
Machine Learning Airport Surface Model
William J. Coupe

NASA Ames Research Center
Moffett Field, CA, USA
william.j.coupe@nasa.gov

Alexandre Amblard, Sarah Youlton
Universities Space Research Association

Moffett Field, CA, USA
alexandre.amblard@nasa.gov,

sarah.a.youlton@nasa.gov

Mathew Kistler
Mosaic ATM

Leesburg, VA, USA
mkistler@mosaicatm.com

Abstract—Future needs of the National Airspace System re-
quire decision support tools to adopt a service-oriented architec-
ture in alignment with the FAA’s vision for an Info-Centric NAS.
To achieve this, many existing systems will need to undergo a
digital transformation from a monolithic decision support tool to
a service-oriented architecture where individual services are ex-
posed through well defined Application Programming Interfaces
(APIs). To enable this transformation, NASA has developed the
Digital Information Platform as a cloud based foundation for
development of aviation services with a special focus towards
Artificial Intelligence and Machine Learning (ML) services. This
paper describes the work required for the transformation of
NASA’s legacy surface management system to a real-time ML
based decision support system deployed in the cloud. Details
of the Machine Learning Operations (MLOps) infrastructure
and best practices are described which enabled the end-to-
end lifecycle management of ML within an integrated software
system. Validation results are provided from an operational field
evaluation where performance was benchmarked against the
legacy approach.

Index Terms—digital transformation, MLOps, airport surface
model, operational field evaluation

I. INTRODUCTION

Concepts and technologies to manage arrivals, departures,
and surface operations using Trajectory Based Operations
(TBO) have been under development by NASA, the Federal
Aviation Administration (FAA), and industry to improve the
flow of traffic into and out of the nation’s busiest airports.
NASA technologies for specific phases of flight were inte-
grated [1] across surface [2], [3] and airspace domains [4], [5]
and deployed as the Integrated Arrival Departure and Surface
(IADS) traffic management system [6], [7]. The IADS system
was developed in alignment with FAA’s Surface Collaborative
Decision Making (S-CDM) Concept of Operations [8] and
refined over time [9].

Future needs of the National Airspace System (NAS) require
decision support tools such as the IADS system to adopt an ar-
chitecture as described by the FAA’s vision for an Info-Centric
NAS [10]. To align with the vision, decision support tools
need to migrate toward learning, adaptable, and lightweight
interacting systems. To achieve this, many existing systems
will need to undergo a digital transformation from a monolithic
decision support tool to a service-oriented architecture where
individual services are exposed through well defined APIs.
This enables industry services to be deployed alongside FAA

infrastructure and services to supplement existing investments
in TBO capabilities.

NASA has developed the Digital Information Platform
(DIP) [11] to enable the transformation towards an Info-
Centric NAS. The overall goal of DIP is to support transfor-
mation of the NAS through the development of a cloud-based
platform for advanced, data-driven, digital services for both
traditional and emergent operations. DIP provides access to
real-time and historical data upon which data-driven services
for NAS users are developed and operated. A key focus area
of DIP is to accelerate the development of Artificial Intelli-
gence (AI) and Machine Learning (ML) techniques applied
to aviation and to provide an opportunity for AI/ML experts
from outside traditional aviation to make an immediate impact
through the development of novel services.

ML techniques have been applied to aviation problems for
many years [12] to develop prediction models. However, the
real challenge isn’t building a ML model, the challenge is
building an integrated ML system and to continuously operate
it in production [13]. Without the proper approach, it is easy to
incur massive ongoing maintenance costs at the system level
when applying machine learning [14]. To address this chal-
lenge, in recent years there has been focused work on Machine
Learning Operations (MLOps) to develop infrastructures and
platforms for end-to-end lifecycle management of ML [13],
[15], [16].

This paper describes the work required for the transforma-
tion of NASA’s legacy IADS system to a real-time ML based
decision support system deployed on DIP in alignment with
FAA’s Info-Centric NAS. The deployed ML system was vali-
dated during an operational field evaluation and performance
was benchmarked against the legacy IADS system. Section II
provides background information on IADS capabilities and
the legacy approach. Section III describes the architecture of
the new integrated ML system and how it was deployed as a
service-oriented architecture. Section IV describes the MLOps
best practices that were adopted and the software tools used
in the development of the MLOps infrastructure. Section V
shows a side by side comparison of the ML system vs. legacy
system and Section VI provides concluding remarks.

II. BACKGROUND

At the core of the IADS system was an airport surface model
that generated predictions including but not limited to airport



Fig. 1. KDFW airport surface adaptation.

configuration, runway assignment, unimpeded taxi times, and
arrival ON times [9]. The airport surface model predictions
were used as input by the IADS Terminal Scheduler which
applied all known constraints across each airport surface and
the terminal boundary [17] to generate predictions for the
Estimated Take Off Time (ETOT) for each departure flight.
To generate the airport surface model predictions the IADS
system relied upon detailed adaptation developed for each
individual airport and the terminal airspace.

Adaptation for each airport requires creating a link-node
network for each airport surface which involves significant
manual effort. Fig. 1 shows an example of adaptation created
for KDFW airport which illustrates the detailed structure of
the link-node network defining the gate locations, ramp and
taxiway structure, and runway locations. The adaptation goes
beyond defining the physical structure of the airport and also
requires detailed knowledge from Air Traffic Control (ATC)
encoded in decision trees including departure fix to runway
mappings and other local knowledge that might be applied to
the airport or airspace.

Consider a departure flight to illustrate how the legacy
IADS system used the adaptation to generate predictions.
The departure fix in the filed flight plan would be refer-
enced against the decision trees defined in the adaptation
to determine the assigned runway. Next, a path along the
surface would be constructed from the parking gate to the
runway as the shortest path within the link-node network. A
pushback duration and taxi speed would be determined for
the departure by referencing decision trees based on historical
data and the flight would be propagated along the path at
the given velocity to create a 4-D trajectory. Throughout the
taxi duration from gate to runway, surface surveillance would
detect the current location of the flight and generate an updated
path to the runway and continuously propagate the flight along
the updated path.

The adaptation based approach leveraging physics based 4-

D trajectory predictions generated attractive results for KDFW
and KDAL [7], [9]. The challenge with the adaptation ap-
proach is it took considerable time and effort to build and
maintain for each individual airport and the terminal airspace.
With the goal to scale the IADS capability across the NAS,
the adaptation created a bottleneck to deployment.

III. MACHINE LEARNING AIRPORT SURFACE MODEL

The Machine Learning Airport Surface Model was devel-
oped to address the deployment bottleneck introduced by
legacy adaptation. The machine learning approach has the
advantage that instead of requiring detailed adaptation and
knowledge encoded in decision trees the machine learning
can learn directly from the underlying data. The machine
learning deployment can then be more easily scaled to multiple
locations across the NAS.

A. Machine Learning Replacement of Legacy Adaptation

For departure aircraft, the Terminal Scheduler generates
the ETOT on the filed route and the Trajectory Option Set
(TOS) alternative routes [9], [18]. For arrival aircraft, the
Terminal Scheduler takes the estimated ON time and uses that
as a constraint to schedule departures within the remaining
runway capacity. Consider Fig. 2 which illustrates the Terminal
Scheduler and the different components required to schedule
aircraft at both the runway and the terminal boundary. The
Terminal Scheduler is composed of an Orchestrator, Trajectory
Modeler, Departure Fix Scheduler, and Airport Scheduler for
each airport.

The Terminal Scheduler runs every 30 seconds and has
3 sub-routines. The loop k1 is responsible for modeling the
unimpeded trajectory to the runway for both departures and
arrivals. The unimpeded trajectory is then used as input to
the loop k2 which is the main scheduling loop. The main
scheduling loop applies all known constraints along the ter-
minal boundary and each airport surface and iterates until a
schedule is found that satisfies all constraints. The loop k3
applies the main scheduling loop under a what-if scenario
where a particular flight is assumed to use a TOS alternative
route as opposed to the original filed route. By comparing
the ETOT on the TOS route to the ETOT on the original filed
route, the system recommends reroutes when the delay savings
exceeds the flight operator provided Relative Trajectory Cost
(RTC) [9], [18].

As shown in Fig. 2, the ML Airport Surface Model is
used as the Trajectory Modeler component within the Terminal
Scheduler in the ML approach. The ML Airport Surface Model
replaces the legacy adaptation physics based 4-D trajectory
modeler responsible for modeling unimpeded trajectories to
the runway. The scalable ML solution generates the same
critical data elements needed by the Terminal Scheduler with-
out requiring adaptation. The critical data elements required
include the airport configuration [19], departure runway [20],
departure unimpeded take off time [21], arrival runway, and
arrival estimated ON time [22]. The unimpeded take off time
is a combination of the flight operator provided Earliest Off



Fig. 2. ML airport surface model used within the scheduling algorithm.

Fig. 3. Service-oriented architecture.

Block Time (EOBT) plus a prediction of unimpeded taxi time
from gate to runway.

For departures, one of the distinctions between the ML
Airport Surface Model and the legacy adaptation based Air-
port Surface Model is the use of surface surveillance. The
legacy adaptation based Airport Surface Model used surface
surveillance as input to detect the current location of every
aircraft on the airport surface and update the trajectory to
use the current location as the starting point. This provided
a 4-D trajectory that was constantly updated at 30 second
frequencies. In contrast, the ML Airport Surface model only
updates the trajectory once when the flight crosses the taxiway
spot. At spot crossing, the trajectory is updated to current
time plus the prediction of unimpeded Airport Movement Area

(AMA) taxi time.

B. Deployment as Service-Oriented Architecture

Fig. 3 shows a detailed view of the ML Airport Surface
Model architecture. The ML Airport Surface Model is de-
ployed in a service-oriented-architecture in which each logical
service is distinct with well-defined inputs and outputs. The
ML Airport Surface Model starts at the bottom of the figure
from a foundation of raw data feeds including FAA System
Wide Information Management (SWIM) data feeds and other
available airline or airport data feeds. The raw feeds contain
valuable data but can provide inconsistent information on
the same flight that is difficult to reconcile in a real-time
environment.

To address this challenge, NASA developed logic that could
resolve data processing and mediation complexities. Much
of this work is embodied in the Fuser service. The Fuser
framework mediates between the disparate sources of data,
pulling in the right data, at the right time. The Fuser leverages
heuristics and analysis on which data source is best to use for
a specific need and provides access to the information in a
common well defined data model.

The Fuser data is used as input to the Airport Surface
Model Orchestrator. The Orchestrator also pulls in weather
data, current airport configuration data in the form of Digi-
tal Automatics Terminal Information Service (D-ATIS), and
restriction data from NASA’s Traffic Management Initiative
(TMI) service. The TMI service combines restriction data from
FAA SWIM data feeds in addition to local restrictions only
available on the Operational Information System (OIS) page.
The restriction data is parsed to identify individual restrictions
correlated and assigned at the flight level by the TMI service
prior to being passed as input to the Orchestrator.

The Orchestrator is responsible for collecting the inputs
required by each ML prediction service and also responsible
for calling the ML services in the proper order. Even though
each service is distinct with well defined inputs and outputs



Fig. 4. MLOps infrastructure.

there are dependencies between the different ML prediction
services that need to be accounted for. Fig. 3 shows the
dependencies between the services as the output of the airport
configuration service is used as input to the runway service.
Similarly, the output of the runway service is used as input by
the taxi time service and the arrival ON time service. Outputs
of the runway, taxi-time, and arrival ON service are used as
input by the Terminal Scheduler as described in Section III-A.

Outputs of the Terminal Scheduler are passed to the Col-
laborative Digital Departure Reroute (CDDR) TOS service
which computes the delay savings for each TOS route as
the difference in ETOT on the TOS route compared to the
original filed route [23]. If the delay savings exceeds the flight
operator provided RTC, the TOS route is then shown to the
flight operator as a Candidate for reroute. Output of the CDDR
TOS service also includes critical data elements required to
drive the front end UI which the users interact with.

Outputs of each individual service shown in Fig. 3 are made
available through well defined APIs deployed on NASA’s
Digital Information Platform (DIP). Each individual service
can be consumed and used as building blocks for downstream
service developers. By making the services available through
API, others can benefit from the ML Airport Surface Model
accelerating the development cycle for new capabilities that
require these foundational data elements.

IV. MLOPS

For deployment of the ML Airport Surface Model, we adopt
MLOps best practices across the real-time system and the
off-line training infrastructure. Fig. 4 illustrates the real-time
system and the off-line training infrastructure and the relation-
ship between the two. The adoption of MLOps best practices
described in this Section helps reduce risk in deployment to
ensure both the models and the pipelines feeding the models
are consistent between the off-line training infrastructure and
the real-time deployment.

A. MLOps Infrastructure

The off-line training infrastructure is shown in the top of
Fig. 4 and begins with a historical archive of the data used

Fig. 5. Real-time KDFW departure runway metrics for debugging.

as input to the Orchestrator shown in Fig. 3. These data are
ingested by the ML model training pipelines that are composed
of three phases: data query, data engineering, and model
building and training. The trained models are then validated
against out of sample test sets using k-fold cross validation and
other validation analysis. The trained models are then stored
in MLFlow and version control of the model training pipelines
is maintained via Bitbucket.

The real-time system is shown in the bottom of Fig. 4 and
begins with streaming data feeds that are fused and mediated
in real-time by the Fuser prior to being used as input to the
Orchestrator shown in Fig. 3. It is important to ensure that any
data engineering techniques applied to the historical data are
replicated in the real-time feeds or else model performance
will degrade as the distribution of features in the training data
will not match the features provided to the model in real-time.
The real-time fused data feeds and the features delivered to the
on-line model are stored in databases and used as reference in a
real-time performance monitor. Nightly queries are performed
to summarize model performance and stored in a ML metric
storage database allowing for long-term monitoring of model
performance.

The real-time performance monitor has been a valuable tool
during deployment of the system to provide a tight feedback
loop between the system and engineers. Often times it is
easier to identify and debug issues while tracking the real-
time performance as opposed to aggregate performance. To
track real-time performance, we adopted a strategy to measure
performance of models conditional on the input received. As
shown in Fig. 3, the ML models have dependencies with
upstream models and it is important to understand these
dependencies if the performance of a particular model is
degrading or if the inputs fed to the model are degrading.

Fig. 5 shows an example of the real-time metrics computed
and tracked in the real-time performance monitor for the
departure runway model at KDFW. We keep track of the off-
line validation accuracy measured in training and compare it
to the overall real-time performance accuracy. Each model



Fig. 6. ML pipelines and software tools.

is also scored within four distinct categories where a single
prediction will fall into one of: 1) all input features correct,
2) any input feature was incorrect, 3) model generates a
default response, and 4) the model prediction was replaced.
The departure runway ML model generates a default response
if any core feature is missing and the model prediction is
replaced if it violates obvious constraints such as a South
flow prediction when D-ATIS detects the airport is currently
operating in North flow.

For each category, we keep track of the number of predic-
tions that fall into the category and the associated accuracy.
For example, for KDFW you can see that in total we observed
96 predictions of which 66 (68.8%) had all the correct input
features with associated accuracy 87.9% and 27 (28.1%) had
at least one input feature incorrect with associated accuracy
81.5%. For the departure runway prediction model, an example
of a prediction with incorrect feature input is a departure flight
that is predicted to use departure fix A but was observed to
actually use departure fix B. In this scenario, we would expect
for departure runway prediction model performance to degrade
as shown in Fig. 5.

Whereas the real-time performance monitor evaluates data
within hours of current time and provides a tight feedback loop
for deployment and debugging, the long-term performance
monitor evaluates data over months and is a valuable tool
to measure the drift in model performance and to compare
aggregated model performance against benchmark methods.
Since the long-term monitor measures the performance over
much larger data sets, it is not practical to measure perfor-
mance from the raw data collected from the system. Enabling
visualizations over longer time periods requires the raw data
to be queried and processed in a nightly manner using ML
monitor pipelines and the automation tool Apache Airflow.
Each night, Apache Airflow Directed Acyclic Graphs (DAGs)
are kicked off to process daily flight data and produce standard
performance metrics that are then stored in a database. The

processed metrics allow performance visualization over longer
time periods while maintaining a quick and responsive retrieval
of the metrics.

B. MLOps Software Tools

The MLOps infrastructure shown in Fig. 4 is enabled by
adoption of key software tools including Kedro [24], Scikit-
learn [25], MLFlow [26], XGBoost [27], Apache Airflow
[28], and Plotly/DASH [29]. Fig. 6 shows the off-line training
pipelines and the real-time pipelines and the different software
tools adopted for each. The top of Fig. 6 shows the off-line
training pipeline structured by Kedro which provides the ML
model training framework.

Kedro enforces software engineering best practices applied
to ML development. Kedro provides well-defined project and
directory structures centered around data query and save, data
engineering, and data science pipelines. Each of these three
parts is described by a series of processes, called nodes, that
are linked to each other through their inputs/outputs and form
a DAG. Adoption of the Kedro framework enables scalable,
maintainable, and reproducible development of ML models in
the off-line training environment.

In addition to providing overall structure to the off-line
training environment, Kedro enables abstraction of critical
parameter values and ML model hyper-parameters into high
level configuration files. This abstraction of parameter values
results in highly scalable pipelines where the vast majority
of code remains unchanged when training a wide variety of
different airports, time ranges, or even machine learning model
type.

The Kedro structure also allows for reusability of code
between different types of problems, for example using the
same code in development of a runway prediction model and
taxi-time prediction model. Each pipeline is structured as a
collection of atomic operations where each operation is a
node. Because different problems often times require similar



Fig. 7. MLOps validation

operations involved in the data query, data engineering, or
data science pipelines a node that was originally developed
for the runway model can be reused for the taxi-time model.
The ability to reuse code across different types of models
reduces development effort as additional prediction problems
are considered.

Scikit-learn provides the Pipeline class which we use to
store the feature engineering in both the off-line training
pipeline and the real-time pipeline. The dividing line between
data engineering functions and feature engineering functions is
often arbitrary. We adopt the convention that data engineering
is a process applicable to many different models whereas
feature engineering is a process specific to a particular model.

Using the Scikit-learn Pipeline class, we combine the feature
engineering with the model into a single object. At the end
of the training process, we Pickle the combined object thus
preserving the exact feature engineering steps applied in the
off-line training pipeline. The combined object can then be
deployed to the real-time system ensuring the exact code is
used in deployment as was used in training.

We use XGBoost for the underlying ML models for all
prediction problems. The pickled combination of ML model
and feature engineering pipeline are registered to MLFlow
along with artifacts calculated during the training process.
Fig. 7 shows an example of artifacts recorded via MLFlow
from an experiment run of the departure runway model.

On our MLFlow server, an experiment is defined to contain
all the training performed for a type of ML model (e.g.
departure runway model). Each time a ML model training
pipeline is run, it will log as a new run for an experiment.
For each experiment run, MLFlow tracks metadata associated
with the training data, hyper-parameters, hash of the code repo,
performance metrics, and whatever artifacts are calculated
during validation. Fig. 7 shows a confusion matrix calculated
as a result of validation and along the left side of the Figure
there are links to additional artifacts of interest. Within the

Fig. 8. Top: KDFW departure runway. Bottom: KDFW Arrival runway.

model directory is the pickled model which can then be
registered and the URI (Unique Resource Identifier) of the
registered model can be referenced directly for deployment to
the real-time system.

Apache Airflow provides the ability to schedule nightly
execution of DAGs consisting of a collection of automated
reports and calculation of performance metrics. The processed
performance metrics are used as the source data for long-term
performance monitoring which is visualized via Plotly/DASH.
Plotly/DASH is a Python framework that enables web-based
visualizations of the performance metrics.

V. MACHINE LEARNING PERFORMANCE VS. LEGACY
APPROACH

For evaluation of the ML Airport Surface Model (pure-ml)
performance, we compare against performance of the legacy
adaptation based Airport Surface Model (legacy) as baseline.
We use data collected during the Stormy 2022 Field Evaluation
between April 29 2022 through September 16 2022. During
this time period at KDFW there were 127,898 departures and
126,721 arrivals and at KDAL there were 40,973 departures
and 41,177 arrivals used for validation.

A. Runway Prediction Model

Fig. 8 shows the performance of the departure and arrival
runway prediction models in the top and bottom of the Figure,
respectively. During the Stormy 2022 Field Evaluation, KDAL
had runway construction the majority of the time period forc-
ing the airport into a single runway operation. The prediction
problem on the single runway operation becomes trivial so we
focus the evaluation on the performance at KDFW.



The top subplot of Fig. 8 shows the performance of the
KDFW departure runway models where the horizontal axis is
the date and the vertical axis is the percentage of predictions
for departure runway which matched the actual runway used.
The predictions for departure runway are sampled once per
departure flight at the OUT event (i.e. pushback). Prediction
accuracy for the legacy system and pure-ml system are shown
in blue and orange, respectively. For each day in the date
range, we measure the percentage of all departures for the
given day and plot that with a small circle. The 14 day rolling
average of the prediction percentage is plotted with a solid line
and provides and indication of performance averaged across
multiple days and situations.

The overall accuracy of the pure-ml departure runway
prediction model (93.2%) is very close to the accuracy of the
legacy departure runway model (94.2%). Not only is the over-
all accuracy quite close, but the rolling average shows similar
trends between the pure-ml model performance compared to
legacy model performance which indicates both systems are
impacted in similar ways.

The performance of the departure runway model is quite
encouraging because the legacy system at KDFW is not truly
predicting the departure runway. Instead, the legacy system
allows for ATC to set a taxi-plan which defines a departure
fix to runway mapping which assigns departures to runways
according to the way in which ATC wants to load balance
the demand across runways. Fig. 8 shows us that the pure-ml
departure runway model is only one percentage point below
the accuracy of the legacy ATC assignment via the taxi-plan.
This is encouraging and gives us confidence that the pure-
ml system could be deployed with or without receiving ATC
input regarding load balancing strategies for departures and
maintain comparable performance.

The bottom subplot of Fig. 8 shows the performance of the
KDFW arrival runway model where the horizontal axis is the
date and the vertical axis is the percentage of predictions for
arrival runway which matched the actual runway used. The
predictions for arrival runway are sampled once per arrival
flight at the arrival fix crossing event.

The overall accuracy of the pure-ml arrival runway predic-
tion model (63.0%) is outperforming accuracy of the legacy ar-
rival runway model (56.4%). The legacy arrival runway model
uses Time Based Flow Management (TBFM) predictions to
generate the arrival runway. Not only is the overall percentage
performance of the pure-ml system above the legacy system,
but the cloud orange dots shows separation and sits above
the cloud of blue dots indicating that the pure-ml system
is outperforming the legacy system for arrival runway on a
consistent day by day basis.

B. Arrival ON Prediction Model

Fig. 9 shows the performance of the KDFW arrival ON
prediction model. The legacy arrival ON model uses a decision
tree which selects TBFM Scheduled Time of Arrival (STA)
when available, else uses Traffic Flow Management System
(TFMS) Earliest Time of Arrival (ETA). The arrival ON model

Fig. 9. KDFW arrival ON time.

is evaluated using the error in prediction measured as the
difference between the actual ON time minus the predicted
ON time sampled at the arrival fix crossing. Each arrival flight
contributes to a single data point in each of the three subplots
shown in Fig. 9.

The top subplot of Fig. 9 shows the distribution of arrival
ON time prediction error for the legacy system and pure-
ml system in blue and orange, respectively. The horizontal
axis is the error measured in minutes where a positive value
indicates the actual ON time was later than the predicted ON
time. As can be seen comparing the legacy distribution to the
pure-ml distribution, the pure-ml arrival ON time prediction
is outperforming the legacy arrival ON time with a standard
deviation of 1.74 minutes for the pure-ml system compared to
1.87 minutes for the legacy system.

The main improvement for the arrival ON time prediction
model using the pure-ml system is the mean error. The legacy
system has mean error of 1.29 minutes compared to pure-ml
system with mean error 0.29 minutes. Due to the reduction
in mean error the percentage of arrival flights with prediction
within a +/− 2 minute window increased from 66.1% for the
legacy system up to 78.9% for the pure-ml system.

The bottom subplot of Fig. 9 shows the performance of the
KDFW arrival ON prediction model where the horizontal axis
is the date and the vertical axis is the standard deviation of the
error measured in minutes. Similar to the error distributions
shown in the above plot, we see throughout the time period
the pure-ml arrival ON model had a lower standard deviation
compared to the legacy arrival ON model. The 14 day rolling
average for the pure-ml system colored in orange is consis-
tently below the legacy system colored in blue. Both rolling



Fig. 10. KDFW unimpeded taxi-out.

averages show similar trends indicating performance of the
two models are impacted in similar ways.

C. Unimpeded Taxi-Out Prediction Model

Fig. 10 shows the performance of the KDFW unimpeded
taxi-out time prediction. Unlike other models which have
a well defined truth value, most aircraft do not experience
an unimpeded taxi from gate to runway, so it is difficult
to build a data set for validation. Instead of comparing the
predicted value to an actual value, for the unimpeded taxi-
out model we compare the pure-ml prediction directly to the
legacy adaptation based prediction. The goal is not to evaluate
the accuracy, but instead evaluate the difference from legacy
methods.

The top row of subplot of Fig. 10 shows the results of
comparison for the KDFW unimpeded ramp taxi-out predic-
tion. The left side of the top row shows a histogram where
the horizontal axis is the difference in unimpeded ramp taxi-
out prediction measured as the pure-ml prediction minus the

legacy prediction in minutes. The right side of the top row
of subplot shows a scatter plot where the horizontal axis is
the legacy prediction in minutes and the vertical axis is the
pure-ml prediction in minutes. The middle and bottom row of
Fig. 10 shows the same type of plots for the AMA taxi-out
and the total taxi-out, respectively.

As can be seen in the bottom row of subplots in Fig. 10, the
total difference between unimpeded taxi-out prediction has a
mean value of 1.48 minutes with standard deviation of 1.54
minutes. The difference is roughly bounded by −2 and 4
minutes. Looking at the second row of Fig. 10 we see the
AMA predictions are quite similar between pure-ml and the
legacy with mean value 1.22 minutes and a standard deviation
0.81 minutes.

The majority of difference in the total taxi-out predictions
seems to be associated with the ramp taxi-out prediction. The
top row of Fig. 10 shows the difference in ramp taxi-out has
a mean value of 0.26 minutes and standard deviation 1.47
minutes. The difference in ramp taxi-out shows similar bounds
to the total taxi with the difference in ramp taxi-out falling
between −2 and 4.

Judging the performance of unimpeded taxi-out model
is difficult because when we observe a difference between
the pure-ml prediction and the legacy prediction we don’t
know which value is closer to the truth, we just observe
the difference. Since the unimpeded taxi-out time predic-
tion is used as input to the scheduler which produces the
ETOT prediction, we take the approach that evaluation of
the unimpeded taxi time predictions can partially be achieved
by evaluating the ETOT prediction accuracy shown in the
following Section V-D.

D. Estimated Take Off Time Prediction

For analysis of ETOT prediction accuracy we restrict our
attention to AAL major flights at KDFW and SWA major
flights at KDAL, as these flights were participants in the field
evaluation and providing EOBT predictions. Fig. 11 and 12
show the performance of the ETOT prediction at KDFW and
KDAL, respectively. The top subplot shows the distribution of
the error in the ETOT prediction for the legacy system and the
pure-ml system colored in blue and orange, respectively. The
horizontal axis represents the difference in minutes between
the actual OFF time and ETOT sampled at the OUT event. The
bottom subplot shows the performance of the ETOT prediction
sampled at OUT where the horizontal axis is the date and the
vertical axis is the standard deviation of the error measured
in minutes. The standard deviation of the error is shown for
each day with a small circle and the 14 day rolling average is
shown with a line.

Fig. 11 shows the KDFW ETOT prediction accuracy is quite
similar between the pure-ml system and the legacy system. The
pure-ml system has a slightly lower standard deviation of 6.3
minutes compared to the legacy system of 6.61 minutes. The
pure-ml system has mean error −1.69 minutes compared to
−1.34 minutes. Even with the slightly larger bias, the tighter
standard deviation results in the pure-ml system having higher



Fig. 11. KDFW ETOT accuracy.

percentage of flights fall within +/ − 5 minutes (63.7%)
compared to the legacy system (62.5%). The bottom subplot
of Fig. 11 shows the improved standard deviation of error for
the pure-ml system was observed throughout the time range
during a variety of operating conditions.

Similarly, Fig. 12 shows the pure-ml KDAL ETOT pre-
diction accuracy is slightly improved compared to the legacy
system. The main difference between KDFW results in Fig. 11
and the KDAL results in Fig. 12 is that the KDAL pure-ml
system has a much smaller mean error of −1.99 minutes com-
pared to the legacy system of −3.6 minutes. This reduction in
mean error for the pure-ml system has a significant impact on
the percentage of flights falling within +/−5 minutes (73.8%)
compared to the legacy system (57.9%). The bottom subplot
of Fig. 12 shows the standard deviation of error for the pure-
ml system was very similar throughout the time range during
a variety of operating conditions.

VI. CONCLUSION

This paper describes the work required for transformation of
NASA’s legacy IADS system to a real-time ML Airport Sur-
face Model deployed on NASA’s Digital Information Platform.
The system was deployed as a service-oriented architecture in
alignment with FAA’s Info-Centric NAS and leveraged ML to
replace legacy adaptation to provide a scalable solution. The
individual services making up the ML Airport Surface Model
can be leveraged as building blocks to accelerate innovation
for higher level capabilities.

Deployment of the ML in a real-time operational system
required adoption of MLOps best practice to ensure scalable,
maintainable, and reproducible development of ML models

Fig. 12. KDAL ETOT accuracy.

and end-to-end lifecycle management within the software
system. Key software tools including Kedro, Scikit-learn,
and MLFlow were adopted within the MLOps infrastructure
for both off-line training pipelines and real-time deployment
pipelines. The result was an integrated ML software system
that was deployed and evaluated in an operational field eval-
uation and performance was benchmarked against the legacy
solution.

Performance of the ML Airport Surface model compared
to legacy IADS system was very encouraging. For arrival
predictions, the ML outperformed the legacy approach with
the arrival runway prediction increasing from 56.4% to 63.0%
accuracy and the arrival on time prediction improving where
the legacy approach had 66.1% flights and ML approach had
78.9% flights with prediction within +/− 2 minutes of the
actual value. For departure predictions, ML departure runway
predictions were within one percent of ATC assignments of
departure runways and the ETOT predictions at both KDFW
and KDAL showed improvement with the ML approach when
measuring the standard deviation of prediction error and the
percent of flights with prediction within +/− 5 minutes of the
actual value.

Overall, the results of the ML Airport Surface Model
have been encouraging as it serves as a proof-of-concept for
transformation of legacy capabilities into digital services de-
ployed in a cloud-based environment. The performance of the
ML Airport Surface Model compared to the legacy approach
confirms there is a viable path to replace legacy adaption with
ML and maintain or improve system performance. Replacing
legacy adaptation with ML is an important topic as many of
the legacy FAA systems such as TBFM, TFMS, and Terminal



Flight Data Manager (TFDM) rely on adaptation and ML
could provide a more efficient alternative.
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