Multiple Probe Measurements at Uranus Motivated by Spatial Variability

Michael H. Wong (UC Berkeley, SETI Institute, <mikewong @ astro.berkeley.edu>)

Stephen Markham (Observatoire de la Côte d'Azur)

Naomi Rowe-Gurney (NASA Goddard Space Flight Center / UMD)

Kunio M. Sayanagi (NASA Langley Research Center)

Ricardo Hueso (Universidad del País Vasco)

Stratospheric spatial variation

- Meridional variation and a hemispheric asymmetry in C₂H₂
- Dynamical link between troposphere and stratosphere

TEMPERATURE

- Longitudinal variation over one rotation
- Large variation measured on global scale
- Possible link to upwelling from small scale tropospheric systems

Roman++2020, 2023

2018

40

2009

Rowe-Gurney++2021

Stratosphere-troposphere link

Roman++2020, 2023

TROPOSPHERIC AEROSOL DIVERSITY

- $n_{\rm i}$ < 10⁻⁴ is typical of ices
- Spectral retrievals with n_i > 10⁻⁴ at many wavelengths: aerosols of color
- Widespread presence of haze particles within tropospheric cloud levels

Irwin++2022

Tropospheric spatial variation

H₂S vs NH₃

Very different polar and low-latitude profiles

Spatial scales observed

- Current: 160 km (vis, Voyager), 600 km (NIR AO), 2000 km (mm/cm with ALMA/VLA)
- Future: 150 km (ELTs), 150 km (mm/cm)

Karkoschka2015, Sromovsky++2015, Simon++2022

Tropospheric spatial variation

H₂S vs NH₃

Very different polar and low-latitude profiles

Spatial scales observed

- Current: 160 km (vis, Voyager), 600 km (NIR AO), 2000 km (mm/cm with ALMA/VLA)
- Future: 150 km (ELTs), 150 km (mm/cm)

Karkoschka2015, Sromovsky++2015, Simon++2022

Moist convection

 $-(\epsilon-1)X$

7		(KJ Kg	,	(1)	(2)	(3)	(Joules mol ⁻¹) (4)	. ,	(0)	(K) (7)
D D	CH ₄	553		7.0	5.9×10^{-4}	1.8×10^{-2}	160	5.2	-0.106	-9.2
	H_2S	549		14.8	2.9×10^{-5}	8.7×10^{-4}	16	0.5	-0.012	-3.1
	NH_3	1369		7.4	1.5×10^{-4}	4.5×10^{-3}	200	7.0	-0.028	-4.8
	H ₂ O	2260		7.8	1.1×10^{-3}	3.2×10^{-2}	1300	44	-0.219	-140
-										

 $30X_{solar}$

Energy

capacity

Hueso+Sanchez-Lavega2019

Latent heat ϵ

 $(KIK\sigma^{-1})$

- No cloud features conclusively identified as convective storms
- Thermal and compositional gradients give clues to convective history/potential/inhibition
- CH₄ cloud layer: an accessible model for other layers

Moist convection

 $-(\epsilon-1)X$

 ΔT_v

(cond)

						$ (Joules mol^{-1}) $ $ (4) $	(5)		(K) (7)
c D	CH ₄	553	7.0	5.9×10^{-4}	1.8×10^{-2}	160	5.2	-0.106	-9.2
	H ₂ S	549	14.8	2.9×10^{-5}	8.7×10^{-4}	16	0.5	-0.012	-3.1
В	NH ₃	1369	7.4	1.5×10^{-4}	4.5×10^{-3}	200	7.0	-0.028	-4.8
В	H ₂ O	2260	7.8	1.1×10^{-3}	3.2×10^{-2}	1300	44	-0.219	-140
-									

 $30X_{solar}$

(3)

Energy

capacity

Hueso+Sanchez-Lavega2019

MARKHAM #8116

 X_{solar}

No cloud features conclusively identified as LI #8116

Latent heat ϵ

 $(KJKg^{-1})$

- convective storms
- Thermal and compositional gradients give clues to convective history/potential/inhibition
- CH₄ cloud layer: an accessible model for other layers

Uranus secondary probes: key measurements

MEASUREMENTS

- Temperature profile
- Volatile composition
- Vertical wind shear

REQUIREMENTS

- Vertical resolution (H_P / 10 for "Lindal blip")
- Composition dynamic range (0.1 ppm H₂S/NH₃ to 5% CH₄)
- Composition specificity (distinguish different trace gases)

Uranus secondary probes: key measurements

MEASUREMENTS

- Temperature profile
- Volatile composition
- Vertical wind shear

REQUIREMENTS

- Vertical resolution (H_P / 10 for "Lindal blip")
- Composition dynamic range (0.1 ppm H₂S/NH₃ to 5% CH₄)
- Composition specificity (distinguish different trace gases)

Lessons learned from Jupiter

- Deep NH₃
 depletion:
 mushballs? CIN?
- Probe entered
 5-μm hot spot,
 near edge of
 equatorial high NH₃ anomaly
- H₂S, H₂O vertical profiles: how are they related to NH₃?

Lessons learned from Saturn

Fletcher++2009, Li++2017

- Latitudinal composition varies (e.g., PH₃)... how does this extend to deeper levels?
- Long-term atmospheric changes after convective outburst

Sayanagi++2013, Sromovsky++2016

Multiprobe challenges

CHALLENGES: Cost, integration

- SMD Rideshare type opportunities not an option because secondary probes depend on primary spacecraft for cruise power, separation, communication, etc.
- Secondary probes must be included early in mission design process

SOLUTION:

 Mini-probe within scope of competed instrument AO

CHALLENGE:

Trajectory / targeting multiple latitudes

- Low vs. high latitudes
- Spring vs. autumn hemisphere

SOLUTION:

Planning

- Science/resource
 /risk trades
- Separate probe releases

Sayanagi++2020

Multiprobe challenges

CHALLENGE: Composition sensor maturity

- Mass spectrometers are heavy/large
- Chemiresistive chip-based sensors available for commercial applications (not qualified for Uranus probe)

SOLUTION:

- Maturation of chip-based composition sensor instruments
- Mini-probes without composition sensors (with only T-P, density) as ground truth for orbiter retrievals

① CS-FET sensor
② Proto board connector

(4) Battery

Fahad++2017

(5) Microdrone with on-board micro

Li++2003

3 Battery holder

Hannon++2016

Summary

Spatial variability and atmospheric processes, origins

- Exchange between troposphere and stratosphere
- Moist convective process in hydrogen atmospheres
- Cloud chemistry and physics, global circulation
- Atmospheric abundances as constraints on formation/evolution

Multi (mini) probes

- Complementary to orbiter remote sensing, particularly microwave
- Need for mature, miniature composition sensors
- Include from earliest stages of mission design
- Mini-probe within scope of competed instrument AO