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How can we improve coastal water quality 
data products to address societal challenges 
locally?

• Challenge – large estuary, increased land use and 
runoff, increased aquaculture and recreation while water 
quality management resources shrinking, maximize 
potential of upcoming NASA hyperspectral missions

• Interagency Chesapeake Bay working group activities 
increase coordination, collaboration on data collection, 
calibration activities, new research

• DEEP-VIEW machine learning development to fuse 
features detected through multiple sources, including 
hyperspectral satellites, to capture greater variability



Motivation: resource manager need

Troy Ames (GSFC) 
developing daily AI 
architecture for water 
quality prediction using 
satellite data, in situ data, 
VIMS model for training.

MDE variables

Parameter name Water Quality Threshold

Fecal coliform <14 MPN median per100ml

Bacteriological 
Escherichia coli

< 410 count per 100ml

Dissolved oxygen > 5 mg/l

Temperature < 90oF/32oC

pH 6.5 - 8.5

Turbidity <150 nephelometer turbidity units

Color < 75 platinum cobalt units

Water clarity > 13% (tidal fresh)

● Can we improve coastal remote sensing to assist resource managers?

● Exploring relationship between satellite data and classification labels: 
temperature, turbidity, phytoplankton pigments, pollutants MODIS chlorophyll-a map from July 2, 2019 with routine 

sampling sites by Maryland and Virginia superimposed 

Maryland shellfish harvesting 
water quality criteria



Objective

Key MilestonesApproach
Apply NASA data, science, and technology to support interagency 
partners (e.g. state agencies, NOAA) in their operations toward the 
development of a decision support tool for shellfish aquaculture:

1. Collect and analyze all available in situ and remotely 
sensed data relevant to Chesapeake Bay water 
quality.

2. Collect and analyze absorption and fluorescence 
properties of water constituents at hyperspectral 
resolution for select sites.

3. Train an ACF ML to identify features that resulted in 
shellfish bed closures.

4. Refine and validate the ML against current conditions.

Integration of Observations and Models into Machine Learning for Coastal Water Quality 

PI: Stephanie Schollaert Uz, NASA GSFC

• Create interface to data modules (12/22)
• Optimize feature encoders (01/23)
• Develop feature fusion module (03/23)
• Optimize temporal fusion (06/23)
• Machine Learning validation (TRL 5) (06/24)
• Transition ML for Bias Correction (06/25)

Modular framework for detecting water quality features from 
multi-sensor segmentation using remote sensing and in situ data

Co-Is/Partners: Troy Ames, GSFC; Blake Clark, UMBC/GSFC; 
Marjorie Friedrichs, VIMS; Chris Brown, NOAA; John McKay, MDE TRLin = 3 TRLcurrent = 4

• Continue development and validation of modular framework to 
integrate data from multiple satellites and models to identify 
water quality problem areas in the Chesapeake Bay. 

• Initial performance goals are >90% accuracy for detection of 
poor water quality (exceeding thresholds for indicators, e.g. 
turbidity, harmful algal blooms, pollutants).

• Technology includes feature extraction by machine learning 
with multiple satellite sensors, physical models, and in situ 
sampling. 

• Improved capability prepares to exploit hyperspectral sensing 
by future NASA missions, i.e. PACE GLIMR, SBG

07/23 AIST-21-0067



Satellite Sensors
• Landsat 8-OLI
• Sentinel 2 MSI
• Aqua-MODIS
• Sentinel 3 OLCI
• DESIS
• PRISMA

In-Situ Data
• Dissolved Oxygen
• Organics
• Phytoplankton
• Harmful Algae
• High Bacteria/ 

fisheries impacts
• Physics

Data QA and QC and 
historical analysis

Geospatial analysis  
and interpolation to 
spatially distributed 

product for AI 
integration

Multi-sensor and 
spectral agnostic ML 

Architecture trained on 
in-situ and satellite data

Feed into ML Model

Identification of features that 
relate to poor water quality

1. Single threshold variables
2. Multi-variable threshold 
3. Presence of human health 

related microbes

Integration with additional 
causal earth system variables 

from many observations

Quantify Uncertainty for Error Accounting and Propagation

Release open-source for data 
integration to MARACOOS

Set up assimilation 
capability with 

VIMS CBEFS Model 
for initial testing. 

Develop 
methodology for 

using combined ML 
and 

biogeochemical 
model for 

ecological forecast 
purposes.*Uncertainty quantification 

in in-situ and satellite data 
ongoing

*Completed 
*Actively in development



AIST18: initially developed ML using satellite data and process model

Using 3-D Virginia Institute of 
Marine Science (VIMS) model 
as label data, initial 
architecture trained on 
optical satellite data input.

a) Target vs. predicted for every image bin

b) Surface predicted dissolved oxygen

c) Surface target dissolved oxygen

d) Predicted vs target vertical contour from 
the center of map

e) Predicted cross-section values at depth

f) Target cross-section at same location

Shellfish harvesting threshold: DO < 5mg/L



Deep learning for Environmental and Ecological Prediction, 
eValuation and Insight with Ensembles of Water quality 
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Atmospherically correcting  
DESIS hyperspectral surface 
reflectances in Acolite using 
https://github.com/acolite/acolite

Once these are validated with 
in situ data (from AERONET-OC 
and boat), integrate into new 
machine learning architecture

Validating Hyperspectral DESIS Satellite Data

•235 bands from 400-1000 nm
•30 m resolution
•2020-2022 (156 images)

https://github.com/acolite/acolite


Unsupervised Feature Training
Feature Vector

Original spectrum compared to predicted 
spectrum from 8-feature vector (inset)

• Unsupervised learning using Autoencoder 
architecture on spectral data (2003-2021)

• Training sets consisting of 50K, 100K, 250K 
water pixels

• Trained encoder can then be used for 
training additional decoder(s) to predict 
water quality.

MODIS Satellite Data Spectral Feature Training



R2: 0.611

MODIS/In situ Trained ML Output vs In situ Data

Feature Vector

• Supervised learning using 
decoder module on trained 
spectral features
- Correlate learned features 

with in situ data within 2-6 
hours (weighted)

- Thousands of in-situ matchups
• Utilize longer history of MODIS 

data and in-situ matchups for 
transfer learning to other satellite 
sources

Kd

Supervised Feature Training using In situ data



MODIS/In situ Trained ML Output vs In situ Data



DESIS Satellite Data Unsupervised/Supervised Feature Training

Feature Vector

• Unsupervised learning using 
Autoencoder architecture on 
hyperspectral pixel data 

• Supervised learning using MODIS 
trained model

• Exploit longer history of MODIS 
data and in-situ matchups for 
transfer learning to DESIS model

Wavelength (nm)

Original spectrum (177 channels) vs reconstructed 
spectrum from an 8-feature vector (inset)

•Currently only 8 scenes have 
in situ matchups



Kriging In Situ Fields to Increase Labeled Data for ML

Kriging method uses observations weighted by distance in monthly gridded climatology



MODIS In-situ Training + Kriging Interpolated Values
Experimental (semi) variograms and theoretical variogram models



MODIS In-situ Training + Kriging Interpolated Values

Kd 2002-2022

• 547 Individual 
Days

• Average 15 
samples per day

• 8211 input 
observations

• 554 test 
observations



MODIS In-situ Training + Kriging Interpolated Values

Secchi Depth
March 14, 2019

• Kriging product 
masked by ½ of Sill 
variance (strict)

• ML prediction using 
individual image 
from the same day 
pixels matched 
within 50 m



MODIS In-situ Training + Kriging Interpolated Values

Secchi depth and Kd for 
four initial images

• Upper plots are ML 
predictions vs. 
observations each day

• Lower plots are ML 
predictions vs. Kriging 
predictions aggregated 
over the four images

KD Secchi



Summary: many preparatory activities are reducing data gaps, 
quantifying uncertainties, developing DEEP-VIEW to serve resource 
managers as well as providing a new method for exploiting upcoming 
hyperspectral satellite data more broadly, e.g. process model assimilation

• Challenges remain – land adjacency for area of greatest interest, 
clouds and atmospheric correction of satellite data, sparse matchups 
within 2 hours

• Methodology developed here will be transitioned to open science 
cloud for interdisciplinary, e.g. land-water research, and scaling to 
other locations

• Transition from ADAPT to SMCE cloud services



Acronyms

• ADAPT  Advanced Data Analytics PlaTform
• CBEFS  Chesapeake Bay Environmental Forecast System
• CBP  Chesapeake Bay Program
• CDOM  Colored Dissolved Organic Matter
• CNN  Convolutional Neural Network
• CSDAP  Commercial Smallsat Data Acquisition Program
• DEEP-VIEW Deep learning for Environmental and Ecological Prediction, eValuation and Insight with Ensembles of Water quality
• DESIS  DLR (German Space Agency) Earth Sensing Imaging Spectrometer
• EIS  Earth Information System
• HAB  Harmful Algal Bloom
• HICO  Hyperspectral Imager for the Coastal Ocean
• LSTM  Long Short Term Memory
• MODIS  Moderate-resolution Imaging Spectrometer
• MSI  Multispectral Imager
• NCCS  NASA Center for Climate Simulations
• NWQMC  National Water Quality Monitoring Council
• OLCI  Ocean and Land Color Instrument
• OLI  Operational Land Imager
• PRISMA  (Italian) Hyperspectral Precursor of the Application Mission
• Rhos  Top-of-atmosphere reflectance minus Rayleigh
• Rrs  Remote sensing reflectance
• SAA  Space Act Agreement
• SMCE  Science Managed Cloud Environment
• SST  Sea-Surface Temperature
• S2  Sentinel-2 A&B
• S3  Sentinel-3 A&B


