National Aeronautics and Space Administration

Transformational Tools and Technologies (T³) Project

Capturing, Analyzing, Maintaining, and Disseminating Experimental Data in a Robust Material Information Management System

Brandon Hearley, Steve Arnold NASA Glenn Research Center

www.nasa.gov

Innovative solutions through foundational research and cross-cutting tools

3rd International Conference on Mechanics of Advanced Materials and Structures, Aug 8-10

Notice for Copyrighted Information

This manuscript is a work of the United States Government authored as part of the official duties of employee(s) of the National Aeronautics and Space Administration. No copyright is claimed in the United States under Title 17, U.S. Code. All other rights are reserved by the United States Government. Any publisher accepting this manuscript for publication acknowledges that the United States Government retains a non-exclusive, irrevocable, worldwide license to prepare derivative works, publish, or reproduce the published form of this manuscript, or allow others to do so, for United States government purposes.

NASA

2

Integrated Computational Materials Engineering (ICME) Enables Innovation

- Top performing organizations rate New Materials as one of THE MOST IMPORTANT factors in meeting their innovation goals (Historically new materials 20 years)
- Integrated Computation Materials Engineering (ICME) looks to bridge the gap between the "Design-the-Material" (Material Science) and "Design-with-the-Material" (Structural) viewpoints
 - Enables design of 'fit-for-purpose' materials
- Requirements for ICME
 - Experimentally validated materials models at multiple length scales
 - Understanding processing-structure-propertiesperformance relationships
 - Integrated framework that can automatically pass information across scales during design optimization

Manufacturing capability to achieve desired microstructure at any location in an application

National Aeronautics and Space Administration

Vision 2040 has identified Data, Informatics, & Visualization as a Key Element Discipline Area

NASA

3

Integrated Computational Materials Engineering (ICME) Enables Innovation

- Top performing organizations rate New Materials as one of THE MOST IMPORTANT factors in meeting their innovation goals (Historically new materials 20 years)
- Integrated Computation Materials Engineering (ICME) looks to bridge the gap between the "Design-the-Material" (Material Science) and "Design-with-the-Material" (Structural) viewpoints
 - Enables design of 'fit-for-purpose' materials
- Requirements for ICME
 - Experimentally validated materials models at multiple length scales
 - Understanding processing-structure-propertiesperformance relationships
 - Integrated framework that can automatically pass information across scales during design optimization

Manufacturing capability to achieve desired microstructure at any location in an application

National Aeronautics and Space Administration

Vision 2040 has identified Data, Informatics, & Visualization as a Key Element Discipline Area

Why Does Material Information Management Matter?

RORMATIONAL A BAR FECHNOLOG

Data from July 2012 survey of 350 Granta customers/contacts; 35% N America, 45% Europe, 20% elsewhere; 25% current customers, 75% not customers

National Aeronautics and Space Administration

David Meza: Head of Knowledge Management at NASA, JSC Status Quo of Collaboration

- "Most engineers have to look at 13 different sources to find the information they are looking for"
- "46% of workers can't find the information about half the time"
- "30% of total R&D funds are spent to redo what we've already done once before"
- "54% of our decisions are made with inconsistent or incomplete, or inadequate information"

https://www.youtube.com/watch?v=QEBVoultYJg Axel Reichwein, June 5, 2018

Virtual Testing Can Enable Significant Cost Savings in Certification Process

NASA GRC ICME Schema

A robust material information management system is essential for fit-for-purpose material design

- Developed the NASA GRC ICME Schema within the Granta MI Material Information Management Platform
- Contains *collections* of *tables*, where each table has its own schema (i.e., attributes, layout, linking behavior, security controls, etc.)
 - Material Pedigree: Store material source information, properties, etc.
 - Test Data/Statistical Data: Store in-house experimental data and summarize into material properties
 - Model Pedigree: Store material models developed from experimental and virtual data (machine learning)
 - Reference Data: Store references, literature data, virtual data, etc.
 - Application Table: Link material models to parts for digital thread maintenance

Benefits

- Maintain institutional knowledge
 - Prevent recapturing/recreating data
 - Maintain pedigree/metadata on all data previously capture

ID	Alloy	XX	YY	ZZ	Base
144	HOS-875	1	1	1	Iron-base
356	Kanthal A-1	1	1	2	Iron-base
357	GE-1541	1	1	3	Iron-base
358	GE-2541	1	1	4	Iron-base
488	FeCrAIY MA-956	1	1	5	Iron-base
410	Allegheny Lud. A-1	1	1	6	Iron-base
728	Fontana - O.S.U.	1	1	7	Iron-base
773	Fecralloy A	1	1	8	Iron-base
783	NOZZL-(10 Ni)	1	1	9	Iron-base
586	NOZZI-Zr(10 Ni)	1	1	10	Iron-base
550	Fe-15Cr-5Al-10Ni (Scratch)	1	1	11	Iron-base
551	Fe-15Cr-5AI-20Ni (Scratch)	1	1	12	Iron-base
552	Fe-15Cr-5Al-30Ni (Scratch)	x 1	.1	13	Iron-base
	/		1		
	Base	0	???		Alloy ID

Oxidation Test Matrix from 1980's lack of documentation \rightarrow Loss of organizational data

Benefits

- Maintain institutional knowledge
 - Prevent recapturing/recreating data
 - Maintain pedigree/metadata on all data previously capture
- Reduce time for:
 - Finding what materials have been characterized
 - Finding what tests have been performed
 - Material selection for a specific application

Benefits

- Maintain institutional knowledge
 - Prevent recapturing/recreating data
 - Maintain pedigree/metadata on all data previously capture
- Reduce time for:
 - Finding what materials have been characterized
 - Finding what tests have been performed
 - Material selection for a specific application
- Security
 - Assign ITAR, Gov. only, etc. restrictions on an attribute-by-attribute basis

Benefits

- Maintain institutional knowledge
 - Prevent recapturing/recreating data
 - Maintain pedigree/metadata on all data previously capture
- Reduce time for:
 - Finding what materials have been characterized
 - Finding what tests have been performed
 - Material selection for a specific application
- Security
 - Assign ITAR, Gov. only, etc. restrictions on an attribute-by-attribute basis
- Consistent/Up-to-Date data
 - Automatic linking and ability to connect user subroutines allows for automation to provide consistent properties across the organization

Efficient Data Analysis and Importing is Critical to Effective Data Management

 Goal: Develop and automatic framework to capture analyze, and store bulk experimental test data in the NASA GRC ICME Schema

Experimental Data Automatic Import Tool: Selecting Data

- To begin the bulk analysis and import process, the user is asked to supply:
 - An Excel File containing data information that applies to all tests performed (1st Sheet) and individual test data not stored in the raw output from the machine (2nd Sheet)
 - 2. A folder containing the raw machine data from each test
 - Because the output format of different test machines (i.e., Instron, MTS, etc.) is different, all raw data is passed through a *machine specific* subroutine to convert it to a standard format for analysis and importing

	Project Name	IVHM
	Project Code	
1 st Sheet	Testing Organisation	NASA GRC
2 3//000	Funding Organization	Aeronautics
	Data Ownership	Government
	Data Ownership (Other)	
	Distribution Category	Publicly Available
	Testing Standards	NASA FAST Lab Standards
	Institutional Standards	
	Contact Information	
	Testing Contract	
	Report Number	
	Testing Source Notes	Tested in bldg. 49, room 100
	Operator	Brad Lerch
	Alloy	Ti-6Al-4V
Measurment Information		
incusus ment mornation	Temperature Measurement Method	Thermocouple
	Mode of Heating	Direct Induction
	Mode of Heating	Direct Induction Heater
	Tost Environment	Air
	rest environment	All
	Load Measurement Method	The Ha
	Load Weasurement Test Equipment	IMD #1
	Strain Measurement Method	Extensometer
	Strain Measurement Test Equipment	Axial Exten: 632-53&54
	Strain Measurement (Other)	Optical micrometer (transverse)
Specimen Information		
	Specimen Orientation	L
	Orientation (O) (°)	0
	Specimen Location	all from one plate location
	Gauge Cross-Section Geometry	Circular
	Machining Method	Turned
	Surface Finish	Polished
	Surface Finish (Other)	final polishing parallel to spec. axis
	Batch Number	8-46-707-2
	Product Thickness (mil)	625
	· · · · · · · · · · · · · · · · · · ·	025

	2 n	d Shoot											
	Sample Information			Test Information		Sample Specifications					Other		
SFORMATION	40	Specimen ID	Original Data Filename	Date	Test Type	Test Temperature (°F)	Gauge Area (in^2)	Gauge Length (mil)	Gauge Outer Diameter (mil)	Tested To Failure?	Valid Test?	Additional Informati	ion
	3	IVHM427-35	IVHM427-35.xls		Generic	800	0.0497	750	252	No	Yes	No transverse strain	
700	Cies	IVHM316-17	IVHM316-17.xls		Creep	600	0.0498	750	250	No	Yes		
S & TECHNO	JL ^O	IVHM538-23	IVHM538-23.xls		Tensile	1000	0.0501	750	249	No	Yes		
Nationa	I Ae	ronautics a	nd Space Administration	on									12

Experimental Data Automatic Import Tool: Data Analysis for Standard Tests

- Standard Tensile, Relaxation, Creep
- Generic Combination of various standard test stages
- For each Standard Test, data analysis of raw data performed
 - Tensile Modulus, Yield
 - Creep Creep Zones, Creep Stress
 - Relaxation Relaxation Stress, Loading/Unloading behavior
- Specific subroutines written for each test to perform the data analysis/parameter extraction
 - Store how parameters were calculated and write to each record to maintain material/test pedigree

Modulus Calculation Range

- Loading Modulus calculated using datapoints from 5% to 25% of maximum stress, calculated using Linear Fit method (R2 = 1.00)

Experimental Data Automatic Import Tool: Defining Generic Tests

- Generic Tests contain various stages of one of the standard test types
 - Stages endpoints are automatically recognized by implementing a knee-point algorithm
 - Control Modes are determined from analyzing the stress-time and strain-time behavior of each stage
 - Stage Type is determined using the table below

Control Mode	Rule	Stage Type
Stress	$ \dot{\sigma} < 10^{-3} ksi/s$	Creep
Strain	$\dot{arepsilon} < 10^{-8}~\%/s$	Relaxation
Stress or Strain	$\dot{\sigma}>0$ and $\sigma_{end}>0$ or $\dot{\varepsilon}>0$ and $\varepsilon_{end}>0$	Tensile Loading
Stress or Strain	$\dot{\sigma} < 0$ and $\sigma_{end} > 0$ or $\dot{\varepsilon} < 0$ and $\varepsilon_{end} > 0$	Tensile Unloading
Stress or Strain	$\dot{\sigma} < 0$ and $\sigma_{end} < 0$ or $\dot{\varepsilon} < 0$ and $\varepsilon_{end} < 0$	Compressive Loading
Stress or Strain	$\dot{\sigma}>0$ and $\sigma_{end}<0$ or $\dot{\varepsilon}>0$ and $\varepsilon_{end}<0$	Compressive Unloading

Experimental Data Automatic Import Tool: Knee Point Algorithm

- Knee point algorithm finds the turn point in series data
 - Use the Kneed python package/Kneedle algorithm developed by Satopa et. Al
- Kneedle Algorithm
- 1. Use a spline to smooth the data
- 2. Normalize between 0 and 1
- 3. Calculate the perpendicular distance of each point and rotate lines 45°
- 4. Calculate the local maxima of the difference curve
- 5. Calculate the threshold for each local maximum in the difference curve
- 6. Compare difference value to threshold to determine knee

Experimental Data Automatic Import Tool: Automatic Stage Recognition

- To find the beginning and end of each stage automatically:
 - Find the local maximum and minimum on stress (force) vs time data
 - Discrete points are assumed to be the beginning/end
 - Due to noise, flat sections will have many local max/min. If flat section is found:
 - Find the median value
 - If a median value exists between discrete points → run the knee point algorithm to find the stage beginning/end

* Local max/min

• Users can edit the stages manually through the GUI if desired

• Users can edit the stages manually through the GUI if desired

Add/Dalata stages	Stage Name	Stage Type	Control Mode	Target Strain [%]	Target Stress [ksi]	End Time [s]	End Index	
Add/Delete stages	Stage_0	Tensile Loading	Stress	2.12	85.01	7.86	667	^
through the table	Stage_1	Creep	Stress	2.51	84.95	199.942	728	
3	Stage_2	Tensile Unloading	Stress	2.38	69.89	201.112	845	
4								
	Cut contents	Ctrl+X g	Stress	2.51	84.91	202.258	960	
	Copy contents	Ctrl+C	Stress	4.01	84.93	2629.538	1041	
	Paste	Ctrl+V ling	Stress	3.88	69.91	2630.708	1158	
	Clear contents	Del	Stress	4.01	84.94	2632.854	1274	
	Delete rows		Stress	6.02	84.95	15369.414	1439	
	Insert rows above	ling	Stress	5.89	69.89	15370.594	1557	
1	Insert rows below	g	Stress	6.02	84.95	15372.74	1673	
1_	Edit Endpoint With	Plot	Stress	8.02	84.95	42786.322	1961	
13	Stage_11	Tensile Unloading	Stress	7.89	69.9	42787.492	2078	
14	Stage_12	Tensile Loading	Stress	8.02	84.95	42790.638	2195	
15	Stage_13	Creep	Stress	10.03	84.94	74260.182	2516	
16	Stage_14	Tensile Unloading	Stress	9.89	69.88	74261.352	2633	
17	Stage_15	Tensile Loading	Stress	10.03	84.95	74263.498	2749	1
18	Stage_16	Creep	Stress	12.03	84.94	102191.064	3042	
19	Stage_17	Tensile Unloading	Stress	11.89	69.88	102192.234	3159	
FORMATION & 20	Stage_18	Tensile Loading	Stress	12.03	84.94	102196.38	3277	
21	Stage_19	Creep	Stress	14.04	84.94	123857.302	3515	÷

National Aeronautics and Space Administration

18

• Endpoints can be edited through the graph as well

	Stage Name	Stage Type	Control Mode	Target Strain [%]	Target Stress [ksi]	End Time [s]	End Index			
1.	Stage 0	Tensile Loading	Stress	2.12	85.01	7.86	667	^		
2	Cut contents	Ctrl+X Ctrl+C Ctrl+V Del	Ctrl+X	Stress	2.51	84.95	199.942	728	-	
3	Copy contents		g Stress	2.38	69.89	201.112	845			
4	Paste		Ctrl+V tents Del ws	Stress	2.51	84.91	202.258	960		
5	Clear contents			Del	Stress	4.01	84.93	2629.538	1041	
6	Delete rows					(e	g	g Stress	3.88	69.91
7	Insert rows abov	e Noto: purp	Stress	4.01	84.94	2632.854	1274			
8	Edit Endpoint Wi	+h plademonstra	Stress	6.02	84.95	15369.414	1439			
9		in Placinonstra	g Stress	5.89	69.89	15370.594	1557			

Custom button added to the right click popup menu

- Highlight row you want to edit with the plot and right click
- Select "Edit Endpoint With Plot"
- Previous endpoint on the plot is removed
- Use to toolbar to zoom/pan to stage endpoint
 - Press "Enter" to continue

19

• Endpoints can be edited through the graph as well

21

Importing Test Data to Granta

Records are automatically placed in the database according to the GRC ICME schema

Table (Test Type)

- → Material Class
 - → Material
 - Test Temperature
 - → Test Parameter (Strain Rate, Creep Stress, etc.) → Test Record
- Store user defined data, calculated parameters, and raw functional data curves

IVHM316-42 slow tensile to failure, strn rate = 0.001% per sec (IVHM-42) Test Results Strain Rate is Equivalent No Young's Modulus (11-axis) 97.2 GPa Young's Modulus Calculation Linear Fit Modulus Calculation Range - Loading Modulus calculated using datapoints from 5% to 25% of maximum stress, calculated using Linear Fit method (R2 = 1.00) Elastic Poisson's Ratio (12-plane) 0.396 Proportional Limit 464 MPa 0.02% Offset Yield Stress 516 MPa 0.2% Offset Yield Stress 570 MPa National Aeronautics and Space Administration

22

Importing Generic Test Data to Granta

Generic test records also store the stage information

Automatic Linking Capability Enables Pedigree Maintenance

- From the information defined in the Excel Test Matrix supplied by the user, links to other records in the database are automatically populated
 - Automatic links to the test equipment and measurement devices ensure that *how* the data was captured is maintained in the database
 - If a test is out of spec. or the machine is found to be out of calibration, automatic linking can provide a list of potentially effected records to ensure that the data in the database is correct

Summary

- Data Informatics and Effective Data Management are critical to enabling ICME and achieving the NASA Vision 2040
 - Ensure the integrity of our data, prevent loss of institutional knowledge, and trust that our data is protected
- Granta MI offers a commercial, robust tool for effective information management
 - Connect to the database through Python scripting for advanced/customizable data analytics and importing
 - Utilize well-developed export tools to get data out to the correct people
- Developed a Python-based GUI that performs data analysis and automatic importing of data to Granta MI
 - Fast, consistent data reduction and analysis from machine raw data
 - Reduce the time to analyze complex test data and import to the database → promote organizational adoption

26

Thank You for Your Attention

Integrate Don't Duplicate

