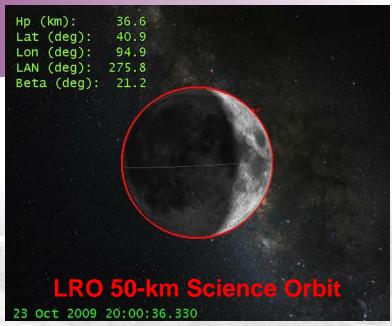

AN OBSERVATIONAL APPROACH TO LOW LUNAR FROZEN ORBIT DESIGN



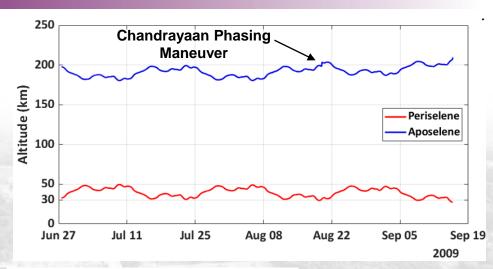
Agenda

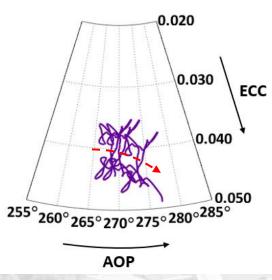
- Introduction
- LRO Frozen Orbits
- Search for Frozen Orbit Metric
- Conclusions

Lunar Frozen Orbits

- At the Earth, the J2 potential term induces a secular drift of the line of apsides
- The Moon's "lumpy" gravity field has the tendency to torque around the line of apsides, moving periselene
- The Lunar Reconnaissance Orbiter (LRO) team took advantage of observations from the Lunar Prospector (LP) mission to implement a low (altitude) lunar frozen orbit for LRO instrument commissioning and extended mission phases
- LRO used a frozen orbit to reduce yearly fuel expenditures by >90% and extend its mission by 10+ years

(view is along Earth-Moon line)

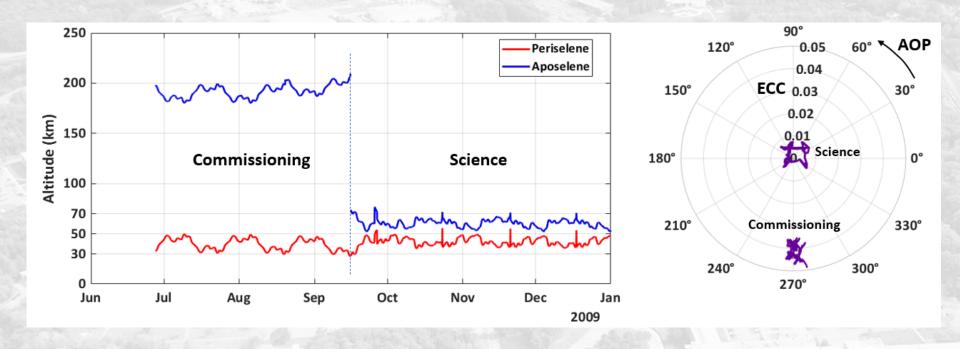



Orbit Modeling

- LRO originally used a 150 x 150 (degree, order) LP150Q lunar gravity model along with the Sun and Moon as point sources (along with solar radiation pressure)
- Upgrades in gravity models came from LRO's LOLA (Lunar Orbiting Laser Altimeter) and finally GRAIL's (Gravity Recovery and Interior Laboratory) instrument teams
- The GRAIL GRGM900C (900 x 900) model is currently used
 - We truncate the model, for computational efficiency, to 270 x 270 for operations and to 150 x 150 for analysis
- This frozen orbit analysis looks at the motion of periselene by focusing on key orbit elements at the periselene location
 - The periselene elements include the shape-related altitude & eccentricity (ECC) and Moon-Fixed orientation related inclination (INC), argument of periselene (AOP), and longitude of the ascending node (LAN)
- I believe that using orientation elements in a Moon-Fixed frame helps to tie the perturbations seen to the mass concentrations in the lunar gravity field

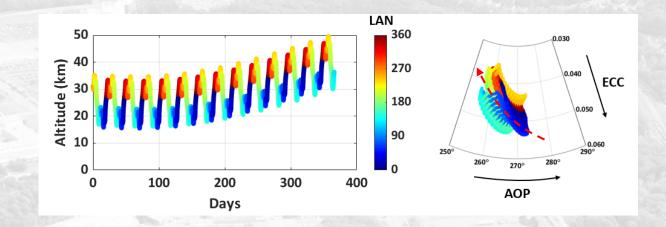
LRO Commissioning Orbit

- After launching on June 18, 2009, LRO captured into lunar orbit on June 23, 2009 and maneuvered into a quasifrozen polar orbit on June 27, 2009
- This 30 x 200 km orbit (min/max) was used to commission LRO's instruments prior to beginning science observations
- LRO's commission orbit had all the hallmarks of a typical low lunar frozen orbit
 - Apsis altitudes are bounded
 - Periselene is near the South Pole (AOP near 270°)
- The commissioning orbit did exhibit drift
 - This was partially due to a maneuver to coordinate observations with Chandrayaan
- Regardless, the quasi-frozen commissioning orbit did its job



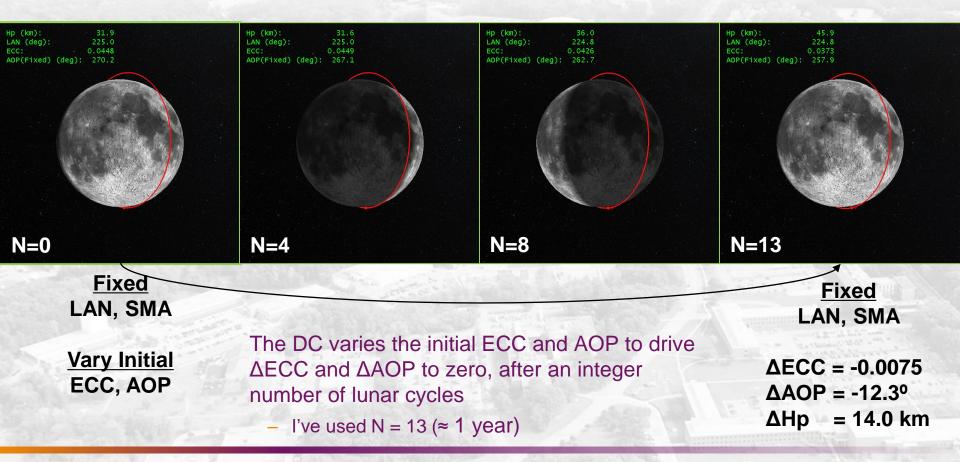
LRO Orbit Comparison

This comparison shows the differences between LRO's orbits

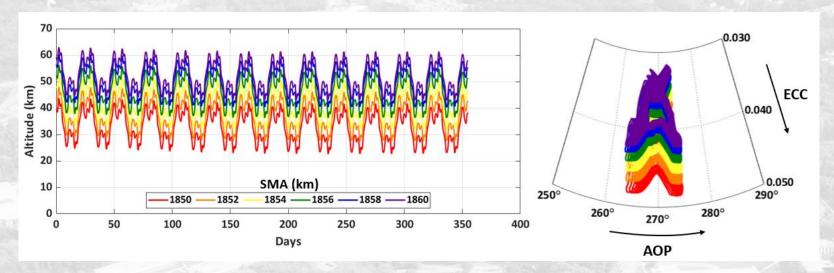

Commissioning: 30 x 200 km, AOP near 270°, quasi-frozen

- Science: 50 ± 15 km, AOP centered near polar plot origin

LRO's Frozen Orbit Return

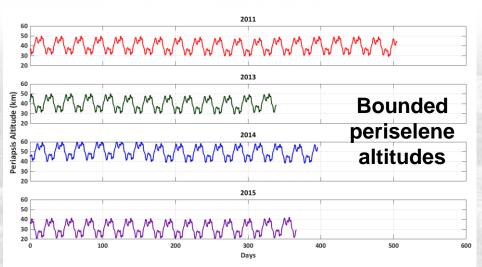

- LRO decided to return to a frozen orbit at the end of 2011 to save on orbital maintenance costs
- An initial attempt looked at the 30 x 200 km commissioning orbit
 - SMA = 1852.4 km
 - ECC = 0.046
 - $AOP = 270^{\circ}$
- A 1-year simulation yielded a very "unfrozen" orbit
 - Unbounded periselene altitude
 - Eccentricity vector drift

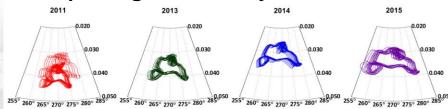
 Including the orbit LAN as a 3rd dimension in the plot shows the strong correlation across each lunar cycle


Frozen Orbit Targeting

- The correlation of the orbit elements to the LAN led to a simple differentialcorrection (DC) procedure to find initial conditions that null ECC and AOP growth over a given duration, thus, freezing the orbit
- Using the previous example for SMA = 1852.4

First Extended Mission Frozen Orbit


- I created a series of Frozen Orbit cases to present to the LRO Science Team
 - All cases showed bounded periselene altitudes and repeating eccentricity vector patterns
 - Different SMA values led to different minimum Periselene altitudes.


- The science team chose an SMA of 1851 km that corresponded to a minimum periselene altitude of 30 km
- on December 11, 2011, a 2-burn sequence (31.0 & 2.1 m/s) on December
 11, 2011 was used to move LRO from its science orbit to a frozen orbit

LRO Frozen Orbit Instances

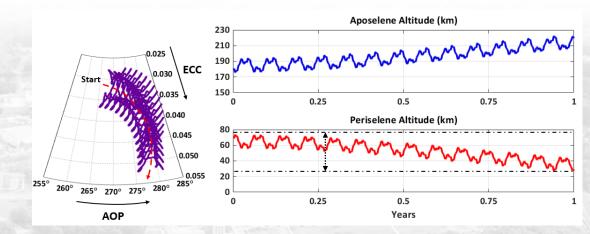
 A similar DC procedure was used to find initial conditions for 3 frozen orbit resets in 2013, 2014, & 2015 before orbit maintenance was stopped in 2016

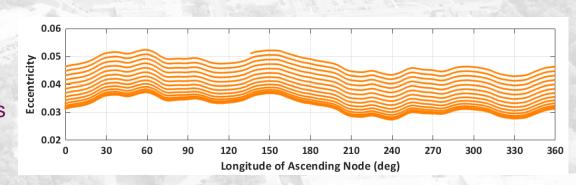
Repeating Eccentricity Vector Motion

 Moon-Fixed orbit inclination effects the eccentricity vector pattern

Frozen	Average
Orbit	Inclination
Reset	(deg)
2011	88.4
2013	87.9
2014	87.4
2015	87.0

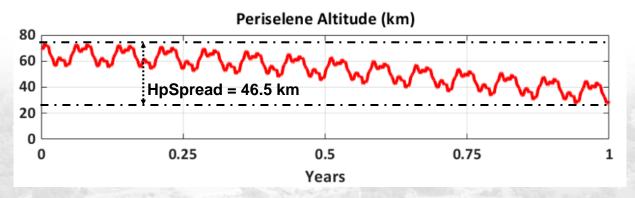
LRO Frozen Orbit SMA

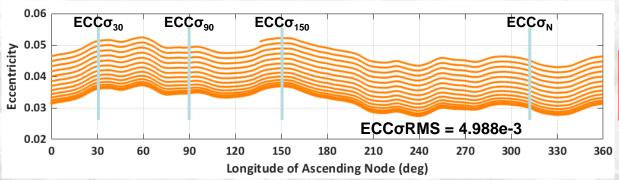

Frozen Orbit Reset	ΔV Cost (m/s)
April 29, 2013	2.7
April 03, 2014	3.9
May 04, 2015	5.8


1850	_	-	٦				
1840	_				~		
1830	_					 	

• LRO's frozen orbits were resilient to operational necessities such as ΔV due to momentum unloads and phasing maneuvers

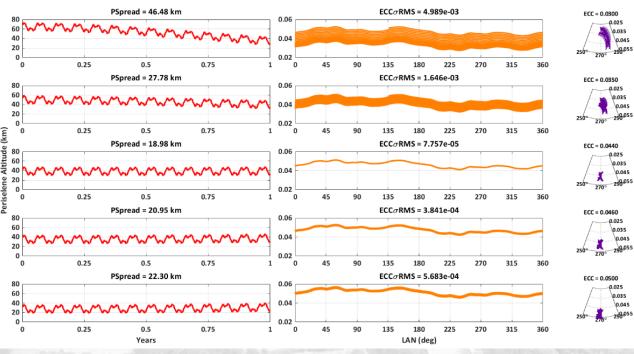
Search for Frozen Orbit Metric

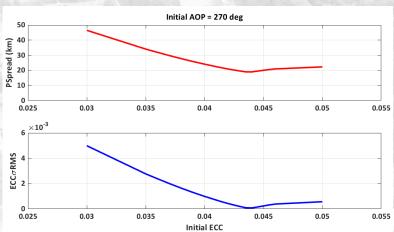

- LRO's frozen orbit experience and further analysis led me to a search for a suitable metric for defining a "best" frozen orbit
- Consider a lunar orbit with the following initial conditions
 - SMA 1862.4 km
 - ECC 0.03
 - INC 90.0 (maintained)
 - LAN 270°
 - AOP 270°
- This orbit is "unfrozen"
- The orbit could be frozen if we find initial conditions that
 - Minimize the spread in the periselene altitude (HpSpread)
 - Collapses the ECC vs. LAN curves into a single line – indicating repeatability



Computing Frozen Orbit Metrics

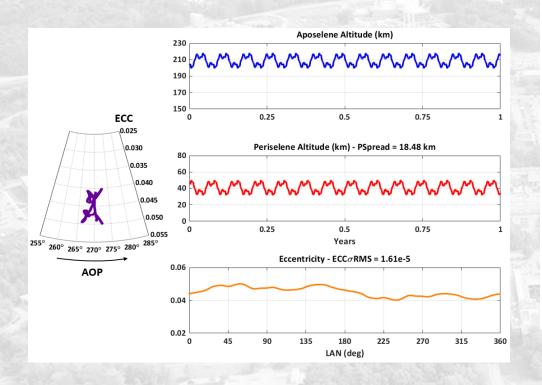
The HpSpread metric is simple: max(Hp) – min(Hp)

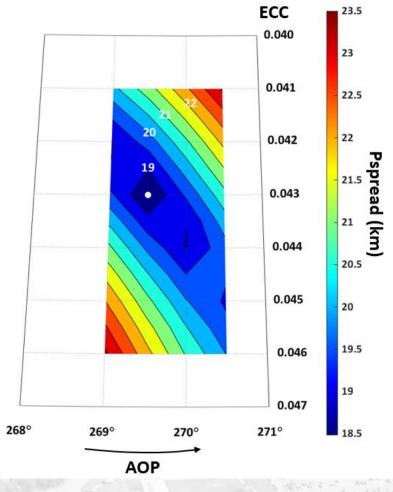

 An eccentricity metric is the root-mean-square of the eccentricity standard deviation computed at fixed LAN values


$$ECC\sigma RMS = \sqrt{\sum_{LAN=0}^{LAN=360} \frac{1}{N_{LAN}} (ECC\sigma_{LAN})^2}$$

1D Parametric Scan for Frozen Point IC

 A parametric scan of initial ECC for a fixed AOP (270°) shows the resulting orbits approach and pass through the frozen orbit condition




- Parameters reach a minimum at an initial ECC of 0.044
 - HpSpread = 18.98 km
 - ECC σ RMS = 7.76e-5
- Both metrics are related HpSpread is an easy concept to understand while ECCσRMS mathematically reinforces the concept

2D Parametric Scan for Frozen Point IC

- A 2-dimensional scan in initial ECC and AOP found the true frozen point initial condition of (0.043, 269.5°)
 - HpSpread = 18.48 km
 - ECC σ RMS = 1.61e-5

Conclusions

- LRO's operations experience allowed for general observations on how to find and differentiate frozen orbit instances
- The differential correction method to null growth in the orbit eccentricity and argument of periapsis is a very simple targeting scheme to find initial conditions
 - This approach relies on comparing conditions at a fixed LAN
- HpSpread (periselene altitude spread) is a simple, observational metric to minimize to find initial conditions for the "best" frozen orbit
- There is a continuum of low lunar frozen orbits that can be differentiated using several factors
 - Choosing the semi-major axis helps to define the minimum periselene altitude
 - The orbit inclination affects the min/max monthly variations in the AOP
 - Free drift of the orbit inclination will require resets in the frozen orbit condition
 - Inclination maintenance costs ≈ 14 m/s per year
 - There is an epoch dependency on the orbit initial conditions (e.g., Earth-Moon distance, 3rd body varying effects due to 18.6 year cycle of Moon's orbit inclination)
- LRO's use of a low-lunar frozen orbit reduced its yearly orbit maintenance costs from 143 m/s to 5 m/s per year – allowing for an extension of 10+ years of operations