

Toward 500 Wh/kg with All-Solid-State Lithium Sulfur Batteries

Yi Lin,¹ Donald A. Dornbusch,² Lopamudra Das,³ Rodolfo Ledesma,³ Jin Ho Kang,¹ Ji Su,¹ Vesselin Yamakov,³ Rocco P. Viggiano²

¹Advanced Materials & Processing Branch, NASA Langley Research Center, Hampton, VA 23681; ²Materials Chemistry and Physics Branch, NASA Glenn Research Center, Cleveland, OH 44135; 3Analytical Mechanics Associates, Hampton, VA 23666

American Chemical Society (ACS) Fall 2023 Meeting & Exposition

August 15, 2023 San Francisco, CA

Why is NASA Interested in Solid-State Batteries?

Why is NASA Interested in Solid-State Batteries?

SABERS: Solid-state Architecture Batteries for Enhanced Rechargeability and Safety

Dry-Pressed Electrodes Enabled by Holey Graphene

Advanced Materials and Processing Branch NASA Langley Research Center

Li Ion Conductivity through hG Sheets

 \Box Li ion can conduct through the thickness of holey graphene (hG) – as long as the holes are at least 25% in size of the solid-state electrolyte particles.

ACS Appl. Mater. & Interfaces **2022***, 14*, 21363-21370.

- q Active material: **S**
- \Box Solid electrolyte (SE): Li₆PS₅Cl (LPSC)
- q Carbon: **CB (carbon black) vs hG (holey graphene)**

Advanced Materials and Processing Branch NASA Langley Research Center

All-Solid-State S Cathodes

Dry-Pressed Cathode/SE Bilayer Discs

- \Box Both composites are compressible to form robust cathode/SE bilayer discs
- \Box LPSC glass electrolyte serves as binder
- \square hG as "cold pressable hosts" is not an obvious advantage…?

Fabrication Pressure Dependence

 $\Box \sigma_B$: bulk conductivity \Box σ_{GB} : grain boundary conductivity **Δ** σ _{EXP}: experimentally measured conductivity

Ionic conductivity of solid electrolytes from different fabrication pressure can be described using a particle dynamics model

ACS Appl. Mater. & Interfaces **2023***, accepted for publication*

Dry-Pressed Cathode/SE Bilayers

Cathode Microstructures

Advanced Materials and Processing Branch NASA Langley Research Center

All-Solid-State Li-S Cell Impedance Characteristics

 \Box The use of hG provides much lower impedance, especially in low frequency region.

Li Ion Diffusion Properties

 \Box The use of hG allows one magnitude higher Li ion diffusion through the cathode.

All-Solid-State Li-S Cell Performance

Advanced Materials and Processing Branch NASA Langley Research Center

60oC

hG

800

1000

 $\boldsymbol{\Delta}$

60oC

Ò

 h_n

 $\mathbf{3}$

Strategies toward High S Utilization

Increase Operation Temperature S Melt Infiltration

Composition/Process Optimization

- \Box A Design-of-Experiment (DOE) study
- \Box 20 unique compositions
	- \div S: 10 50%
	- \cdot hG₁+hG₂: 5-20%; hG₁: 0-15%; hG₂: 0-20%
	- \div SE₁+SE₂: 30-85%; SE₁: 0-75%; SE₂: 0-70%
	- \triangleleft No hG₁ = no melt infiltration

S Cathode Design Principles from DOE

QHigh Discharge Capacity

- **ELOW S content**
- \triangleright High hG:S ratio in melt infiltration

QLow Overpotential

- **ELOW S content**
- \triangleright Medium hG:S ratio in melt infiltration

\Box Low impedance

- \triangleright High scaffolding-step hG content
- \triangleright High coating-step SE content

\Box High Li + Diffusion Coefficient

- \triangleright High hG:S ratio during melt infiltration
- \triangleright High coating-step SE content

Cell Integration to Improve Specific Energy

Reducing SE Thickness in Dry-Press

Improved Energy Density

q Reduction in SE thickness + Increasing cathode S content with retained S utilization = **Improved Energy Density**

- \triangleright All dry-pressed cathodes
- No additional stack pressure
- Ø 0.032 mA/cm2

Toward 500 Wh/kg

Increasing cathode S content and loading and reducing solid electrolyte thickness pushed specific energy pass 500 Wh/kg.

Advanced Materials and Processing Branch NASA Langley Research Center

Reliable Reductions of SE Thickness

Free-standing LPSC Thin Films (~26 μm thickness)

Tape-Casted LPSC Films (~25 μm thickness)

- ❖ Future development and direction: 5-10 μm
- ❖ Feasible? Reliable? Safe?

- q Solid-state S cathodes were prepared by **solvent-free pressing** a mixture of S, solid electrolyte, and carbon
- q **Holey graphene** provides robust composite cathode architecture, thus enhanced electrochemical performance (in comparison to carbon black)
- q **High S utilization** was achieved at **high mass loading (> 5 mg/cm2)** in all-solidstate cells
- q **Optimization** of all-solid-state S cathodes was achieved via **DOE studies**
- q Cell-level (electrochemical) **energy density** was improved by **reducing solid electrolyte thickness and increased cathode S content**

Acknowledgements

q NASA Convergent Aeronautics Solutions (**CAS**) Project

q NASA Transformational Tools and Technologies (**TTT**) Project

q NASA **SABERS** Team (LaRC):

 \Box John Connell (retired)

□ Vesselin Yamakov, Ji Su, Rodolfo Ledesma, Jin Ho Kang, Lopamudra Das, Glen King

\Box Student Interns:

- \Box 2019 2022: Christian Plaza-Rivera, Brandon Walker
- **□ 2022: Abigail Durgin, Bona Kim, Lucy Somervill, Rehan Rashid**
- q 2023: William Dai, Sayyam Deshpande, Prasun Kolhe, Claudia Lopez, Abraham Nicolson, Coby **Scrudder**