

Predicting Melt Properties Using Atomistic Simulations with a Highly Accurate Physically Informed Neural Network Interatomic Potential

V.I. Yamakov¹, E.H. Glaessgen², Y. Mishin³

¹Analytical Mechanics Associates, Hampton, VA 23666 ²NASA Langley Research Center, Hampton, VA 23681 ³George Mason University, Fairfax, VA 22030

> 2023 ICME for Defense August 21-23, 2023

- Atomistic simulations in additive manufacturing
- Artificial Neural Networks (ANNs) in atomistic simulations
- Physically Informed Neural Networks (PINNs) potential
- Example for aluminum
- Computational implementation of PINN
- Conclusion

Role:

- Provides first-principles physics-based information on the highly dynamic Additive manufacturing (AM) processing during:
 - rapid heating and cooling (melt / solidification process)
 - strong thermal gradients (local heating)
 - high thermal stresses
- Complement other simulation methods at mesoscale by:
 - providing knowledge of microscopic mechanisms of key processes
 - obtaining material parameters not easily accessible experimentally

Objectives:

- Develop process parameter / microstructure relationships to guide process optimization
- Develop thermodynamics relationships to understand microstructure evolution and to guide design

Laser Sintering/E-beam Melting

Electron Beam Freeform Fabrication

Laser Engineered Net Shaping

Why Machine Learning in Atomistic Simulations

Atomic interactions in quantum mechanics (QM) are very complex and difficult to compute: central processing unit (cpu) time $\sim N^{3+8}$ Standard approach: replace the complex QM calculations with a simplified expression with empirically fitted parameters

QM in density functional theory (DFT) approximation

- Very accurate
- Generic to all known structures
- Very slow: cpu time $\sim N^{3-8}$

- Very fast: $\sim 10^{12}$ atoms
- Inaccurate
- Non-transferable (unique for each material)
- Difficult to create (expensive)

Physically Informed Neural Network (PINN) Interatomic Potential

The universal approximation theorem: a neural network (NN) can approximate any f(x) NN universality

QM is replaced by a trained NN to parameterize a physics-based function for improved transferability

Implementation of PINN

Training Stage

Retains the accuracy of QM while gaining in speed: cpu time ~ N

Excellent fit to DFT calculations

Excellent agreement with defect structures and thermal expansion

Reasonably good prediction of the melting temperature

Liquid surface and liquid-solid interface energies

Prediction of difficult to calculate interface energies is essential of AM applications

Example for Aluminum: Melt Properties

EAM – Embedded Atom Method (Empirical) potential

Viscosity

DFT: N. Jakse & A. Pasturel, Scientific Reports 3 (2013) 3135.

Accurate prediction of density, diffusivity, and viscosity is essential of AM applications

Exploring the recent advancements in supercomputer architectures

- PINN calculations are computationally highly demanding: ~ 3,000,000 floating point operations per atom
- High performance computing (HPC) implementation is strongly required
- ParaGrandMC code developed at NASA and National Institute of Aerospace provides massively parallel computational platform for PINN (<u>https://software.nasa.gov/software/LAR-19893-1</u>)

NASA Langley Research Center midrange supercomputing K-cluster

Test example on simulating aluminum crystal for 100 molecular dynamics steps (MDS)

N=500 100 MDS	EAM 16 cores	ANN 16 cores	PINN** 16 cores	DFT* 32 nodes
Time, t	0.39 s	14 s	35 s	46,688 s
t/t _{EAM}	1	38	89	119,107

N=72,000 100 MDS Time, t (t/t _{EAM})	EAM	ANN	PINN	DFT 32 nodes extrapolated
16 cores	3.5 s (1)	345 s (99)	528 s (151)	13.5 years
16 cores + V100	-	39 s (11)	115 s (33)	-

V100 – Volta 100 Nvidia graphic processing unit (GPU)

*Calculations performed by J. Hickman at National Institute of Standard and Technology (NIST) using VASP code

**Inhouse developed software: <u>https://software.nasa.gov/search/software/ParagrandMC</u>

***Specific vendor and manufacturer names are explicitly mentioned only to accurately describe the hardware used. This does not imply an endorsement by the U.S. Government.

Gain speed without losing accuracy

PINN: ParaGrandMC

https://software.nasa.gov/search/software/ParaGrandMC

Simulation of a central crack nucleation along a grain boundary in aluminum using PINN potential

Crack growth simulation with DFT precision

ParaGrandMC code developed at NASA (https://software.nasa.gov/software/LAR-19893-1)

14 cpu hours

- Machine learning in atomistic simulations reproduces atomic forces with quantum mechanics precision at orders of magnitude lower computational cost
- Applied in additive manufacturing ML based interatomic potential can accurately predict solid phase and melt properties of metallic alloys to guide process optimization
- Other PINN potentials under development for:
 - Additive manufacturing: Ti, Ti-Al, Ti-Al-V (Ti-6Al-4V aerospace alloy) NASA Langley Research Center
 - Semiconductor industry: Si, Si-C George Mason University, NIST
 - Other: Ta, Cu-Ta in collaboration with George Mason University

- NASA Transformational Tools and Technologies (T3) Project
- High-End Computing Capability Project NASA Advanced Supercomputing Division: Gabriele Jost and Daniel Kokron
- NASA Langley Research Center midrange supercomputing K-cluster
- Cooperative agreement NNL09AA00A with the National Institute of Aerospace