

Southeast Coast Ecological Conservation

Investigating the Development of Ghost Forests Due to Saltwater Intrusion along the Savannah River, Georgia Coastline of the United States

Emma Cheriegate • Eleri Griffiths • Quintin Munoz • Vivienne von Welczeck

Background

Image Credit: NOAA

- ↑ Saltwater intrusion
 (SWI) into freshwater systems
 - Ghost forest formation

 Natural and anthropogenic drivers intensifying SWI

Community Concerns

- Loss of biodiversity
- Inhibited carbon sequestration
- Declining drinking water quality and supply
- Dangerous storm surges
- Climate change adaptation strategies

Image Credit: Dr. William Conner, USGS

Study Area & Period

- Lower Savannah River, Georgia
 - HUC10 Watershed
 - Savannah National Wildlife Refuge
- Time Frame: Growing Season of 2013 –
 2023 (March Sept)

Image Credit: U.S. Fish & Wildlife Service. Bald cypress in bottomland hardwood forest at Savannah National Wildlife Refuge.

Lower Savannah River Basin

Objectives

Investigate Changes

in sea level rise (SLR) and vegetative health

Synthesize & Analyze

trends in saltwater intrusion (SWI)

Validate and Correlate

NASA Earth observations (EO) with in-situ (field-derived) data

Project Partners

 Southeast Regional Climate Hub

- Wetland and Aquatic Research Center (WARC)
- Florence Bascom
 Geoscience Center
 (FBGC)

 Department of Biology, Georgia Southern University

Earth Observations (EOs)

Methodology - NDVI Parallel Processing

Inputs

Processing

Analysis

Output

Landsat 8 OLI

Filter by date and ROI Water Mask Cloud Mask $NDVI = rac{(NIR - Red)}{(NIR + Red)}$

ee.ReducerMean

12 Month Mean NDVI

PlanetScope Dove Filter by date and ROI
Water Mask

$$NDVI = rac{(NIR - Red)}{(NIR + Red)}$$

ee.ReducerMean

Mean NDVI per month

Results - NDVI Time Series (Landsat 8)

Monthly Mean NDVI 2013 – 2023

Results – NDVI Parallel Processing (Landsat 8)

 \triangle NDVI = June 2022 – June 2014

 Δ NDVI = March 2023 - March 2013

Results – NDVI Parallel Processing (Planet)

April 2023 Planet NDVI for Overall Study Site

April 2013 Planet NDVI for Overall Study Site

Δ NDVI = April 2023 – April 2013

Results – NDVI Parallel Processing (Planet)

Site 1

Site 2

Planet NDVI

Plot Maps

for USGS Sites (April 2023)

Site 3

Site 4

Planet NDVI Plot Site Difference Calculation (2023) NDVI – av mean (2013,2014,2015) NDVI

Methodology – Random Forest Land Classification

Inputs

Processing

Analysis

Output

Landsat 8 OLI

Seasonal composite (May – Sept) Urban Mask

Cloud Mask

Water Mask

Delineate training points

Random
Forest Land
Cover
Classification

10 land cover images (1 per year)

Results – Land Cover Classification (Landsat 8)

Growing Season Composite = May to Sept 2013

Growing Season Composite = May to Sept 2023

Results – Land Cover Classification

Land Cover Classification Time Series 2013 – 2023

Results - In Situ Data

USGS Porewater Salinity Measurements 2023 – 2021

Results – Long Term Trends

Monthly Mean NDVI 2013 – 2023

USGS Porewater Salinity Measurements 2013 – 2021

Limitations and Uncertainties

- Landsat 8 NDVI: Cloud coverage
- Planet Imagery: API accessibility
- Land cover classification:
 - # of training points
 - Temporal variation
 - Mixed pixels/resolution limitations
 - Edge effects
- Salinity: Data availability

Conclusions

 Landsat 8 NDVI values decreased over time while Planet NDVI values increased, potentially due to varying spatial resolutions

- Marshes were stable and dominant over time, possibly due to ecological saline adaptation
- Evergreen areas experienced the highest fluctuations and increased over time, leading to potential ecological effects

- Salinity levels were highest at the southernmost study sites closest to the coast
- As salinity increased, NDVI decreased

Future Work

Image Credit: USDA Forest Service

- ↑ † temporal/spatial resolution
- ↑ Scale & number of variables
- Investigate other drivers of SWI

 Attempt different classification algorithms,
 † # of training points

↑ porewater salinity data & sites

Acknowledgments

Partners

<u>United States Department of Agriculture</u>

- Dr. Steve McNulty, Southeast Regional Climate Hub
- Michael Gavazzi, Southeast Regional Climate Hub

<u>United States Geological Survey</u>

- Dr. Ken Krauss, Wetland and Aquatic Research Center (WARC)
- Dr. Gregory Noe, Florence
 Bascom Geoscience Center (FBGC)

Georgia Southern University

- Dr. Georgianne Moore, Chair Biology
- Dr. CJ Pell, postdoc

Science Advisors

Dr. Kyra Adams

 NASA Jet Propulsion Laboratory, California Institute of Technology

Dr. Elliott White Jr.

 Stanford Woods Institute for the Environment

Benjamin Holt

 NASA Jet Propulsion Laboratory, California Institute of Technology

Fellow

<u>Michael Pazmino</u>

NASA DEVELOP - JPL

This work utilized data made available through the NASA Commercial Smallsat Data Acquisition (CSDA) Program.