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Composites are Pervasive in Aerospace

« Composites have replaced many
components of aircraft and
spacecraft

« Huge design space: the efficacy of
new chemistries is difficult to
predict

« Computational screening can help
guide us toward next-generation
high-temperature resins

—

Extreme Environments



Why is Char Yield Important?

» Char yield is the amount of material left over after subjecting it to high
temperature pyrolysis

- Thermogravimetric analysis (TGA) is used to obtain plots of mass vs
time and/or temperature (typically ramped up to 1073 K -1273 K)

« High char materials require fewer cycles of carbonization and resin
infiltration to achieve desired properties
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Char Yield Simulation Protocol

Temperature ramp cycle
« 300 K-3000 K at 10 K/ps
* High temperatures/rates to

accelerate reactions

Anneal at high pressure (1 GPa)
to achieve final densities of
1.8 g/lcm3- 2.0 g/cm3

ReaxFF with periodic removal of
outgassing products to allow for
carbonization and densification

Initial system size: 36,000 atoms
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Char Yield Results

« Simulation protocol able to accurately
predict char yield trends across a wide
range of functional groups, heteroatom
content and char yield values

« Chemically specific method

« No assumptions or fitting of
experimental results
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Mechanical Properties
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Final Morphology: Ring Distribution

 Final carbonized structure consists
primarily of fused five-, six- and seven-

membered carbon rings T

« Twice as many six-membered rings as
other sizes, but rings are well

distributed with respect to ring size
5.8 nm

« Similar final morphology obtained for
lower char yield resins '\

5.0 nm

Cyanate ester (BADCY)

Polyarylacetylene (PAA)

Gissinger et al. Carbon 202
(2023): 336-347.
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Outgassing Products =

» Protocol keeps track of molecules
removed from the system to mimic
outgassing
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* Primarily CO for oxygen-
containing resins (highly stable

bond)
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Tools for Direct Experimental Comparison

« Simulated XRD pattern allows for
direct comparison with
experimental morphologies

PAA (810 ps)
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* Curve is typical of non-graphitized
glassy carbon at lower
carbonization temperatures
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XRD: X-ray Diffraction
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Simulating high-resolution microscopy

HRTEM: High Resolution Transmission Electron Microscopy
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Experimental HRTEM vs. carbonization temperature

Jurkiewicz, Karolina, et al. "Evolution of glassy carbon under heat treatment: correlation
structure—mechanical properties." Journal of materials science 53.5 (2018): 3509-3523.

Simulated microscopy consistent with non-graphitized glassy carbon at lower temperatures 10
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Adding Interfaces to the Model

PAN char (graphene hidden)

Triple-layer graphene resin monomers
inserted into initial e ‘%% oL
monomer configuration | S || R

. P - oA E
for composite model o b:;i |

Bulk PAN char: 54 wt%, ;@k e d
1.76 g/cm? o p

Confined PAN: 42 wt%,
1.96 g/cm3

Significantly larger regions of fused six-
membered rings observed at interface
due to templating effect of graphene

6.8 nm



Neat vs Confined Resin Char Yields

« Char yields for confined resins in
composite systems matched those

recorded for neat resin

* Implies that prediction of char yield is
mostly independent of degree of
confinement for this modeling protocol

« Technical Note: Graphene sheets should
remain mobile to obtain realistic results
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Reactivity at the Graphene Sheet Interface

It was critical to keep graphene surface mobile to achieve charring behavior

« At each graphene-resin interface (~46 nm?), crosslinking occurred at ~7 sites,
often involving two or more adjacent crosslinks that distort the surface

Crosslinks

Above, graphene sheets in
Non-resin-facing side of graphene sheets with crosslinks indicated gray and resin char in color



A Promising Method for Predicting Char Yield

A chemically specific protocol was developed to predict char yield for high
temperature resins
* No prior knowledge of high-temperature behavior required

 Validated for low, medium and high char yield resins with various chemical
structures and number of heteroatoms

« Additional outputs include atomistic structure, composition, morphology,
mechanical properties, chemical pathways, outgassing products

« Currently being used to investigate and screen new chemistries
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Adamantane: Kazanskii, B. A. et al. Russian Chemical Bulletin, 17, 2506, 1968.
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Carbon Hybridization/Heteroatoms Evolution
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