18: Jettison map for a 1 m/s maneuver at apolune (revolution 1 of the NRHO) 
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The technique aims to maintain equal spacing in every direction. As an inadvertent jettison may occur at any 

time, maps are generated at different locations along the orbit. A set of recontact maps and flip maps are 

combined to create 3D maps, illustrated in Figure 19a and Figure 19b, respectively. Each blue point 

corresponds to a maneuver direction and NRHO location that results in a recontact (Figure 19a) or flip (Figure 

19b). The recontact and range flip distances remain at the set 100 km and 1000 km values, respectively. The 

jettison maneuver magnitude remains 1 m/s. A horizontal cross-section of Figure 19a or Figure 19b yields a 

map at a fixed location on the NRHO. The vertical axis is the location on the NRHO defined by time past 

perilune. Note that the surface geometry evolves as the time past perilune changes, thus, the jettison location 

greatly impacts the proability of recontact or a flip. The probability of conjunction is determined by dividing 

the number of conjunction events by the total number of points for each location along the NRHO. For ex-

ample, out of the 5000 points selected at perilune, 129 of them result in a recontact within the set 100 km 

range. Thus, the probability of recontact for an inadvertent jettison of 1 m/s, at perilune, is 2.58%.  

The favorability for jettison of a given TA along the NRHO can be assessed in part by computing the 

percentage of total jettison directions at that location that yield desirable or undesirable behavior. Three quan-

tities of interest in this study are independent of Sun angle: undesirable jettisons result in recontact risk or 

range flips at perilune; desirable jettisons result in corner-turn departures (whether those departures then 

continue to directly escape to heliocentric space depends on the Sun angle.) The percentage of total maneu-

vers that yield corner turn departures, perilune range flips, and recontact risk appear as a function of jettison 

TA in Figure 20 for 1.7 m/s, 5 m/s, and 15 m/s maneuvers as computed in the CR3BP. Each datapoint repre-

sents the results of 5,000 maneuver directions equally distributed in a sphere using a Fibonacci spiral distri-

bution applied at a single jettison TA. For each TA, the percentage of the 5000 jettison directions that yield 

corner-turn departures is plotted in blue, the percentage that results in a trajectory that re-enters the 100 km 

keep-out sphere is plotted in red, and the percentage of total maneuver directions that experience a perilune 

flip in the range resulting in an approach within 1000 km of the Gateway is plotted in magenta. Note that 

these results are not exclusive; it is possible for a single jettison trajectory to experience a recontact risk 

shortly after jettison, a flip in the range pattern at perilune several revolutions later, and a corner-turn depar-

ture. It is also possible for a jettison trajectory to experience none of these metrics. Several notable observa-

tions are apparent in . First, for each jettison Δv magnitude, certain locations along the NRHO are associated 

with a maximum number of outcomes of each type. For example, for Δv = 1.7 m/s, the percentage of maneu-

ver directions yielding corner-turn departures reaches nearly 30% at TA = 110⁰.  However, jettison locations 

within 120⁰ of perilune are avoided due to high sensitivity, challenging attitude dynamics, and poor state 

knowledge in the vicinity of perilune, so this jettison location is not suitable. If the jettison magnitude is 

increased to 5 m/s, a peak appears in the plot near apolune, such that 22% of jettison directions yield corner-

turn departures at TA = 178⁰. Similarly, for Δv = 15 m/s, 25% of jettison directions result in corner-turn 

departures at TA = 155⁰. Selecting a jettison magnitude and location combination with a larger percentage of 

corner-turn outcomes yields jettison maps with larger swaths of blue, increasing the likelihood of robust 

jettison options when applied in a higher-fidelity ephemeris model. In simple terms, it is easier to find a good 

solution when more directions give desirable outcomes. Similarly, avoiding jettison locations that yield a 

Figure 19: Three-dimensional recontact (a) and flip (b) map for a 1 m/s jettison along the NRHO 

b) a) 
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larger percentage of cases resulting in recontact risk or perilune flips in the range increases the odds of a 

favorable departure.  

Varying the jettison maneuver magnitude extends the probability curves to a surface. The process re-

quired to generate the curves from Figure 20 includes the construction of recontact and flip maps at fifty 

locations along the NRHO. Each map includes 5000 points to estimate the probability of each event, such 

that a total of 250,000 propagations are executed to describe the probability of conjunction events for a 1 m/s 

jettison maneuver magnitude. The process is repeated for 2 m/s to 15 m/s, at an interval of 1 m/s. The three-

dimensional probability surfaces are illustrated in Figure 21. The surface in Figure 21a depicts the percent of 

jettison maneuver directions that result in a recontact within 100 km. The surface in Figure 21b illustrates the 

percent of jettison directions that have a range flip. The surfaces demonstrate how the percent achieved 

evolves as the jettison maneuver magnitude and location along the NRHO varies. For both Figure 21a and 

Figure 21b, blue represents a lower risk, while yellow is the higher risk. One observation between the two 

surfaces is that as the jettison maneuver increases, the probability decreases. From Figure 21a, the most likely 

location on the NRHO for a recontact arises when the jettison occurs just prior to perilune passage. It is 

apparent that a higher probability of a range flip exists for jettisons near apolune.  

EARTH EVASION 

The first two phases of the NRHO disposal strategy focus on the risk-mitigation and transfer design from 

cislunar space to orbiting the Sun. The resultant motion in heliocentric space is predominately governed by 

the Sun, with occasional passes of the Earth. The goal is to evade the Earth or maximize the closest approach 

to Earth over 100 years. Assume the motion of the object can be approximated as planar relative to the ecliptic 

plane. Lyapunov manifolds from the Sun-Earth CR3BP aid in the identification of assessable dynamical 

structures in this regime. Recall the heliocentric escape analysis in which transit flow is identified by passage 

through the manifold. For a planar transfer, any jettison that successfully reaches heliocentric space must be 

within the manifold tube corresponding to the Lyapunov orbit associated with the Jacobi constant of the post-

a) b) 

Figure 21: Evolution of conjunction events across the jettison location and maneuver magnitude: 

a) recontact map, b) perilune flip map 

Figure 20:  Percent of total jettison maneuver directions that result in recontact risk, perilune flips, 

and corner-turn departures for 1.7 m/s (a), 5 m/s (b), and 15 m/s (c) jettisons as a function of TA 
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jettison trajectory. The challenge exists in predicting  the 

evolution of the motion over time. Two metrics are consid-

ered to assess the viability of close approach to Earth: the 

osculating orbital period (𝑇) and the argument of perihelion 

(𝜔). The osculating orbital period is computed assuming 

Keplerian motion of the object about the Sun. The argument 

of perihelion is measured relative to the Sun-Earth rotating 

frame, a schematic of the angle is depicted in Figure 22. The 

graphic marks a perihelion as the black circle. The angle is 

centered at the Sun and measured counterclockwise from 

the +x-axis of the Sun-Earth rotating frame. Consider an L2 

Lyapunov orbit with a Jacobi Constant value of 3.00065. 

Trajectories from the unstable and stable manifold arcs that 

depart near-Earth space are propagated to complete one full 

revolution about the Sun-Earth system. The osculating or-

bital period and argument of perihelion for the manifold structures is displayed in Figure 23. The blue and 

red points correspond to the stable and unstable manifold arcs, respectively. Note that a disposal trajectory is 

bounded by the red dots. As the stable manifold yields transfers that return close to the Earth, the intersections 

of the red and blue curves should be avoided. The propagation time for these transfers ranges from 10 to 20 

years. To avoid the Earth for a longer time horizon, longer propagation is required. A set of 3000 points along 

the unstable manifold are selected. Each point is propagated for 100 years. The perihelion map in Figure 24 

illustrates the results of the propagation. The color scale measures the close approach distance, where cyan 

points represent the closest approaches and magenta the furthest passages of the Earth. The magenta points 

represent the maximum close approach distances that are achievable from a jettison at the given value of 

Jacobi Constant. Part 2 of the current analysis20 explores methods to achieve similar trajectories from NRHO 

jettisons. It becomes apparent that locations on the map where the stable and unstable manifold arcs intersect 

in Figure 23 corresponds to regions of light blue that are closer Earth passes in Figure 24.  

The Poincaré section in Figure 24 illustrates inaccessible regions over a long-time horizon. This Poincaré 

map is a modification to previously explored Keplerian maps.21 Ross and Scheeres explore similar structures 

in the vicinity of planet-moon systems, where the regions void of points are denoted stable islands.22 The 

stable resonant orbit for an island is determined from the resonance ratio. A resonant orbit is given the no-

menclature of p:q resonance, where the object completes p revolutions for every q revolutions completed by 

the system. For example, the 9:2 resonance of the NRHO refers to 9 periods of the orbit for every two synodic 

months. As the orbital period is close to 1 year, the resonances are n+1:n, where the value for n is computed 

by 𝑛 =
1

𝑃−1
. For an object with an osculating heliocentric period of 𝑃 = 1.0769 years, the resonance ratio is 

determined to be 14:13. Constructing the corresponding resonant orbit in the CR3BP does not require a pre-

cise period, rather, the two-body approximation is employed as an initial guess. Leveraging a perpendicular 

crossing targeting scheme, the planar 14:13 resonance has three members with a Sun-Earth Jacobi Constant 

value of approximately 3.00065. Figure 25 illustrates the perihelion locations for the periodic resonant orbits 

Figure 22:  Schematic illustrating the ar-

gument of perihelion measured relative 

to the Sun-Earth rotating frame 

Figure 23: First Earth-return stable and un-

stable manifold perihelion Poincaré map 

(JC = 3.00065) 

Figure 24: Perihelion Poincaré map constructed 

from 100-year unstable manifold propagation (JC 

= 3.00065) 
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relative to the constructed Poincaré map. The perihelion locations for the two unstable 14:13 resonant orbits 

are marked by black and red dots, while the stable orbit is indicated with black asterisks. Focusing in on the 

region around the stable period resonant orbit, solutions nearby on the map have larger close approach dis-

tances from Earth. The three periodic orbits are depicted in Figure 26a and Figure 26b, centered at the Sun 

and Earth, respectively. The solid black and red curves correspond to the unstable black and red points in 

Figure 25. Whereas the dotted black curve is the stable resonant orbit that is associated with the asterisk in 

Figure 25. The unstable structure is governed by the close passes of the Earth on each period of the orbit, 

whereas the stable solution passes through aphelion during the close approach, making the structure more 

robust to each Earth pass. From Figure 26a, it is apparent that the unstable and stable resonances have offset 

argument of periapsides. These structures offer insight into flow that departs from and arrives at Earth. Aim-

ing to achieve the stable resonant orbit is infeasible along a ballistic curve. However, options exist about the 

stable solution that could lead to long-term Earth evasion. Accessing the stable island regions is explored 

utilizing quasi-periodic orbits. The stable 14:13 resonant orbit has a planar center subspace. A family of 

quasi-periodic orbits with a fixed Jacobi Constant is constructed. A state along the quasi-periodic orbit is 

propagated for 200 years and illustrated in Figure 27. The trajectory is depicted in the Sun-Earth rotating 

frame, centered at the Earth. Along each surface a set of trajectories is selected to assess the close approach 

distance from the Earth. Comparing Figure 27 to Figure 10 from part 2 of this analysis demonstrates that the 

long-term Earth evasion geometry persists in a higher fidelity ephemeris force mode.20 However, as the fam-

ily of quasi-periodic orbits remains linearly stable, the unstable manifold does not approach the same region. 

To illustrate this behavior, the corresponding perihelion Poincaré map that includes the quasi-periodic orbits 

families is displayed in Figure 28. The concentric magenta dots correspond to different quasi-periodic orbits, 

filling the stable island. The surrounding sea of perihelia originate from the L2 unstable Lyapunov orbit, 

propagated for 100 years (as in Figure 25). The 

quasi-periodic orbit with the closest approach 

remains more than 10 million kilometers away 

from Earth, while the trajectories originating 

from the unstable manifold yield close approach 

distances less than 10 million kilometers. It is 

apparent that the dark blue to purple points 

begin to approach the structure generated by the 

stable resonant and quasi-periodic orbits. The 

perihelion Poincaré sections aid in characteriz-

ing long-term Earth structures. Acquiring these 

structures from cislunar jettison is nontrivial. 

Part 2 of this analysis explores a strategy of tar-

geting the osculating orbital period after helio-

centric escape.20 

Figure 25 Perihelion Poincaré map with 14:13 reso-

nance orbits in the Sun-Earth CR3BP (JC = 3.00065) 

Figure 26: 14:13 resonant orbits in the Sun-Earth rotating frame, a) centered at the Sun, 

 b) centered at Earth (JC = 3.00065) 

a) b) 
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CONCLUDING REMARKS 

 Disposal and jettison techniques from cislunar space are feasible with proper timing and operations. Key 

challenges arise in connecting transfer structures across varying dynamical regimes. The current investigation 

brings together several phases of NRHO disposal strategies into one end-to-end process. The NRHO depar-

ture phase addresses the immediate concern of conjunctions during NRHO departure. Methods of construct-

ing recontact maps and flip maps provide a detailed look into jettison options for a specific location along 

the NRHO. Exploring properties of the recontact maps provides additional information regarding the con-

junction events, including relative velocity, location along the NRHO, and the number of recontacts. After 

departing the NRHO, a jettisoned object encounters the next challenge of heliocentric escape. Simplifying 

assumptions regarding the jettisoned trajectory aid in the identification of departure structures that traverse 

from the Earth-Moon to the Sun-Earth system. With adequate energy and timing, a ballistic arc from the 

NRHO carries the object to orbit around the Sun. The Sun-Earth Jacobi Constant value is employed as an 

energy metric to assess the validity of traversing through the L1 and L2 portals. The construction of Jacobi 

Constant maps provides jettison directions that offer sufficient energy to escape. A relationship between the 

Earth-Moon angular momentum and the Sun-Earth Jacobi Constant allows a targeting strategy that is inde-

pendent of epoch and remains in the Earth-Moon rotating frame. Heliocentric escape also relies on proper 

orientation of the Earth-Moon-Sun system. Leveraging stable manifolds from the L1 and L2 Sun-Earth Lya-

punov orbits yields accessible regions to heliocentric space. The combination of NRHO departure and heli-

ocentric escape offers mission designers a map to traverse safely and efficiently through cislunar and helio-

centric space. An inadvertent jettison analysis explores the probability of returning within the keep-out-zone, 

experiencing a perilune range flip, or reaching a corner turn geometry. The probabilities are assessed at var-

ying locations along the orbit and for different jettison maneuver magnitudes. Risk assessment is crucial to 

mission operations. Once the object has escaped to heliocentric space, exploring behaviors in the Sun-Earth 

CR3BP offers insight into accessible structures. Unstable manifold structures from the L2 Lyapunov orbit 

highlights accessible paths to departing flow. Leveraging a perihelion Poincaré mapping technique uncover 

islands void of intersections. The region is associated with stable, resonant periodic orbits in the Sun-Earth 

CR3BP. Computing both the stable and unstable 14:13 resonant orbits for a given Jacobi Constant value 

illustrates the differences in Earth passage for long-term Earth evasion. The center subspace of the stable 

resonant orbit is extended to a family of fixed-Jacobi Constant quasi-periodic orbits. The periapsides from 

the quasi-periodic orbits match the resonant islands and differentiate the stable orbits from the sea of unstable 

manifold crossing. Together the three phases of NRHO departure, heliocentric escape, and Earth evasion aim 

to provide a foundation to cislunar jettison and disposal analysis, recognizing that debris mitigation is feasible 

with limited propellant and operational capabilities.  
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Figure 28: Perihelion Poincaré map with 

quasi-periodic orbit family in the Sun-

Earth CR3BP 

Figure 27 Trajectory off a quasi-peri-

odic orbit, propagated for 200 years 

(Sun-Earth rotating frame) 
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