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Electric Aircraft Power Requirements

Technology Challenge: Electric Aircraft need high power
— Higher power will require high voltage power transmission

cables

— Increasing voltages can utilize lighter/smaller gauge conductors

« MORE insulation is needed at higher altitudes due to
partial discharge & corona activity!
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Paschen curves illustrate the dependency of breakdown
voltage on distance between conductors and altitude.

1 Altitude requires 1 Conductor spacing

corona discharges

conductor
electrical insulation

terrestrial cable

Terrestrial SOA cables cannot solve
aeronautics problems.

Mazzanti, G.: High voltage direct current transmission cables to help decarbonization in Europe: recent achievements and issues. High Volt. 7( 4), 633— 644 (2022). www.nasa.gov s

3M Power Cable Splicing and Terminating Guide. 2018.
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Technology Solution: Boron Nitride Composite
Materials

HV Insulation Requirements

BN meets ALL required metrics when

— Thermal conductivity > 1 W/m-K compared to other possible materials.
— Operating temperature > 200 °C

— Push temperature > 260 °C if possible

— Compatible with other component materials By

— Retain dielectric strength of SOA materials (>20k V/mm or m
better) O o g T M )

— Increased resistance to partial discharge and corona effects W“"J

h-BN

Good Insulation Properties
— Constant wide band gap around 6 eV

— Nanotubes are independent of diameter, chirality
or number of tubular walls

High Thermal Conductivity
—  Thermal Conductivity >100 W/(m-K) in plane

— Ability to dissipate heat in nanoelectronics
Goal: Development of a material that — Promising results in thermal shock experiments
combines chemical inertness, lightweight Chemically and Thermally Stable
and high strength with high electrical
resistivity and high thermal conductivity
for the insulation component of high
voltage power transmission.

— Hydrophobic
— Chemical stability
— Oxidation in air above 1000°C

O. Shinpei, S. Fukushima, M. Shimatani, Materials 2023, 16(5), 2005 www.nasa.gov
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BN via the Polymer Derived Ceramic (PDC) Route

Molecular
-------1 Precursor |--------

=

Preceramic
Polymers
Shaping Pyrolysis
Shaped PDC Powders
Polymer
. Further Shaping/Sintering
Pyrolysis FEEEEEEEEEEEEEEEEN}
- Shaping/Sintering ™
Shaped PDC’s Shaped PDC’s

S. Bernard and P. Miele, Materials 2014, 7, 7436-7459. www.nasa.gov s
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Forcespinning ™ Method for Fiber Production
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Forcespinning ™ Fibers é_/usemno FiserLas L1000
— High-yield

— Fibers are formed through centrifugal spinning of a
polymeric solution which evaporates into fine
continuous fibers

— Fibers can be formed up to 6 ft in length

— Fiber diameters can be tailored to ranges between
~ 200 nm to 5 um by changing

» Precursor polymer molecular weight

 Viscosity of precursor solution
« Spinning speed (RPM) of Forcespinner

I I I I Collection rods

Needle Spinneret

FORCESPINNING

Fiberlab L1000-D

*Use of trade names or manufacturers does not constitute an official endorsement,
either expressed or implied, by the National Aeronautics and Space Administration.

Fiberio. Operations Manual. Fiberlab L1000 Series. 2013. www.nasa.gov e



National Aeronautics and Space Administration

Methods

Precursor :
solution Fiber UV Cure [l Fiber Heat Iir:lctgrsglryar::‘;:‘
preparation [l Formation Fibers Treatment Composite

O. Shinpei, S. Fukushima, M. Shimatani, Materials 2023, 16(5), 2005 www.nasa.gov 7
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BN Precursor Polymer Solution Preparation

Components
— Volatile solvent

— Polymer

— Boron-containing molecule
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Precursor Fiber Formation & Crosslinking

Fiber quality depends on:
— RPM rate of centrifugal spinning

— Distance to the collection rods
— Composition of precursor solution
* 9 Boric Acid
* 09 Boron Oxide
*  Mixture of Boron Oxide/Boric
Acid
— Humidity
Fibers Tested:
— 25%, 26%, 27% Boron Oxide .
_ ) _ 25% Boron Oxide/ 75%
— 25% Boron Oxide/Boric Acid PVP solutions formed
—  25% Boric Acid optimal fibers

Boron Oxide/PVP Fibers Boron Oxide/PVP Fibers

www.nasa.gov s
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XRD of Heat-Treated Fibers

General Heat-Treatment Profile

Temperature (°C)

Time (minutes)

(002)

XRD shows improving

(100) crystallinity of BN via
M
= ol e j " . 1- the (002) and (100)
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FTIR Analysis of Fibers
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— Successful conversion to BN as shown by the characteristic
BN peaks at 1347 cm™ and 783 cm!

Www.nhasa.gov 1
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SEM Analysis of Fibers

Forcespun Fibers UV Cured Fibers

SEM
— Heat-treated fiber diameter: ~1um

— Long continuous fibers contract during ceramic conversion to
form short nanofibers

Heat-treated Fibers

www.nasa.gov 1z
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Summary & Next Steps

Precursor
solution
preparation

Fiber Heat

Incorporation
Treatment/ @ Characterization into polymer

Conversion composite

Fiber UV Cure of
Formation Fibers

> BN Fiber

Polymer
Composite

Precursor
Solution

Forcespun Fibers UV Cured Fibers Heat-treated Fibers

Next Steps

— Continue heat treatment optimization with heating under tension

— Increase %B in precursor solution to further optimize BN conversion
— Incorporate BN fibers into polymer composites

— Characterize BN composites

Www.nasa.gov 13
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