

Toward 500 Wh/kg with All-Solid-State Lithium Sulfur Batteries

Yi Lin,¹ Donald A. Dornbusch,² Lopamudra Das,³ Rodolfo Ledesma,³ Jin Ho Kang,¹ Ji Su,¹ Vesselin Yamakov,³ Rocco P. Viggiano²

¹Advanced Materials & Processing Branch, NASA Langley Research Center, Hampton, VA 23681; ²Materials Chemistry and Physics Branch, NASA Glenn Research Center, Cleveland, OH 44135; ³Analytical Mechanics Associates, Hampton, VA 23666

American Chemical Society (ACS) Fall 2023 Meeting & Exposition

August 15, 2023 San Francisco, CA

Why is NASA Interested in Solid-State Batteries?

Why is NASA Interested in Solid-State Batteries?

SABERS: Solid-state Architecture Batteries for Enhanced Rechargeability and Safety

Dry-Pressed Electrodes Enabled by Holey Graphene

Acc. Chem. Res. 2022, 55, 3020-3031.

Li Ion Conductivity through hG Sheets

□ Li ion can conduct through the thickness of holey graphene (hG) – as long as the holes are at least 25% in size of the solid-state electrolyte particles.

ACS Appl. Mater. & Interfaces 2022, 14, 21363-21370.

- □ Active material: S
- □ Solid electrolyte (SE): Li₆PS₅Cl (LPSC)

Carbon: CB (carbon black) vs hG (holey graphene)

All-Solid-State S Cathodes

Dry-Pressed Cathode/SE Bilayer Discs

CB

hG

- MARCINE CONTRACTOR

- Both composites are compressible to form robust cathode/SE bilayer discs
- LPSC glass electrolyte serves as binder
- ☐ hG as "cold pressable hosts" is not an obvious advantage…?

Advanced Materials and Processing Branch

NASA Langley Research Center

Fabrication Pressure Dependence

□ $\sigma_{\rm B}$: bulk conductivity □ $\sigma_{\rm GB}$: grain boundary conductivity □ $\sigma_{\rm EXP}$: experimentally measured conductivity

Ionic conductivity of solid electrolytes from different fabrication pressure can be described using a particle dynamics model

ACS Appl. Mater. & Interfaces **2023**, accepted for publication

Dry-Pressed Cathode/SE Bilayers

РG

Cathode Microstructures

NASA Langley Research Center

All-Solid-State Li-S Cell Impedance Characteristics

□ The use of hG provides much lower impedance, especially in low frequency region.

Li Ion Diffusion Properties

D _{Li} *	=	R^2T^2
		$2A^2n^4F^4c^2\sigma_w^2$

	D _{Li+} (cm²/s)
СВ	$3.0 imes 10^{-18}$
hG	3.9×10^{-17}

The use of hG allows one magnitude higher Li ion diffusion through the cathode.

60°C

60°C

hG

800

1000

600

СВ

0

hG

3

All-Solid-State Li-S Cell Performance

NASA Langley Research Center

Strategies toward High S Utilization

Increase Operation Temperature

S Melt Infiltration

Composition/Process Optimization

- □ A Design-of-Experiment (DOE) study
- □ 20 unique compositions
 - ✤ S: 10 50%
 - ✤ hG₁+hG₂: 5-20%; hG₁: 0-15%; hG₂: 0-20%
 - ✤ SE₁+SE₂: 30-85%; SE₁: 0-75%; SE₂: 0-70%
 - No $hG_1 = no$ melt infiltration

S Cathode Design Principles from DOE

□High Discharge Capacity

- ≻Low S content
- ➢High hG:S ratio in melt infiltration

Low Overpotential

- ≻Low S content
- Medium hG:S ratio in melt infiltration

Low impedance

- High scaffolding-step hG content
- High coating-step SE content

□High Li⁺ Diffusion Coefficient

- High hG:S ratio during melt infiltration
- High coating-step SE content

Cell Integration to Improve Specific Energy

Reducing SE Thickness in Dry-Press

Improved Energy Density

Reduction in SE thickness + Increasing cathode S content with retained S utilization = Improved Energy Density

- All dry-pressed cathodes
- No additional stack pressure
- ➢ 0.032 mA/cm²

Toward 500 Wh/kg

Increasing cathode S content and loading and reducing solid electrolyte thickness pushed specific energy pass 500 Wh/kg.

Advanced Materials and Processing Branch

NASA Langley Research Center

Reliable Reductions of SE Thickness

Free-standing LPSC Thin Films (~26 µm thickness) **Tape-Casted LPSC Films** (~25 μm thickness)

10 µm

Feasible? Reliable? Safe?

- □ Solid-state S cathodes were prepared by **solvent-free pressing** a mixture of S, solid electrolyte, and carbon
- □ Holey graphene provides robust composite cathode architecture, thus enhanced electrochemical performance (in comparison to carbon black)
- High S utilization was achieved at high mass loading (> 5 mg/cm²) in all-solidstate cells
- □ Optimization of all-solid-state S cathodes was achieved via DOE studies
- Cell-level (electrochemical) energy density was improved by reducing solid electrolyte thickness and increased cathode S content

Acknowledgements

□ NASA Convergent Aeronautics Solutions (CAS) Project

□ NASA Transformational Tools and Technologies (TTT) Project

□ NASA **SABERS** Team (LaRC):

- □ John Connell (retired)
- □ Vesselin Yamakov, Ji Su, Rodolfo Ledesma, Jin Ho Kang, Lopamudra Das, Glen King

□ Student Interns:

- □ 2019 2022: Christian Plaza-Rivera, Brandon Walker
- □ 2022: Abigail Durgin, Bona Kim, Lucy Somervill, Rehan Rashid
- 2023: William Dai, Sayyam Deshpande, Prasun Kolhe, Claudia Lopez, Abraham Nicolson, Coby Scrudder