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While many of the error budget terms are specific to replicated optics.

There are general error terms that are common to most X-ray mirrors.

SPATIAL RESOLUTION ERROR BUDGET

An updated accounting of spatial-resolution-constraining error terms gives context to recent improvements in

Lynx-like and where the replicated-optics technology stands relative to these allocations.
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design, fabricate, align, mount, coat, calibrate, and fly X-ray mirrors and assembles with predictable
performance. With a focus on replicated full-shell mirrors, MSFC optics advancements are not only relevant to
Astrophysics, but also to Heliophysics and Planetary missions. MSFC’s optics also support other government

entities such as the National Ignition Facility, National Institute of Standards and Technology, and Sandia

MSFC replicated optics, as well as guidance and justification for current and future directions of research and

development. The budget includes strawman error allocations for a mirror assembly that is parametrically

Error budget terms, which can ultimately be mapped to requirements, are grouped into three areas: mandrel,
individual mirror shells, and mirror modules. These map to manufacturing, integration, and test (optical and X-

ray), which in turn are targets of the MSFC directed research. Ground-to-flight corrections are made to predict
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CONCLUSIONS

The error budget is a tool that allows us to identify limiting factors in our fabrication, assembly,

and test processes. We believe that the current tall-pole for achieving sub-arc second replicated
full-shell mirror modules is related to the replication process and stresses caused by separating
the mirror shell from the mandrel. Research is on-going, and a plan is in-place to address

deficiencies.
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Over the past 2-years, MSFC flight mirror assemblies have gone from

achieving ~25” FWHM to < 3” FWHM. This is due to dedicated and

focused research to improve process steps. There are currently no

known showstoppers to achieving sub-arcsecond resolution.
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