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Atomistic Simulations in Additive Manufacturing

Role:
• Provides first-principles physics-based information on the highly dynamic 

Additive manufacturing (AM) processing during:
– rapid heating and cooling (melt / solidification process)
– strong thermal gradients (local heating)
– high thermal stresses

• Complement other simulation methods at mesoscale by:
– providing knowledge of microscopic mechanisms of key processes
– obtaining material parameters not easily accessible experimentally

Objectives:

• Develop process parameter / microstructure relationships 
to guide process optimization

• Develop thermodynamics relationships to understand 
microstructure evolution and to guide design

Laser Sintering/E-beam Melting

Electron Beam Freeform Fabrication

Laser Engineered Net Shaping



Why Machine Learning in Atomistic Simulations

Standard approach: replace the complex QM calculations with a simplified expression with empirically fitted parameters
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Atomic interactions in quantum mechanics (QM) are very complex and difficult to compute: central processing unit (cpu) time ~𝑁!÷#  
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• Very accurate
• Generic to all known structures
• Very slow: cpu time ~N3-8 

• Very fast: ~10+, atoms
• Inaccurate
• Non-transferable (unique for each material)
• Difficult to create (expensive)

New approach is needed

QM in density functional theory (DFT) approximation 



Physically Informed Neural Network (PINN) Interatomic Potential

The universal approximation theorem: a neural network (NN) can approximate any f(x) NN universality 
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NN predicted 
parameters

NN parameterized potential energy 
function

Retains the physics of the atomic 
interactions

Improves transferability 
outside the training region

QM is replaced by a trained NN to parameterize a physics-based function for improved transferability
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Use QM to calculate a large set of atomic structures
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Train NN against 𝑤!, 𝑏!, 𝑤", 𝑏", …	 to minimize the objective function, 𝜀

Implementation of PINN

Inference Stage

Training Stage
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Approximate 𝐸%	of atom (i)
Potential 
parameters

Retains the accuracy of QM while gaining in speed: cpu time ~ N



Example for Aluminum: Crystalline Phase

Energy Phonon spectrum

Wave vector
DFT energy (eV/atom)
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Excellent fit to DFT calculations



Example for Aluminum: Defect Structures

Edge dislocation Thermal expansion

Temperature (K)
DFT energy (eV/atom)
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Excellent agreement with defect structures and thermal expansion



Example for Aluminum: Melt Properties

Melting temperature

Reasonably good prediction of the melting temperature

𝑇F	(HH) = 975	𝐾

𝑇F	(JKL) = 933	𝐾



Example for Aluminum: Melt Properties

Liquid surface and liquid-solid interface energies

Prediction of difficult to calculate interface energies is essential of AM applications

Capillary fluctuation method: 

Surface tension,

Liquid-solid interface energy

Capillary fluctuation



Example for Aluminum: Melt Properties

Accurate prediction of density, diffusivity, and viscosity is essential of AM applications

ViscosityDiffusionDensity

EAM – Embedded Atom Method (Empirical) potential
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Computational Implementation of PINN

Exploring the recent advancements in supercomputer architectures

NASA Langley Research Center midrange supercomputing K-cluster

• PINN calculations are computationally highly 
demanding: ~ 3,000,000 floating point operations 
per atom

• High performance computing (HPC) 
implementation is strongly required

• ParaGrandMC code developed at NASA and 
National Institute of Aerospace provides massively 
parallel computational platform for PINN 
(https://software.nasa.gov/software/LAR-19893-1)

https://software.nasa.gov/software/LAR-19893-1


N=500 
100 MDS

EAM
16 cores

ANN
16 cores

PINN**
16 cores

DFT*
32 nodes

Time, t 0.39 s 14 s 35 s 46,688 s

t/tEAM 1 38 89 119,107

Empirical vs NN vs DFT Simulations

N=72,000 
100 MDS

Time, t (t/tEAM)

EAM ANN PINN DFT
32 nodes

extrapolated

16 cores 3.5 s (1) 345 s (99) 528 s (151) 13.5 years

16 cores + V100 - 39 s (11) 115 s (33) -

N=32

N=108

N=256
N=512

N=72,000

*Calculations performed by J. Hickman at National Institute of Standard and Technology (NIST) using VASP code
**Inhouse developed software: https://software.nasa.gov/search/software/ParagrandMC
***Specific vendor and manufacturer names are explicitly mentioned only to accurately describe the hardware 
used. This does not imply an endorsement by the U.S. Government.

Gain speed without losing accuracy

Test example on simulating aluminum crystal for 100 molecular dynamics steps (MDS) 

V100 – Volta 100 Nvidia graphic processing unit (GPU)

VASP*** DFT Scaling for Al

https://software.nasa.gov/search/software/ParagrandMC


Crystalline phase
Twin boundaries and dislocations

PINN: ParaGrandMC

433,000 atoms; 24 ps MD simulation (12,000 MDS)
4 Message Passing Interface (MPI) nodes using (10 Skylake 6148 cpu + V100 GPU) / node

14 cpu hours

Simulation of a central crack nucleation along a grain boundary in aluminum using 
PINN potential
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https://software.nasa.gov/search/software/ParaGrandMC

Crack growth simulation with DFT 
precision 

Grain boundary

ParaGrandMC code developed at NASA 
(https://software.nasa.gov/software/LAR-19893-1) 

https://software.nasa.gov/search/software/ParaGrandMC
https://software.nasa.gov/software/LAR-19893-1


Conclusions

• Machine learning in atomistic simulations reproduces atomic forces with quantum mechanics precision at 
orders of magnitude lower computational cost

• Applied in additive manufacturing ML based interatomic potential can accurately predict solid phase and 
melt properties of metallic alloys to guide process optimization

• Other PINN potentials under development for: 
– Additive manufacturing: Ti, Ti-Al, Ti-Al-V (Ti-6Al-4V aerospace alloy) – NASA Langley Research Center
– Semiconductor industry: Si, Si-C – George Mason University, NIST
– Other: Ta, Cu-Ta – in collaboration with George Mason University
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