

Using Motion Tracking Camera System In Magnetic Suspension Wind Tunnel Tests For Re-entry Capsules

> Hisham Shehata¹, Dave Cox², Mark Schoenenberger², Colin Britcher³ Eli Shellabarger², Brendan McGovern³, Tim Schott²

¹ Analytical Mechanics Associates, ² NASA Langley Research Center, ³ Old Dominion University

Motivation

•Support aerodynamic testing for levitating 'stingless' atmospheric re-entry capsules • Enhance system capabilities with motion tracking cameras to test at higher dynamic pressure needed to support CFD and aeroballistic range testing

Magnetic Suspension Balance System (MSBS)

MSBS in subsonic wind tunnel

EPS cage – sensing positions

Tracking Results

time roll and pitch information for control

Pitch measurement

Future Objectives

•Obtain all 6-DOF positions and orientations with the addition of two cameras

•Examine the feasibility of the MSBS in a supersonic wind tunnel at NASA Glenn

Supersonic tunnel at NASA Glenn with octagonal test-section

The MSBS team is grateful for Monica Hughes, Justin Haskins, and Mike Barnhardt from the Entry Systems Modeling Program management for providing continuous support