NASA/TM-20230011793

NASA Advanced Air Mobility (AAM) Project National Campaign Development of Airspace Operations, Infrastructure and Data

David Zahn NASA Ames Research Center, Moffett Field, California, 94035

Starr Ginn NASA Armstrong Flight Research Center, Edwards, California, 93534

Sarah Eggum, and R.J. Harris Flight Research Aerospace, Mountain View, California, 94043

December 2023

NASA STI Program Report Series

The NASA STI Program collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION.
 English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

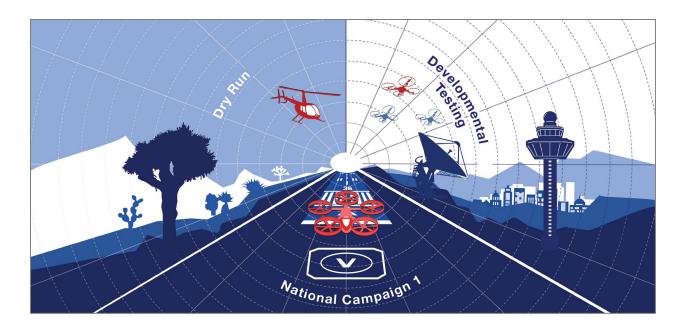
- Access the NASA STI program home page at <u>http://www.sti.nasa.gov</u>
- Help desk contact information:

https://www.sti.nasa.gov/sti-contact-form/ and select the "General" help request type. NASA/TM-20230011793

NASA Advanced Air Mobility (AAM) Project National Campaign Development of Airspace Operations, Infrastructure and Data

David Zahn NASA Ames Research Center, Moffett Field, California, 94035

Starr Ginn NASA Armstrong Flight Research Center, Edwards, California, 93534


Sarah Eggum, and R.J. Harris Flight Research Aerospace, Mountain View, California, 94043

National Aeronautics and Space Administration

Ames Research Center Moffett Field, California, 94035

December 2023

This report is available in electronic form at http://ntrs.nasa.gov

Executive Summary

The National Aeronautics and Space Administration Advanced Air Mobility National Campaign embarked upon a series of flight tests to design and develop a system of systems capability to deploy flight test infrastructure in various locations around the country with industry partners. Dry Run and Development Testing flight events enabled the campaign to iteratively develop and refine necessary infrastructure for data collection, storage, and result generation; evaluate foundational processes and identify baseline results for vehicle maneuvers and evaluations; identify key enabling range infrastructure and assets; optimize airspace routes and develop candidate procedures, sequence research priorities; and organize various reporting and engagement mechanisms to further research for the advanced air mobility of the future.

Authors & Contributors

Authors				
Sarah Eggum				
Flight Research Aerospace, SimLabs III, Contract Management & Technical Services				
R.J. Harris				
Flight Research Aerospace, SimLabs III, Contract Management & Technical Services				
Tim Bagnall				
NASA Ames Research Center, Mosaic ATM				
Shivanjli Sharma				
NASA Ames Research Center				
Ben James				
Federal Aviation Administration				
Mike Marston				
NASA Armstrong Flight Research Center				
Robert Hamilton				
Federal Aviation Administration				
John Roberts				
Trasnportation Safety Institute				
Wilson Fish				
Federal Aviation Administration				
Jerry Wilwerding				
NASA Ames Research Center, Mosaic ATM				

Table of Contents

1	INTRODUCTION	
	1.1 Project Background 1.2 Project Goal and Objectives	
	1.3 Project Series Overview	
	1.4 Dry Run Objectives	
	1.5 Responsible Organizations for Dry Run	22
2	FLIGHT TEST INFRASTRUCTURE INTEGRATION	25
	2.1 Landing Surfaces Activation	
	2.2 Helipad Airspace Construction	
	2.3 Related Work: Precision For Landing Surfaces	46
	2.4 Flight Test Infrastructure	48
3	FLIGHT TEST DATA	76
	3.1 Flight Test Operations Data	76
	3.2 Data Elements Card Overview	
4	AIRSPACE OPERATIONS	101
	4.1 Airspace Operations Overview	101
	4.2 Terminal Procedures	
	4.3 Airspace Operations Surveillance	
	4.4 Reduced Separation Theory	
	4.5 Flight Inspection Airborne Processing Application	169
	4.6 Related Work: Flight Level Engineering	177
5	LESSONS LEARNED	
	5.1 Flight Test Infrastructure Integration Summary	
	5.2 Flight Test Data Summary	
	5.3 Flight Inspection Airborne Processor Application (FIAPA)	185
	5.4 Airspace Operations Summary	186
	5.5 Next Steps	187
6	ANNEX	
	6.1 References	189
	6.2 Abbreviations	189
	6.3 Geodetic Sites	
	6.4 Landing Surface RNAV and Heliport Airspace Construction	
	6.5 Approaches and Approach Plates	
	6.6 Data Element Cards	
	6.7 Experimental Route Coding	

Table of Figures

Figure 1.1. National Campaign Operational View-1.	. 12
Figure 1.4. National Campaign Dry Run OH-58C helicopter at AFRC	. 14
Figure 1.5. Future Airspace Concept	. 19
Figure 1.8. NASA Advanced Air Mobility Subprojects and Future Integrations	. 25
Figure 2.1 NC Heliports and Vertiports XEDW, XVPT (Above) and XX33 (Right).	. 27
Figure 2.2. National Campaign Helipad 01H.	. 28
Figure 2.3. National Campaign Helipad 02H.	. 29
Figure 2.4. National Campaign Helipad 03H.	. 30
Figure 2.5. National Campaign Helipad 04H.	.31
Figure 2.6. National Campaign Helipad 05H.	. 32
Figure 2.7. National Campaign Helipad 06H.	. 33
Figure 2.8. National Campaign Runway.	. 34
Figure 2.9. Spatial Data Analysis Results for XEDW 01H	. 35
Figure 2.10. Area Navigation (AIRNAV) Database Experimental Landing Surface XEDW 01H.	.36
Figure 2.12. Geodesic Survey For National Campaign Experimental Landing surface at NAS9-BV1	
Figure 2.14. Federal Aviation Administration Landing Surface Activation Process.	
Figure 2.15. XEDW 01H Evaluation Worksheet.	
Figure 2.16. XEDW 01H Helipad Evaluation	
Figure 2.17. XEDW 01H Primary and Secondary Worksheet.	
Figure 2.18. XEDW 01H Omnidirectional 8:1/7.125 Degree Assessment	
Figure 2.19. LiDAR High-Precision Survey Study.	
Figure 2.20. Aerial View Of LiDAR Survey Research Areas.	
Figure 2.21. LiDAR Survey KOAR ASR-11 Radio Frequency Interference (RFI).	
Figure 2.22. PLASI Light Frequency Indications.	.50
Figure 2.23. Mission Control Center Portable Weather Station Instruments.	
Figure 2.24. National Campaign Ground Equipment XX33	
Figure 2.25. National Campaign Ground Equipment XEDW.	
Figure 2.26. National Campaign Ground Equipment XVPT	
Figure 2.27. National Campaign SoDAR Unit.	
Figure 2.28. Flight Test Infrastructure Interface Diagram.	
Figure 2.29. PingStation Configuration via SURFER.	
Figure 2.30. XTM Client	
Figure 2.30. XTM Client	
Figure 2.32. Overview of onsite and offsite support and GUI resources	
Figure 2.32. Overview of offsite and offsite support and Gorresources	
Figure 2.34. IUTM User Display	
Figure 2.35. Time Synchronization across National Campaign Data Sources	
Figure 2.37. Aerograph Prototype for Access to Data Services.	
Figure 2.38. National Campaign Collections of Data.	
Figure 2.40. ADS-B SBSM track for pirouette and approach maneuvers	
Figure 2.41. Portable PingStation ADS-B rectifies previous signal deficiencies in red.	
Figure 2.42. Track Overlay: altitude for an approach on December 10, 2021, observing synchronicity a	
offset between instruments (dGPS in Red, new PinSstation unit in green, vehicle data in purple).	
Figure 2.43. National Campaign Flight Test Cards (Left and Center) and Dance Card (Right)	
Figure 3.1. Advanced Air Mobility Flight Test Infrastructure and Data Service Overview.	
Figure 3.2. Wind Drafts meters/second with direction indicated by arrow.	
Figure 3.4. Graphical Representation of Early National Campaign Foci Associations.	
Figure 3.5. National Campaign Decomposition for Vertiport Considerations.	. 79

Figure 3.6. National Campaign Advanced Air Mobility Gap Hierarchy.	80
Figure 3.8. National Campaign Collections of Data and Data Products	81
Figure 3.12. NASA-FAA National Campaign Working Group Overview	94
Figure 4.1. Test Site Airspace High-Level View.	101
Figure 4.2. Test Range Flight Constraints	102
Figure 4.3. National Campaign Build 2 Airspace Routes.	
Figure 4.4. National Campaign Terminal Approach Infrastructure 1	104
Figure 4.5. National Campaign Terminal Approach Infrastructure 2	105
Figure 4.6. National Campaign Terminal Approach Infrastructure 3	106
Figure 4.7. Waypoint Gap Analysis.	108
Figure 4.8. Fixed Displacement Theory Overview.	109
Figure 4.9. Fixed Displacement Theory Application.	110
Figure 4.10. Obstacle Clearance Theory Overview.	111
Figure 4.11. Vertical Separation Theory.	112
Figure 4.12. Final Approach Segment Considerations.	113
Figure 4.13. NASA National Campaign Approach/Departure Analysis Tool.	114
Figure 4.14. Wind Azimuth And Velocity Bins at Helipad Heights in Feet; Wind and Azimuth Coupled	d with
Wheel Approach Points Potentially Enables Targeted Dynamic Approach Opportunities	115
Figure 4.15. Urban Air Mobility Wreath or Wheel Airspace Viability	115
Figure 4.16. Conventional Approach Procedure On VFR Sectional at XEDW.	117
Figure 4.17. Conventional Approach Procedure at XEDW	118
Figure 4.18. Conventional Approach Procedure Segmented Breakdown at XEDW.	
Figure 4.19 XEDW.	120
Figure 4.20. 6-Degree GPA with 3nm Diameter at XEDW 01H (Left) and 12-Degree GPA with 1.6nm	
Discretes at VEDW 0111 (Disht)	124
Diameter at XEDW 01H (Right).	124
Figure 4.21. Conservation of Airspace XEDW 01H.	
	125
Figure 4.21. Conservation of Airspace XEDW 01H.	125 126
Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability.	125 126 127
Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice.	125 126 127 128
Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel.	125 126 127 128 C 424
Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARING	125 126 127 128 C 424 130
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARING Coding. 	125 126 127 128 C 424 130 131
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding. 	125 126 127 128 C 424 130 131 132
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding. Figure 4.27. GORDO Experimental ARINC 424 Coding Breakdown. 	125 126 127 128 C 424 130 131 132 134
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding. Figure 4.27. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. 	125 126 127 128 C 424 130 131 132 134 135
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding. Figure 4.27. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. Figure 4.30. XEDW 01H Gordo RVLT Turboelectric Lift-Plus-Cruise Approach. 	125 126 127 128 C 424 130 131 132 134 135 137
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding. Figure 4.27. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. Figure 4.30. XEDW 01H Gordo RVLT Turboelectric Lift-Plus-Cruise Approach. Figure 4.33. XEDW 01H Gordo RVLT Turboelectric Quadcopter Approach. 	125 126 127 128 C 424 130 131 132 134 135 137 138
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding. Figure 4.27. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. Figure 4.30. XEDW 01H Gordo RVLT Turboelectric Lift-Plus-Cruise Approach. Figure 4.34. National Campaign Point-in-Space (PinS) Approach. 	125 126 127 128 C 424 130 131 132 134 135 137 138 138
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding. Figure 4.27. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. Figure 4.30. XEDW 01H Gordo RVLT Turboelectric Lift-Plus-Cruise Approach. Figure 4.34. National Campaign Point-in-Space (PinS) Approach. Figure 4.35. National Campaign segment of Point-in-Space (PinS) Approach. 	125 126 127 128 C 424 130 131 132 134 135 137 138 138 139
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding. Figure 4.27. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. Figure 4.30. XEDW 01H Gordo RVLT Turboelectric Lift-Plus-Cruise Approach. Figure 4.34. National Campaign Point-in-Space (PinS) Approach. Figure 4.36. Best 6-Degree Glidepath Angle via IADS: Gordo 03.13.21 18:54:55. 	125 126 127 128 C 424 130 131 132 134 135 137 138 138 139 140
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding. Figure 4.27. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. Figure 4.30. XEDW 01H Gordo RVLT Turboelectric Lift-Plus-Cruise Approach. Figure 4.34. National Campaign Point-in-Space (PinS) Approach. Figure 4.35. National Campaign segment of Point-in-Space (PinS) Approach. Figure 4.36. Best 6-Degree Glidepath Angle via IADS: Gordo 03.19.21 21:58:48. 	125 126 127 128 C 424 130 131 132 134 135 137 138 138 139 140 140
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.27. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. Figure 4.30. XEDW 01H Gordo RVLT Turboelectric Lift-Plus-Cruise Approach. Figure 4.33. XEDW 01H Gordo RVLT Turboelectric Quadcopter Approach. Figure 4.34. National Campaign Point-in-Space (PinS) Approach. Figure 4.36. Best 6-Degree Glidepath Angle via IADS: Gordo 03.13.21 18:54:55. Figure 4.38. Best 9-Degree Glide Path Angle via IADS: Gords 03.09.21 21:58:48. 	125 126 127 128 C 424 130 131 132 134 135 137 138 138 139 140 141
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding. Figure 4.27. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. Figure 4.30. XEDW 01H Gordo RVLT Turboelectric Lift-Plus-Cruise Approach. Figure 4.33. XEDW 01H Gordo RVLT Turboelectric Quadcopter Approach. Figure 4.34. National Campaign Point-in-Space (PinS) Approach. Figure 4.36. Best 6-Degree Glidepath Angle via IADS: Gordo 03.19.21 18:54:55. Figure 4.38. Best 9-Degree Glide Path Angle via IADS: Gerds 03.09.21 16:09:34. Figure 4.39. Worst 9-Degree Glidepath Angle via IADS: Marta 03.16.21 20:54:04. 	125 126 127 128 C 424 130 131 132 134 135 137 138 138 139 140 141 141
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding. Figure 4.27. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. Figure 4.30. XEDW 01H Gordo RVLT Turboelectric Quadcopter Approach. Figure 4.35. National Campaign Point-in-Space (PinS) Approach. Figure 4.36. Best 6-Degree Glidepath Angle via IADS: Gordo 03.13.21 18:54:55. Figure 4.38. Best 9-Degree Glidepath Angle via IADS: Gordo 03.09.21 16:09:34. Figure 4.39. Worst 9-Degree Glidepath Angle via IADS: Marta 03.16.21 20:54:04. Figure 4.40. Best 12-Degree Glidepath Angle via IADS: Gordo 03.12.21 18:42:53. 	125 126 127 128 C 424 130 131 132 134 135 137 138 138 138 139 140 141 141 142
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. Figure 4.30. XEDW 01H Gordo RVLT Turboelectric Lift-Plus-Cruise Approach. Figure 4.33. XEDW 01H Gordo RVLT Turboelectric Quadcopter Approach. Figure 4.36. Best 6-Degree Glidepath Angle via IADS: Gordo 03.13.21 18:54:55. Figure 4.37. Worst 6-Degree Glidepath Angle via IADS: Gordo 03.09.21 21:58:48. Figure 4.39. Worst 9-Degree Glidepath Angle via IADS: Gordo 03.12.21 18:42:53. Figure 4.40. Best 12-Degree Glidepath Angle via IADS: Ferry 03.12.21 15:47:32. 	125 126 127 128 C 424 130 131 132 134 135 137 138 138 139 140 140 141 141 142 142
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. Figure 4.30. XEDW 01H Gordo RVLT Turboelectric Lift-Plus-Cruise Approach. Figure 4.33. XEDW 01H Gordo RVLT Turboelectric Quadcopter Approach. Figure 4.34. National Campaign Point-in-Space (PinS) Approach. Figure 4.35. National Campaign segment of Point-in-Space (PinS) Approach. Figure 4.37. Worst 6-Degree Glidepath Angle via IADS: Gordo 03.09.21 21:58:48. Figure 4.38. Best 9-Degree Glidepath Angle via IADS: Gordo 03.09.21 16:09:34. Figure 4.39. Worst 9-Degree Glidepath Angle via IADS: Gordo 03.12.21 18:42:53. Figure 4.39. Worst 12-Degree Glidepath Angle via IADS: Gordo 03.12.21 18:42:53. Figure 4.40. Best 12-Degree Glidepath Angle via IADS: Ferry 03.12.21 15:47:32. Figure 4.42. NASA-FAA National Campaign Working Group Overview. 	125 126 127 128 C 424 130 131 132 134 135 137 138 138 139 140 141 141 142 142 144
 Figure 4.21. Conservation of Airspace XEDW 01H. Figure 4.22. Wheel Airspace Viability. Figure 4.23. Airspace Slice. Figure 4.24. 6-Degree Wheel. Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC Coding. Figure 4.26. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.27. GORDO Experimental ARINC 424 Coding Breakdown. Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model. Figure 4.30. XEDW 01H Gordo RVLT Turboelectric Quadcopter Approach. Figure 4.33. XEDW 01H Gordo RVLT Turboelectric Quadcopter Approach. Figure 4.34. National Campaign Point-in-Space (PinS) Approach. Figure 4.35. National Campaign segment of Point-in-Space (PinS) Approach. Figure 4.36. Best 6-Degree Glidepath Angle via IADS: Gordo 03.13.21 18:54:55. Figure 4.38. Best 9-Degree Glidepath Angle via IADS: Gordo 03.09.21 21:58:48. Figure 4.39. Worst 9-Degree Glidepath Angle via IADS: Marta 03.16.21 20:54:04. Figure 4.40. Best 12-Degree Glidepath Angle via IADS: Gordo 03.12.21 18:42:53. Figure 4.41. Worst 12-Degree Glidepath Angle via IADS: Ferry 03.12.21 15:47:32. Figure 4.43. National Campaign Working Group Overview. Figure 4.43. National Campaign Flight Plan Theory. 	125 126 127 128 C 424 130 131 132 134 135 137 138 139 139 140 141 141 142 142 144 145

Figure 4.47. Mercury 1 Version 1 In SBSM (Left and Top Right); and as Flown ADS-B Track in God	ogle
Earth (Bottom Right)	148
Figure 4.48. Mercury 1 Version 1.5	149
Figure 4.49. Mercury 1 Version 2 In Sbsm (Left and Top Right); and as Flown ADS-B Track in Goog	gle Earth
(Bottom Right)	150
Figure 4.50. Orion 3 In SBSM (Left); and as Flown Ads-B Track In Google Earth (Right)	152
Figure 4.51. Atlantis Version 1 in SBSM.	154
Figure 4.52. Atlantis Version 1 as Flown ADS-B Track in Google Earth	155
Figure 4.53. Atlantis Version 1.5 as Flown ADS-B Track in Google Earth	156
Figure 4.54. Atlantis Version 2 As Flown ADS-B Track in Google Earth.	157
Figure 4.55. Atlantis Version 2 North As Flown ADS-B Track in Google Earth	158
Figure 4.56. Gemini 1 in SBSM	159
Figure 4.57. Gemini 1 as Flown Ads-B Track in Google Earth.	
Figure 4.58. Enterprise Balked Landing In SBSM (Left); and ss Flown ADS-B Track in Google Earth	(Right).
Figure 4.59. Ulysses 1 in SBSM	
Figure 4.60. Ulysses 1 as Flown ADS-B Track in Google Earth.	164
Figure 4.61. NESAT ADS-B Flight Tracking in 3D	165
Figure 4.62. NESAT ADS-B Flight Track Conformance Against Flight Plan Route.	
Figure 4.63. Order 8260.3d Chapter 2 ROC.	167
Figure 4.64. ADS-B Out, SIL and SDA with SBSM Example Flight Output	168
Figure 4.67. FIAPA Software Interface for Helicopter Rnav Procedures.	170
Figure 4.68. Datum Impact on Path Definition Error	
Figure 4.70. Vertical Profile and Path Definition for LPV	
Figure 4.71. Lateral Profile and Path Definition for LPV	
Figure 4.73. Lateral Deviation Violin Plot (December 03,2021).	
Figure 4.75. Vertical Deviation Violin Plot (December 03, 2021).	176
Figure 4.78. Flight Level Engineering Airspace Test, West Desert Airpark, Fairfield, Utah	
Figure 4.79. The Figure-8 Pattern.	179
Figure 4.80 Flight Track Results on the Figure-8 Pattern	
Figure 4.81. Track Against Mountainous Train Mimicking an Urban Canyon.	180
Figure 4.82. Profile View for Final Approach Segment.	
Figure 4.84. Conventional Procedure Build, Spanish Fork, Utah.	
Figure 4.86. Candidate procedure build traffic pattern, Spanish Fork, Utah	183

Table of Tables

Table 1.2. National Campaign Goals and Objectives.	13
Table 1.3. National Campaign Test Series Overview.	14
Table 1.6. Dry Run Test Objectives	20
Table 1.7. Airspace Testing and Integration Dry Run Test Objectives.	21
Table 2.11. Survey Results For NC Experimental Landing Surfaces.	37
Table 2.13. Boundary Survey Results for National Campaign Experimental Landing Surfaces	39
Table 2.39. Surrogate Vehicle Interactive Authoring Display Software Attributes and Parameters	69
Table 2.44. Key Flight Test Infrastructure Developments	75
Table 3.7. Subset of National Campaign Tier 3 Gap Snapshot	81
Table 3.11. National Campaign Data Elements	83
Table 3.13. Data Collection Plan Primary Objectives and Success Criteria	94
Table 3.14. Data Collection Secondary Objectives and Success Criteria.	94
Table 3.15. List of Reference Documents	95
Table 3.17. Vehicle Instrumentation List	95
Table 3.18. Range Equipment List	96
Table 4.28. The RVLT Turboelectric Lift-Plus-Cruise Parameters	133
Table 4.31. The RVLT Turboelectric Quadcopter Parameters.	136
Table 4.65. ADS-B Out with NACp Estimated Position Uncertainty (EPU)	168
Table 4.66. FIAPA Files for Candidate Software Development	169
Table 4.69 - FIAPA Survey Validation Results	. 172
Table 4.74. Vertical Deviation Means and Standard Deviations by Approach.	176
Table 4.76. Coded and Mean GPA by Approach	177

1 INTRODUCTION

1.1 Project Background

The National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) Advanced Air Mobility (AAM) National Campaign (NC) is a 10-year series of flight activities intended to help mature the readiness level of industry with regard to vehicle performance, safety assurance, airspace interoperability and noise. The National Campaign progresses through scenarios that increase in complexity to exercise advanced technologies and verify readiness for operational use by standardized testing in partnership with the Federal Aviation Administration (FAA). NASA believes this AAM ecosystem-wide strategy can serve as a tool for the entire community to increase the collective maturity across government, industry, and academia together.

The National Campaign challenges government, industry and other community participants to address foundational problems related to AAM readiness and robustness for AAM operations; as well as address key safety and integration barriers across the AAM ecosystem while emphasizing critical operational challenges such as commercial viability and public confidence in AAM operations around populated areas. The NC infrastructure is being developed with the intent to assist NASA partners to demonstrate the design readiness, robustness, and interoperability of their vehicles, airspace concepts and technologies in an integrated airspace environment. The demonstrations from the NC will also help inform the means and methods of compliance development with the FAA, standards development, airspace management system requirements, and desired future airspace services. The NASA NC Operational View-1 is shown in Figure 1.1.

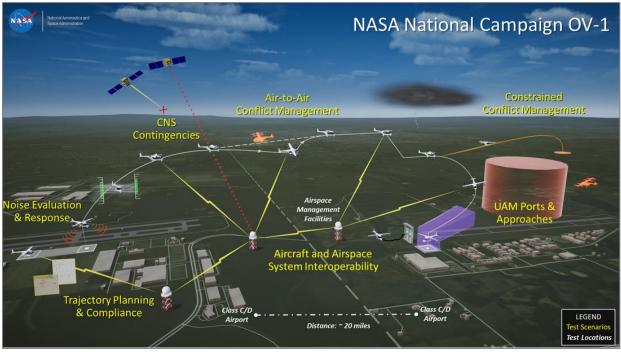


Figure 1.1. National Campaign Operational View-1.

1.2 Project Goal and Objectives

National Campaign activities focus on operational safety with an integrated set of scenarios to assess the following objectives found in Table 1.2:

Document No. AAM-NC-069-001 Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

Table 1.2. National Campaign Goals and Objectives.

N	National Campaign Goal					
	Ensure AAM safety and accelerate scalability through integrated demonstration of candidate operational concepts and scenarios.					
N	ational Campaign Objectives					
1.	Accelerate Certification and Approval					
	Identify and address gaps in aircraft certification flight test requirements, landing surface requirements,					
	and aircraft operating flight requirements for highly automated aircraft.					
2.	Develop Flight Procedure Guidelines					
	Develop preliminary guideline for flight procedures and related airspace design criteria.					
3.	Evaluate Communication, Navigation, and Surveillance Trade-Space					
	Assess vertiport services and capabilities, strategic/tactical collision avoidance, data links for					
	communication, command and control, vehicle-to-vehicle and vehicle-to-infrastructure (V2V/V2I)					
	ground-based surveillance capabilities, navigation performance, weather, ground operations, and AAM					
	service such as conformance monitoring.					
4.	Demonstrate an Airspace Management Architecture					
	Demonstrate an increasingly capable and integrated airspace system architecture.					
5.	Characterize Community Concerns					
	Identify noise levels, promote public acceptance, identify infrastructure challenges, and collaborate with					
	local communities to support informed policies.					

A flight test series was executed at the NASA Armstrong Flight Research Center (AFRC) (Edwards, California) in conjunction with Edwards Air Force Base between 2020 and 2021 as the National Campaign Dry Run to advance campaign research for Advanced Air Mobility. The National Campaign developed a Flight Test Infrastructure (FTI) as the foundation for an advanced air mobility ecosystem to enable execution of NC objectives. The mobile FTI was then applied in an Acoustics Flight Test during Developmental Testing at an outside range (Objective 5). The NC team tested and developed routes and Urban Air Mobility (UAM) scenarios commensurate with expected operations and contingencies. The NC team tested vehicle performance and evaluated UAM vehicle certification test techniques (Objective 1) and developed and applied novel initial terminal procedures requiring further research (Objective 2).

1.3 Project Series Overview

The National Campaign team progressed through a sequenced series of incremental preparation to develop a flight test infrastructure, techniques, and processes for project flight events. The intent of the early series was to build capabilities prior to 2022 National Campaign-1 flight test events and research with industry partners. The series was divided into the following phases, also shown in Table 1.3.

Dry Run: Enable and ensure an effective, safe, mobile flight test infrastructure. Ensure connectivity and data capture in coordination with the AFRC Mission Control Center (MCC). Develop routes and area infrastructure such as heliports and a representative vertiport and test a vehicle within the airspace construct. Run flight test events with a surrogate vehicle for performance capabilities, handling qualities, UAM Task Elements and to develop certification testing techniques.

Developmental Testing: Develop acoustic array and run acoustic tests for an AAM prototype vehicle with the AAM subproject Revolutionary Vertical Lift Technology (RVLT). Characterize AAM prototype flight.

National Campaign-1: Develop flight test plans and flight events with AAM industry partners with progressively complex research for technology integration and operational impacts.

National Campaign Test Series					
Test Series	Test Type	Flight Event	Dates		
Dry Run	Connectivity	ATI Connectivity Test	09.30.20-10.01.20		
Verification		Mobile Operating Facility V&V Test	08.22.21		
	Familiarization	Build 1 Flight Test	12.02.20-12.03.20		
Flights		Build 2 Flight Test	03.01.21-03.12.21		
		Build 2 Follow-on Flight Tests	11.08.21-11.10.21		
			12.06.21-12.10.21		
Developmental Testing Acoustics Flight		RVLT Acoustics Flight Test with Joby	08.30.21-09.03.21		
		Aviation, Inc. (Santa Cruz, California)	09.08.21-09.09.21		

Table 1.3. National Campaign Test Series Overview.

The following events are discussed in this section: Dry Run Connectivity Test for Airspace Testing & Integration, Dry Run Build 1 Flight Test, Dry Run Build 2 Flight Test, Dry Run Mobile Operations Facility (MOF) Verification & Validation (V&V) Testing, Developmental Testing and Dry Run Build 2 Follow-On Flight Test.

Figure 1.4. National Campaign Dry Run OH-58C helicopter at AFRC.

Dry Run Connectivity Test for Airspace Testing & Integration

09.03.20 - 10.01.20

The National Aeronautics and Space Administration conducted a preliminary Dry Run Connectivity test event in the early autumn of 2020, with sorties on September 30 and October 1. As a precursor to all future flight events, Airspace Testing and Integration (ATI) teams ran connectivity tests to ensure data and information could flow as planned and expected. The primary motivation of the Connectivity Test was to verify NC data collection, distribution, and storage systems. A NASA TG-14 aircraft (AMT-200 Super Ximango) (Aeromot, Rio Grande do Sul, Brazil) performed sorties along predefined routes to assess network connectivity.

Dry Run Connectivity Test for Airspace Testing & Integration Key Objectives

- ATI/ADS-B (Automatic Dependent Surveillance-Broadcast) Connectivity Check for verification of ADS-B broadcast acquisition, dissemination, and storage.
- Dry Run Route Pilot Familiarization: An important objective that did not relate directly to the data collection, this objective was associated with the need to allow the pilot to gain familiarity with NC scenarios at AFRC.
- Ensure video of entire flight is possible. Given test instrumentation requirements for NC flights, a key objective of the test was to assess video surveillance capabilities, with primary focus on the ability to obtain video surveillance of the north base runway.
- Post-flight data handling. Acquiring post-flight digital assets will be a key part of all upcoming NC flight tests. As such, the collective teams on the NC project used the connectivity test to vet the post-flight data transfer mechanism.

Dry Run Build 1 Flight Test

12.02.20 - 12.03.20

To familiarize teams and crew with NC AAM surrogate OH-58C helicopter flight as well as validate infrastructure and processes, NASA conducted a flight event that exercised planning into realized flights and data for two days: December 2 and 3, 2020. The Build 1 Familiarization test commenced with 1 sortie on each day with the AAM surrogate Bell OH-58C helicopter (Bell Textron Inc., Fort Worth, Texas). Additional Range infrastructure, including the heliport and the vertiport were added to the Airspace Operations routes flown during an ATI Connectivity test activity. The ATI System included updates to correct deficiencies discovered previously. Familiarization Flights provided an opportunity for organizational cooperation between the NC stakeholders: AFRC, the NASA Ames Research Center (ARC) (Moffett Field, California), the FAA, and the UAM surrogate helicopter contractor Flight Research Inc (FRI) (Mojave, California). The activity enabled the team members to conduct aircrew and maintenance operations: helicopter operations for AFRC, and AFRC Flight Operations for FRI and the FAA. Additionally, instrumentation systems shakedown, data management, and data reduction processes between FRI, AFRC, and ARC, were evaluated.

Dry Run Build 1 Flight Test Key Objectives

- Aircrew and Operations familiarization. The Non-NASA aircrew from FRI and the FAA received a Range/Local area orientation. The FAA Pilot and the Flight Test Engineer (FTE) were able to become familiar with the FRI test aircraft: the Bell OH-58C helicopter.
- NASA Team experience with normal helicopter operations.
- Basic familiarization for team roles, responsibilities, and communication, including control room operations, ground support team operations, and familiarization with operations under coronavirus disease (COVID) restrictions.
- Additional ATI System checkout for risk reduction.

Document No. AAM-NC-069-001

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

• Connectivity and functionality of data collection, and post-flight data processing and archiving in preparation for Build 2 preparation, including the Flight Inspection Airborne Processor Application (FIAPA) system and FRI instrumentation.

Dry Run Build 1 Flight Test Overview

Aircrew and Operations Familiarization Team Roles, Responsibilities and Communication COVID Restrictions ATI System Checkout for Risk Reduction Data Connectivity, Management, and Data Reduction Processes Flight Characterization Techniques Route Design Test

Dry Run Build 2 Flight Test

03.01.21 - 03.12.21

The National Aeronautics and Space Administration conducted the Advanced Air Mobility National Campaign Build 2 Flight Test event in March of 2021. Enhanced development of systems, processes, and testing techniques were implemented as a larger system of systems to include routes, heliports and vertiports, weather, video, Pulse Light Approach Slope Indicator (PLASI) lighting, and an on-vehicle highfidelity space positioning instrumentation pallet (a global positioning system, GPS, Pallet) was called into action for flight tests. Flight Test Infrastructure was further refined to verify that the data pipeline, data collection, distribution, and storage mechanisms worked as specified, as well as to test the UAM / electric Vertical Take-Off and Landing (eVTOL) airspace system in a real-world environment.

Dry Run Build 2 Flight Test Overview

AAM Flight Characteristic Test Maneuvers UAM Task Elements UAM Handling Qualities Airborne Data for Air Traffic Management Research AAM Test Range Construct Route Design Optimization Infrastructure / Terminal Approaches and Departures FAA Flight Inspection Approach Procedures Aeronautical Radio, Incorporated (Annapolis, Maryland) (ARINC) 424 Coding Applications Passenger Comfort for Turn Procedures

Dry Run Build 2 Flight Test Primary Objectives

Demonstrate maneuvers from key AAM Flight Characteristic tests Develop data products from key AAM Flight Characteristic tests Prove initial concepts for AAM operational approaches and departures Demonstrate "Task Elements" expected to form building blocks of AAM mission profiles Identify and refine Handling Qualities Task Elements used to determine vehicle suitability for AAM mission

Dry Run Build 2 Flight Test Additional Objectives

Provide airborne data to support Air Traffic Management research Validate the layout of a representative AAM Test Range construct Capture Infrastructure / Terminal base line data Evaluate FAA Flight Inspection Approach Procedures appropriate for AAM Operations Validate and refine airspace assumptions for UAM (AAM/UAM Maturity Level [UML] 1-2) Reduce risk for deployment of NASA furnished equipment that will support subsequent AAM flight test activities at external ranges Exercise NASA Airworthiness process for subsequent AAM participant vehicles Collect Time/Space/Position and video data to support communication of AAM goals, conclusions,

and concepts

Dry Run Build 2 Flight Test Activities

Performance, Trim, Stability and Control flight test maneuvers vehicle characteristics Ground and flight tasks for AAM Mission Heliports and Vertiports AAM Task Elements Flight demonstrations with contingency management procedures Airspace System Functional Checks Fly-Ability evaluations for research AAM Approaches Departures and Enroute Procedures Approach, Departure, and Route Flight Checks Preflight planning Ground operations Flight operations Air Traffic Management Contingencies Integrated Scenario Testing

Dry Run Build 2 Flight Test Activities Vehicle Characteristics

Vehicle Characteristics evaluations utilized existing or modified aircraft certification flight test techniques to validate select AAM participant Stability & Control (S&C), Trim, and Performance characteristics. The purpose was to demonstrate a limited set of foundational vehicle characteristics, utilizing traditional civil rotorcraft flight test techniques, intended to show compliance to FAA Subpart B airworthiness certification requirements. The intent was to capture data and create data products to be used for comparison purposes to future AAM vehicles, as well as to proposed alternative civil means of compliance that may be better suited for AAM vehicles. Vehicle Flight Characteristics testing was intended to support the collection of foundational data with an eye toward understanding the necessary foundational flight characteristics (Flight Control System/trim, stability, control, and performance) that will enable an AAM vehicle to support condensed instrument meteorological conditions (IMC) approaches in the urban environment. Low-speed controllability in the wind environments expected in urban settings was a particular area of emphasis.

Dry Run Build 2 Flight Test with FAA Flight Inspection Airborne Processor Application

The FAA used a procedure validation tool called the FIAPA, which is contained in a carry-on system consisting of a tablet, survey-quality global navigation satellite systems (GNSS) receiver, and GPS patch antenna. The FIAPA validated spatial data contained in the procedures and allowed flyability evaluation independent of helicopter avionics. By ingesting FAA AirNav and ARINC 424 data, the FIAPA performed data quality checks and provided lateral and vertical deviations (North, East, and "Up errors") in a pilot flight display (PFD) format. Additionally, the FIAPA logged flight data for replay or analysis. Flight inspection data included: National Marine Electronics Association (NMEA)-0183 standard messages, Range, Vertical Angle, "Height MSL" (mean sea level), Horizontal root mean square (RMS) Error, Vertical RMS Error, Latitude and Longitude and GPS Status. The FIAPA is compatible with different GNSS receivers. For Build 2 Trimble software (Trimble Inc., Sunnyvale, California) was used to adapt portable sensors and process data collected post-flight. The FIAPA ingested real-time flight data from inside the aircraft, which was processed and analyzed post-flight.

The FIAPA testing relied on accurate positioning of the helicopter at the surveyed landing zone (LZ) locations included as part of the FTI Range Infrastructure, but otherwise collected data concurrently with other dedicated testing.

Dry Run MOF V&V Testing

08.11.21

The MOF was verified using a TG-14 aircraft flying prescribed routes:

Dry Run MOF V&V Testing Overview

Flight Test Infrastructure Subsystem Verification and End-to-End System Tests Software Automation Integration Testing via ATI V&V Test Process

Developmental Testing

08.30.21 - 09.03.21 and 09.08.21 - 09.09.21

Joby Aviation, Inc. (Santa Cruz, California) Acoustics Test

A flight test demonstration commenced to characterize an AAM prototype vehicle and record acoustic array test data with the AAM subproject RVLT at an external range.

Dry Run Build 2 Follow-On Flight Test

11.08.21 - 11.10.21 and 12.06.21 - 12.10.21

The National Aeronautics and Space Administration conducted the AAM NC Follow-on Flight Test (FOFT) event over three days in November and four days in December of 2021. A key objective was to exercise and mature AAM NC technology and processes while identifying operational lessons related to the ecosystem NASA will provide to partners in future flight tests during the NC-1 series. Additionally, data services initiated automated reporting and analysis of post-flight test data artifacts. The OH-58C helicopter performed ten missions along predefined routes to capture key flight test data regarding vehicle performance characteristics and UAM Task Elements (UTEs). Additional data points for specific maneuvers were gathered and wind limit tests were extended:

Dry Run Build 2 Follow-On Flight Test Overview

Dynamic Interface Urban Wind Implications Novel AAM Approach Procedures Additional ADS-B Instrumentation Event Marking Processes Simulated Pinnacle Landings Hover Power Margins Refined Approach Characteristics Passenger Comfort for Approach Procedures

National Campaign-1

2022 - 2024

Joby Aviation, Inc.; Wisk; Reliable Robotics; North Texas Cohort; and AURA X-4, Integrated Automation Systems and Automated Flight Contingency Management

Document No. AAM-NC-069-001 Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

The National Campaign team is developing National Campaign-1 flight test plans for flight test events with various industry partners and various combinations of collaboration across industry partners across varied fields of AAM specialization. Flight demonstrations with vehicle, airspace, and infrastructure partners will illustrate capabilities across a subset of NC scenarios for initial manned and unmanned operational use cases to explore AAM challenges and path to operations as seen in Figure 1.5. The NC-1 includes developing new interfaces to Air Navigation Service Provider (ANSP) in a UML1 to UML2 environment. Simultaneously, simulated flight event development will occur

through ATM-X X4 activities in preparation for vehicle-coupled flights. with potential Provider of Services for UAM (PSU) candidates in NC-2.

Figure 1.5. Future Airspace Concept.

National Campaign-1 Engagements

The following engagements occurred with NC-1: *Mobile Vertipad System, Integrated Automated Systems and Automated Flight Contingency Management* and X4 Simulated Flights.

Mobile Vertipad System

To demonstrate scaled operational capabilities in urban environments, deployment of a Mobile Vertipad System (MVS) will research augmenting site survey, weather, lighting, and GPS corrections associated with point-in-space operations for AAM procedures.

Integrated Automated Systems and Automated Flight Contingency Management

Sequential Integration of Automated Systems (IAS) activities will integrate and test different NASA automation technologies from partner projects including interactions between the vehicle, infrastructure, and airspace to enable more complex operations. The IAS-1 activity will leverage an existing rotorcraft platform as a surrogate testbed to evaluate NASA automation algorithms.

X4 Simulated Flights

Simulation events with airspace partners will build on functionality established in X3 by AAM subproject ATM-X, focusing on Provider of Services for UAM (PSU) capabilities needed to support AAM operations.

1.4 Dry Run Objectives

The Dry Run flight test series was separated into three flight events: Build 1, Build 2, and Build 2 FOFTs. Table 1.6 provides an overview of the primary objective success criteria achieved through Dry Run:

1 0	Dry Run Test Objectives	Detter	Dutilia	FOFT
DRPO 1. Demonstrate Integrated Aircraft	Success Criteria Min Success: Conduct dry run testing using UAM representative vehicle with existing AFRC assets and exercise NC ADS-B Receiver connection to airspace test infrastructure.	Build 1 X	Build 2	FOFT
and Test Infrastructure	Tui success. conduct the dry run testing with the wor, ground support equipment			
2. Demonstrate Deployable Integrated Test	Min Success: Demonstrate deployable integrated test infrastructure including at least a minimal MOF capabilities and airspace test infrastructure (with a non-UAM representative vehicle if necessary) prior to deploying to an external test site		х	
Infrastructure	Full Success: Successfully demonstrate a UAM representative vehicle with the deployable MOF including electrical power, ground crew communication (may use EDW LMR), MOF intercom, VHF communications with the vehicle, broadband internet, receive ADS-B data in the correct format, DGPS capability, airspace test infrastructure systems interfaces, real-time weather data handling, site agnostic telephones.		X	х
3. Demonstrate Connectivity and	Min Success: Demonstrate connectivity using NC ADS-B data to Provider of Services (PSU) for UAM network, and ADS-B surveillance data to the airspace test infrastructure data pipeline. Data must be managed and archived according to data management and handling plans and systems identified for DT.	х	x	
Functionality between Range Assets and Airspace Network	Full Success: Successfully demonstrate all the ATI functions necessary for supporting scenarios 1-3. Verify the data flow between the MOF and PSU Network including: ADS-B surveillance data to PSU Network; weather data to PSU Network (either real-time or post-flight); and scenario coordination data/communications between the PSU Network, MOF. All of this data must be managed and archived according to the data management and handling plans and systems identified for DT.			x
 Demonstrate operations, procedures, and 	Min Success: Demonstrate airworthiness process and end-to-end flight test procedures and data handling between minimal range assets (existing AFRC control room and surveillance, ATI interface, UHF/VHF, and weather) and the Provider of Services for UAM (PSU) network	х	х	
processes	Full Success: Demonstrate flight test roles and responsibilities, operational timelines, end-to-end flight procedures including data handling, and coordination procedures between the MOF and the PSU Network for non-acoustics testing.			х
5. Collect, Manage	Min Success: Collect ADS-B data from any vehicle to be able to send to the Provider of Services for UAM (PSU) operator and network. Collect instrumentation data from the vehicle for the FAA to characterize vehicle performance, stability, and control (data specifics defined in the helicopter requirements).	х		
and Store Data	Full Success: Fly scenarios 1 - 3 at least three times and conduct a minimum set of performance, stability, and control test points (data specifics to be defined in the flight test plan. Assess the DGPS/INS data quality for acoustics data reduction, post-flight conformance validation for ATI, and FAA data analytics for vehicle characterization. Collect audio and video data		x	
6. Demonstrate data handling, storage,	Min Success: Demonstrate management of structured and unstructured data and identify any lessons learned for future test activities.		х	
sharing processes and hardware	Full Success: Demonstrate data sharing with appropriate data governance procedures successfully with all of the Dry Run participants (ARC, AFRC, and the FAA). Ensure data quality and persistence are implemented through the data pipeline.			х
7. Collection and distribution of	Min Success: Collect weather data (surface conditions and low-altitude winds) for conducting post-flight data analysis and making real-time flight calls	х	х	
weather data	Full Success: Demonstrate the collection of weather data and its automatic real-time distribution to a MOF display.			х
8. Evaluate route design techniques	Min Success: Fly at least five unique routes, with at least one route between Area A and the X-33 site, and one route that utilizes one takeoff/landing pads within area A	х		
between Area A site to the X-33 site	Full Success: Fly the five routes in a variety of wind conditions from light to moderate and with prevailing directions spanning at least 45 degrees. Fly one route utilizing two takeoff/landing pads within area A. The tested routes must also exercise all of the identified contingency routes.		х	
 Evaluate terminal area operations and procedures 	Min Success: Evaluate a range of UAM approach patterns with an UAM representative vehicle into at least 3 different heliports or vertiports. Visual approaches with adequate visual references (may require a visual guidance system) are sufficient. Vehicle characteristic testing will be extracted from scenario flight tests.	х		

Table 1.6. Dry Run Test Objectives.

Document No. AAM-NC-069-001

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

	Full Success: Evaluate UAM approach patterns with a UAM representative vehicle into at least 3 different heliports or vertiports, including at least one heliport or vertiport at the X-33 site. A RNAV capability in the cockpit is required to evaluate the FAA coded approach and landing procedures. An FMS that can integrate coded approach and landing procedures. Additional vehicle characteristic tests to be conducted as stand- alone flight tests. Video data collection in the terminal area of at least 3 flights of scenario 3.	x	
10. Evaluate	Min Success: Fly each of the scenarios 1-3 three times each in order to collect data for post-flight analysis.	х	
scenarios 1-3	Full Success: Fly each of the scenarios 1-3 more than three times each in a variety of wind conditions and across all routes and contingencies outlined in the scenarios.	х	

The Dry Run flight test series was separated into two additional data pipeline tests: Dry Run Connectivity Test and Mobile Operating Facility V&V Test. Through this work, the NC developed a foundation for testing future Airspace Management Architecture (Objective 4) as seen in Table 1.7.

Table 1.7. Airspace Testing and Integration Dry Run Test Objectives.

National Campaign Airspace Testing and Integration Dry Run Test Objectives							
TEST NAME	DESCRIPTION	REQUIRED COORDINATION	PASS CRITERIA	P/F			
Build 2 Flight Test BASIC DATA CONNECTIVITY (03.05.21- 03.20.21)	This procedure tests the connectivity between the pingStation and SURFER, SURFER and UDC, UDC and the Data Pipeline, Data Pipeline to Grafana via Amazon Kinesis Data Stream, and UDC to iUTM: 1. Start Kinesis Stream client 2. Plug ATI laptop into network and receive DHCP IP address 3. Configure pingStation to use laptop IP address to send UDP packets 4. Start SURFER application on UDP port 30000 5. Observe packets sent from pingStation to SURFER application 6. Verify that UDP packets received by SURFER are forwarded to UDC 7. Verify that the data is parsed and populates both the MCC and AOL Grafana dashboards correctly via the Amazon Kinesis stream 8. Use iUTM app and Grafana to see ADS- B visualization	 pingStation to SURFER SURFER to UDC UDC to the Data Pipeline Data Pipeline to Grafana UDC to iUTM 	The pingStation must send raw UDP packets data to SURFER SURFER must secure the UDP packets and send to UDC UDC must receive the data and push it to the Data Pipeline The pingStation must broadcast the correct ICAO address to xTM Client Data Pipeline must collect the data and send it to Grafana via the Amazon Kinesis stream UDC must push real-time data to iUTM	P			
Build 2 Flight Test xTM CLIENT to NPSU (03.05.21- 03.20.21)	 This test will be an initial test of a subset of capabilities from the xTM Client v5. The test will verify the xTM Client can receive telemetry for position messages: 1. Confirm the ICAO address that the pingStation will broadcast to input in "tail number" field. 2. Import the designated trajectory JSON file and edit operational plan to be populated with correct information. 3. Submit operation plan to NPSU 4. Verify xTM Client receives incoming NPSU message, showing state change from "Proposed" to "Accepted". 5. Announce operation is "Active", showing state change from "accepted" 6. Announce the end of the operation by notifying NPSU that the operation is "Ended" 7. Verify xTM Client receives operation plan state change message from "Active" to "Ended" 	 pingStation to SURFER SURFER to xTM Client v5 (local AFRC network) xTM Client to NPSU 	The pingStation must broadcast the correct ICAO address to xTM Client NPSU must accept the operation and show state change xTM Client must announce activate the operation and show state change End the operation	P			

1.5 Responsible Organizations for Dry Run

The following organizations provided support to Dry Run acitivities:

The NC Team: Members from AFRC and ARC, and the airspace Principal Investigator (PI) and supporting members co-located with the FAA at the Mike Monroney Aeronautical Center (Oklahoma City, Oklahoma).

The FAA: UAM vehicle PI, certification pilot, candidate Flight Inspection software, ARINC coding and supporting staff at the Mike Monroney Aeronautical Center (Oklahoma City, Oklahoma).

<u>Flight Research Incorporated</u>: UAM surrogate helicopter, pilot-in-command, maintenance staff, and data system technicians of Mojave, California.

1.6 Working Groups

Several NASA Dry Run working groups were used to enable development of the plan to execute Dry Run test activities: Systems Engineering Working Group, Flight Test Operations Working Group, Flight Test Planning Working Group, Range-ATI Integration Bi-Weekly Working Group and Systems Safety Working Group.

<u>Systems Engineering Working Group</u>: was used to define the FTI life cycle, as well as to refine, decompose, and manage System requirements derived from the NC Objectives and Concept of Operations (CONOPS). Products included the NC Systems Engineering Master Plan (SEMP), the Range Systems Requirements Document (SRD), and the FTI V&V Test Plan.

<u>Flight Test Operations Working Group</u>: was used to develop CONOPS for the FTI. The many products of this working group included:

- Flight Test Operations Document (FTOD)
- Control Room Plan
- Field Operations Guide
- Mandatory Mission Requirements and Go/No-Go Requirements
- Build 1 Familiarization, Build 2, Build 2 Follow-on Flight Test (CST)
- Aircrew Qualifications Document
- Instrumentation Operations Procedures
- Day of Flight Procedures

<u>Flight Test Planning Working Group</u>: was used to develop the UAM Surrogate Helicopter Test Plan used for Build 2.

Range-ATI Integration Bi-Weekly Working Group: was used to manage the interface between the FTI Range developed at AFRC and the ATI developed at ARC. Products included the NC Development Test Interface Description Document.

<u>Systems Safety Working Group</u>: was used to identify, track, and control the human safety and damage / loss of asset / mission hazard management efforts of the project. Products included the NC Systems Safety Plan, the NC Software Assurance Plan, Dry Run Hazards, and the associated Hazard Assessment Matrices.

The NC collaborated with subject matter experts (SMEs) across industry, FAA Lines of Business and Staff Offices, and across NASA Centers with related Advanced Air Mobility subprojects to realize full potential for planning, integration, and outcomes through two groups: *Scenario Technical Working Group* and *National Campaign Working Group*.

Scenario Technical Working Group: The NC team initiated the Scenario Technical Working Group (STWG) with the FAA from 2018-2019. Experts from the NASA NC and the FAA developed flight test scenarios and associated data for future campaign events. The set of discrete "Scenarios" are designed to enable the vehicle to fly a segment of an imagined UAM mission in a relevant live or virtual airspace environment. These Scenarios are designed to obtain critical insights into potential UAM systems with a focus on enabling future FAA equipment certification and operational approvals. The scenarios are designed to test various vehicle and airspace tasks within an assumed UAM concept of operations. Scenarios 1-4 were exercised for NC Dry Run and Developmental Testing flight events:

National Campaign Working Group

The NASA - FAA National Campaign Working Group (NCWG) was established in 2020. The FAA leadership appointed Focal leads from each Line of Business and Staff Office across the agency to verify campaign activities. Focals provide insight into current standards from which to *anchor* partner engagement activities and begin work to *evolve* toward the AAM future state. Collaboration to develop requirements that can assist each FAA service with informative data for AAM planning is garnered through appointed representatives. Data toward assumptions, technological gaps, and supportive data for FAA priorities help the agency keep pace with industry development.

NCWG Objectives

- Develop and utilize an agreed-upon platform to share data from various FAA and NASA data sources.
- Provide FTI to support connectivity between vehicle, range, and airspace service providers.
- Work collaboratively with the FAA Flight Program Office (AJF) for implementation of FIAPA software to support integration of emerging aerospace technology
- Facilitate regularly scheduled Scenarios Technical Working Group meetings.
- Measure FAA data requirements during the NC Series
- Work with FAA on agreed-upon data models and data management plan
- Provide FAA access to recorded data throughout the NC Series
- Develop the statement of work for the Helicopter Dry Run Test with input from the FAA.
- Provide a test bed and ground infrastructure for UAM Vertiport evaluation, certification, and registration research required for National Airspace System (NAS) integration.
- Develop flight test plan for the NC Helicopter Dry Run.
- Provide FAA FIAPA FTE, FAA Vehicle Performance FTE, FAA-certified test pilot
- Develop a joint NC Flight Test Report for each NC Series of demonstration tests

UAM Task Elements as Means of Compliance with the FAA

The NC developed a set of UAM Task Elements based on the US Army ADS-33E "Mission Task Elements" principles. The tests were designed to evaluate discrete flight tasks, under varied environmental conditions, with specified performance parameters, for purposes of evaluating handling qualities. These task elements were designed to highlight or uncover vehicle deficiencies relating to the UAM mission. The NC Dry Run UAM Surrogate Helicopter testing endeavored to investigate developmental UAM Task Elements being considered by the FAA as

means of compliance to airworthiness certification requirements for UAM vehicles. "Desired" and "Adequate" performance, the test course, and other specifications will be modified for future test activities as a result of these results. General flying and handling qualities comments were captured in written notes and flight debriefs, but exhaustive Cooper-Harper ratings were not used for all OH-58C UAM Surrogate Helicopter tests. Handling qualities tests like these are expected to be a part of future certification flight tests of UAM vehicles that make use of an integrated system of complex, highly augmented, feedback control fly-by-wire flight control systems coupled with new and novel inceptor strategies, and flight guidance systems.

Vehicle Characteristics Tests for Vertical Motion Simulator with NASA

The results of Vehicle Characteristics tests will be utilized in an effort to draw conclusions as to the efficacy of the UAM Task Element as a candidate civil airworthiness certification task. Evaluations utilized existing or modified aircraft certification flight test techniques to validate select UAM participant S&C, Trim and Performance characteristics. The purpose was to demonstrate a limited set of foundational vehicle characteristics, utilizing traditional civil rotorcraft flight test techniques, intended to show compliance to FAA Subpart B airworthiness certification requirements. The intent was to capture data and create data products to be used for comparison purposes to future UAM vehicles, as well as to proposed alternative civil means of compliance that may be better suited for UAM vehicles. The results also provide supporting data for parallel, simulator-based, research (e.g., Collaborative FAA / NASA ARC Handling Quality Task Element (HQTE) research utilizing the Vertical Motion Simulator) that is applying these candidate UAM Task Elements in simulator tests of various different UAM Vehicle design approaches. The details of these tests will evolve as UAM vehicles achieve a design maturity appropriate for flight evaluation. The UAM Helicopter testing was limited to investigation of the empirical data. It is expected that UAM Task Elements, and future evolutions in test techniques, will form the foundation to support Handling Qualities evaluations for future UAM participant vehicles once UAM flight control systems, flight guidance algorithms, and performance parameters have been refined.

AAM Subproject Integration

The NC project events and findings will inform related subprojects within Advanced Air Mobility. As the first subproject to launch, the NC flight events hold the potential to both characterize initial development and then ultimately validate research and development found within other subprojects when applied through integrated flight events. Simulation and range flight events within the NC project series can further the required research and test viability of constructs across technology, operations, vehicle design, and safety.

The following projects support research for AAM: National Campaign, Automated Flight Contingency Management, High-Density Vertiplex, Integrated Automation Systems and ATM-X.

Document No. AAM-NC-069-001

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

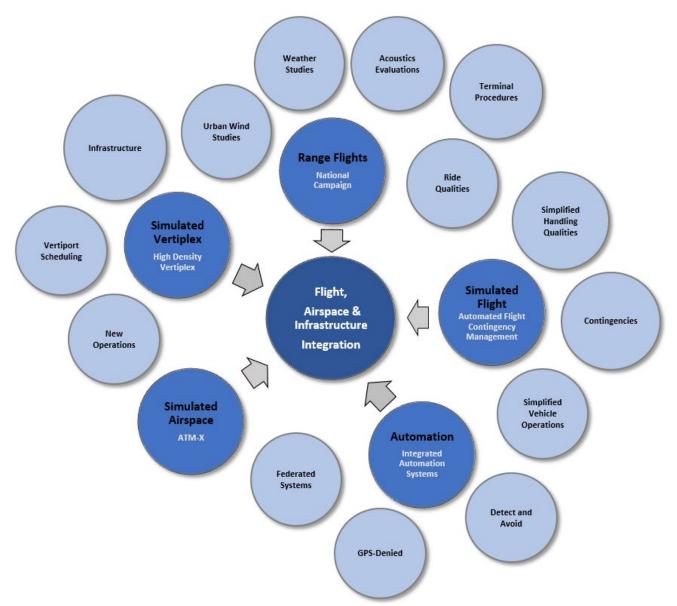


Figure 1.8. NASA Advanced Air Mobility Subprojects and Future Integrations.

2 FLIGHT TEST INFRASTRUCTURE INTEGRATION

The NC team developed a mobile test site infrastructure that is both conducive to the early NC series and scalable for NC-1 flight test events to occur in different locations around the United States (U.S.). Flight test infrastructure was developmental, utilizing sequential, methodical processes. Standard FAA procedures and policies were applied to prepare for surrogate AAM flights from landing surfaces to airspace constructs and procedure design. The physical range environment was carefully planned and scrutinized for safety. The data infrastructure frominstruments, systems, and data pipelines to storage and outcomes were also critical stages of the NC FTI.

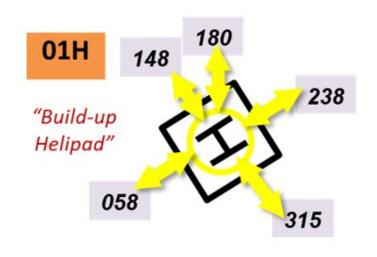
The following topics are discussed in the this section: Landing Surfaces Activation and Heliport Airspace Construction.

2.1 Landing Surfaces Activation

The physical range constructs such as landing surfaces were first to be conceived for the Flight Test Infrastructure. One of the National Campaign research initiatives is to address the gap of services to streamline vertiport landing locations. In particular, the registration, certification, and publication of new landing surfaces identified exclusively for AAM operations is a new frontier. Considerations include compensation-for-hire operations, which would fall under the "general" or "commercial" category, and private-use vertiports relying on instrumentation for the private use of vehicles operating in and out the urban environment. The National Campaign has addressed such concerns by exploring how to conduct the required Landing Surface Survey, FAA Form 7480-1 "Notice for Construction, Alteration, and Deactivation of Airports," and FAA Form 5010 Airport Master Record, Letter of Determination, Activation Letter, National Airspace System Public Records publication and charting for AAM operations.

Experimental Airport-Heliports-Vertiport:

Three airports were utilized for NC coding procedures in order to enable an aircraft dispatcher or operator to file a flight plan to and from a particular landing location, even though several are only a few thousand feet apart for the NC Dry Run series. The first airport was populated as XEDW at North Base, Edwards Air Force Base, Edwards, California. The second airport, XVPT, utilized a rectangular portion of the North Base taxiway at AFRC. Airport XVPT functioned as a vertiport with a short takeoff and landing runway bound together by two heliports or vertiports. The third airport created was named XX33, commemorating the old X-33 shuttle takeoff site. As seen in Figure 2.1, three XEDW landing locations were constructed and named 01H, 02H and 03H. Airport XVPT had four registered landing surfaces: 04H, 05H as well as Runway 01 (RWY) and Runway 19 (RWY). The XX33 airport had one helipad associated with the airport identifier named 06H as seen in the corner of the Figure 2.1. The nontraditional naming convention was used for simplification for the aircrew (common convention would require a duplicate 01H helipad at the farther location). For NC purposes, each airport identifier points to landing surfaces 01H to 06H for convenience and ease during communication for the duration of the flight tests. Each helipad was designed around specific criteria against either vertical obstructions, such as Building 4833, an airspace constraint such as the KEDW runway centerline, or usable length such as an elongated path at XVPT.


National Campaign Experimental Airport-Heliports-Vertiports

XEDW Helipad 01H

AFRC Helipad 01H - XEDW

- Located at north end of NASA Ramp
- N34 57.33 W117 52.54 (WGS 84)
- TLOF Elevation 2271ft
- TLOF Dimensions 40ft x 40ft
- FATO Dimensions 120ft x 120ft
- 01H is a load bearing FATO

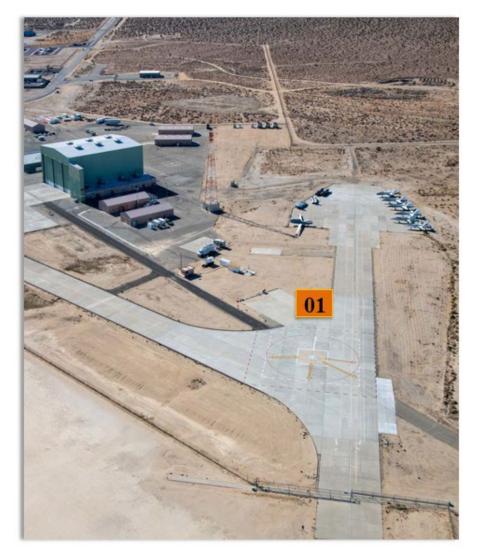
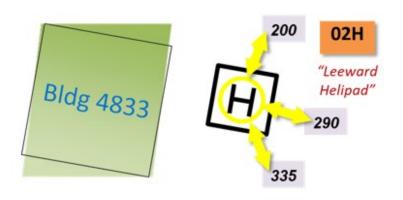


Figure 2.2. National Campaign Helipad 01H.

XEDW Helipad 02H

AFRC Helipad 02H - XEDW

- Located at east side of B4833 (NASA)
- N34 57.25 W117 52.57 (WGS 84)
- TLOF Elevation 2274ft
- TLOF Dimensions 40ft x 40ft
- FATO Dimensions 120ft x 120ft
- 02H is a load bearing FATO



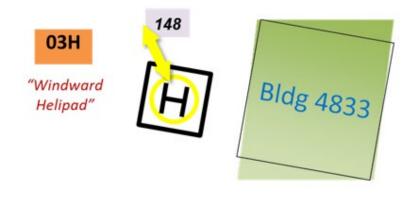


Figure 2.3. National Campaign Helipad 02H.

XEDW Helipad 03H

AFRC HELIPAD 03H - XEDW

- Located at west side of B4833 (NASA)
- N34 57.26 W117 53.03 (WGS 84)
- TLOF Elevation 2274ft
- TLOF Dimensions 40ft x 40ft
- FATO Dimensions 120ft x 120ft
- 03H is a non-load bearing FATO

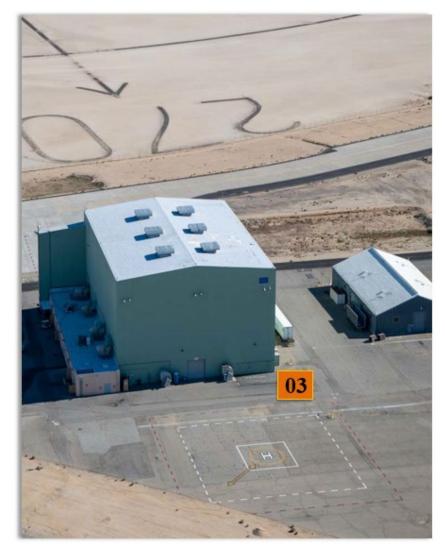
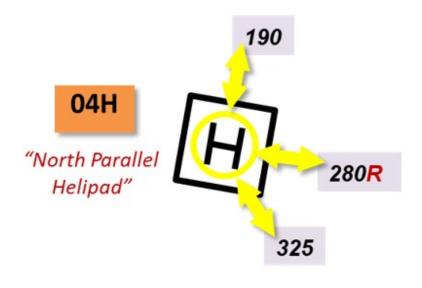



Figure 2.4. National Campaign Helipad 03H.

XVPT Helipad 04H

AFRC HELIPAD 04H - XVPT

- Located at east side of B4840 (NASA Ramp)
- N34 57.13 W117 52.58 (WGS 84)
- North part of AFRC UAM Vertiport 19
- TLOF Elevation 2174ft
- TLOF Dimensions 40ft x 40ft
- FATO Dimension 120ft x 1090ft
- 04H is a load bearing FATO

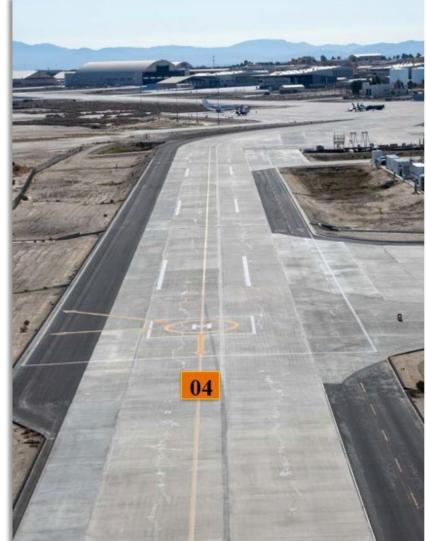


Figure 2.5. National Campaign Helipad 04H.

XVPT Helipad 05H

AFRC HELIPAD 05H - XVPT

- Located at east side of B4840 (NASA Ramp)
- N34 57.04 W117 53.02 (WGS 84)
- South part of AFRC UAM Vertiport RWY 01
- TLOF Elevation 2171ft
- TLOF Dimensions 40ft x 40ft
- FATO Dimension 120ft x 1090ft
- 05H is a load bearing FATO

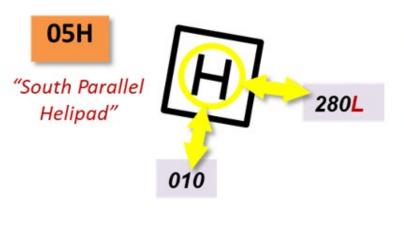


Figure 2.6. National Campaign Helipad 05H.

XX33 Helipad 06H

AFRL HELIPAD 06H - XX33

- Located at former X-33 site (AFRL)
- N34 52.33 W117 37.04 (WGS 84)
- TLOF Elevation 2875ft
- TLOF Dimensions 40ft x 40ft
- FATO Dimension 120ft x 120ft
- 06H is a non-load bearing FATO

Figure 2.7. National Campaign Helipad 06H.

Document No. AAM-NC-069-001 Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

XVPT Runway 19/01

AFRC Vertiport RWY 19/01 - XVPT

- Located at east side of B4840 (NASA Ramp)
- Elevation 2172ft

19/01

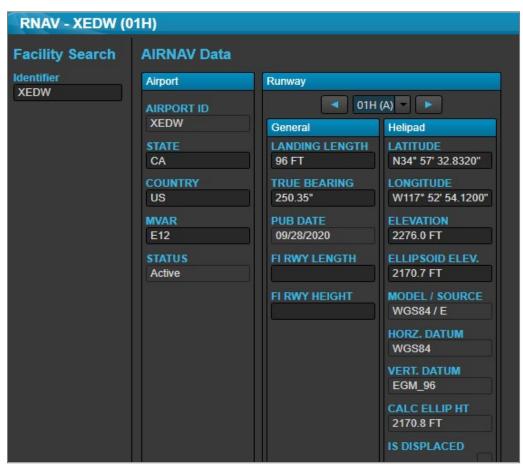
"UAM Vertiport"

• Dimensions 120ft x 1090ft

Figure 2.8. National Campaign Runway.

120 ft

Landing Surface Infrastructure Analysis


To baseline the infrastructure of vertiports, a conventional survey was ordered and constructed to define a high-precision latitude and longitude, ellipsoidal height against the World Geodetic System 84 (WGS84) for the center and outer edges of each landing surface. The conventional survey served as a measurement against equipment such as a handheld GPS system and two-dimensional digital textiles covering a three-dimensional surface such as Google Earth, Terminal Area Route Generation Evaluation and Traffic Simulation (TARGETS), and Garmin (Garmin Ltd., Olathe, Kansas). The spatial data integrity test was conducted at XEDW on the center point of 01H. The purpose of the test was to use each available method for comparative analysis. On-demand mobility may requisition a gap for a "point-and-click" dynamic flight plan in which a potential dispatch operator could utilize a three-dimensional digital textile service such as Google Earth to identify the current location and point-and-click for the intended location. As many of the use cases are not on airports, AAM would not have a high-precision survey to back up any request that may be utilizing instrumentation for takeoff and landing operations. As such, the NC team used a point-and-click method to identify the very center of the same 01H helipad in each of these digital platforms and reported on the vertical and the lateral deviations of every system against the conventional survey results (see Figure 2.9).

XEDW	Spatial D	ata Integrity -	- XEDW -	01H	The second
	Instrument	Location	Elevation	Vertical Error	Lateral Error
Run	Garmin	034 57 32.88 N 117 52 54.07 W	2274 ft.	Baseline	Baseline
	Google Earth	034 57 32.84 N 117 52 54.20 W	2276 ft.	+2 ft.	-0.04 degrees +0.13 degrees 11.55 ft. 249.50 True Bearing
KEDW ;	TARGETS	034 57 32.69 N 117 52 53.29 W	2241 ft.	-33 ft.	-0.19 degrees - 0.78 degrees 67.71 ft. 106.48 degrees True Bearing
	FAA SBSM	034 57 33.01 N 117 52 53.97 W	2280 ft.	+6 ft.	+0.13 degrees -0.10 degrees 15.56 ft. 32.34 True Bearing
	FAA FIAPA	Under Experimenta	l Development	Calil	brated to RNAV Database Survey Input
	Geodetic	GEOINT Survey			Conventional Method Accuracy
	LIDAR	TBD		Em	erging Method for Increased Accuracy
					ХХЗЗ

Figure 2.9. Spatial Data Analysis Results for XEDW 01H.

Landing Surface Survey Results

Another portion of the survey was used to populate the high-precision lateral and vertical information of each landing location selected in order to populate the information in the FAA area navigation AIRNAV database. The process enables the flight test to "file" a flight plan to and from a particular location. The following information was used to create experimental landing surfaces that would follow the process of uploading the baseline information to generate a file for a UAM vertiport. The process was executed up to the point of charting and publication, but because the airports were given an experimental "X" identifier, they are not to be part of the FAA official charting and publication cycle. Instead, the experimental landing surfaces remain in the background for future NC test series needs. The AIRNAV Database, Landing Surface table, Geodetic Site table, and Boundary Survey table used to generate the vertiport, vertiport boundaries as well as path point files for the test routes coding are shown in Figures 2.10 through 2.14 . All geodesic site survey results are found in Annex 6.2.

AIRNAV Database

Figure 2.10. Area Navigation (AIRNAV) Database Experimental Landing Surface XEDW 01H.

Landing Surface Results

Table 2.11. Survey	Results for NC	Experimental	Landina Surfaces.
10010 2.11. 301 009	nesuns joi ne	experimental	Landing Surjaces.

Landing Sur	face Results			
STATION CODE	STATION DESCRIPTION	WGS 84 LONGITUDE (DMS)	WGS 84 ELLIPSOID HEIGHT (METERS)	WGS 84 LATITUDE (DMS)
140N-BV1	Temporary control station located on the North Base portion of EAFB, marked with a U.S. Coast & Geodetic Survey disk stamped N1140 1961	34 59 09.89396 N	117 51 44.55716 W	661.816
BV1-ARP	Ashtech antenna located atop Building 4800 at Armstrong Flight Research Center, on EAFB	34 57 00.14445 N	117 53 13.82413 W	678.224
GW18-BV1	Temporary control station located on the PIRA of EAFB, marked with a USGS disk stamped GWM 18 2449 1937	34 52 17.75511 N	117 38 55.13414 W	867.084
KEDWA 2020-BV1	Temporary control station located atop Building 4221 on North Base of EAFB	34 59 40.95197 N	117 52 24.43652 W	680.942
LZR1-BV1	Temporary control station located on the AFRL area of EAFB, marked with a DMA disk stamped LAZAR 1 1984 GSS	34 55 16.37317 N	117 42 44.17505 W	870.549
_MSB-BV1	Temporary control station located on the flight line area of EAFB, marked with a NEC disk stamped MASTER SOUTH BASE 12-55	34 55 18.62567 N	117 52 41.77888 W	665.512

Geodetic Site Survey

	GEODETIC S	ITE INFORMATION			
			I- - -		
LOCATION (INSTALL Edwards AFB, CA/L	ATION / CITY, STATE / COUN	NTRY)	DATUM	GS 84	
			ELLIPSOID	HEIGHT OF	ELLIPSOID
			HEIGHT OF	POINT ABOVE	HEIGHT AT
POINT	LATITUDE (deg min sec)	LONGITUDE (deg min sec)	POINT (meters)	GROUND (meters)	GROUND (meters)
NAS9-BV1	N 34 56 53.05428	W 117 53 44.98178	682.983	0.15	N/A
	DES	CRIPTION			
To reach the station 2.4 miles to a stop meters east of tracl The station is a U.S.	n from the intersection of R sign at Lilly Avenue. Turn le k. Turn right onto the dirt r Army Corps of Engineers br stamped NASA-9 1969 LA I	e NASA Neil A. Armstrong Flig osamond Boulevard and Nor ft onto Lilly Avenue and go 0 oad andgo 0.1 mile south to t ass disk set in the top of a 0.1 DIST. It is 27 meters east c	th Base Road proce 15 mile east to a ra the station. meter square concr	ed south on Rosam ailroad track and a rete monument pro	ond Boulevard for dirt road about 15 ejecting 0.15 meter
	PHO	TO/SKETCH			N
	PHO			Looking	Southwest NAS9-BV1

Figure 2.12. Geodesic Survey For National Campaign Experimental Landing surface at NAS9-BV1.

Boundary Survey

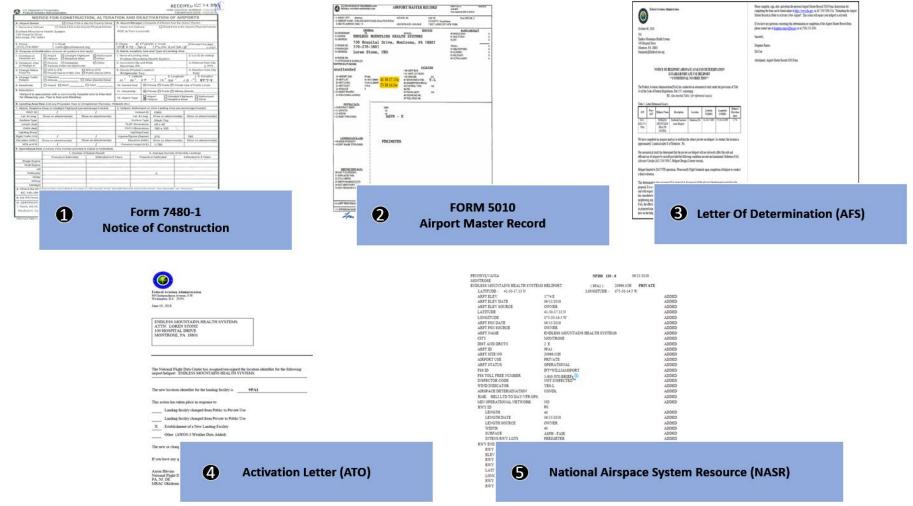
Table 2.13. Boundary Survey Results for National Campaign Experimental Landing Surfaces.

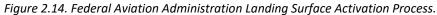
Tuble 2.13. Boundary Survey Results for National campaign Experimental Eanaing Surjuces.													
Station Code	Station Description	w		4 Latitude DMS)		WGS 8		ongitude MS)		WGS 84 Ellipsoid Ht. (m)	WGS 84 X (meters)	WGS 84 Y (meters)	WGS 84 Z (meters)
Building 4833 West He	lipad												
4833W-CENTER	Top of drill hole	34	57	25.93715 N	1	17 5	53	02.82502	w	662.068	-2447717.936	-4626035.050	3634356.137
4833W-FATO-1	Top of drill hole	34	57	26.24986 N	J 1:	17 5	53	01.87866	w	661.766	-2447694.013	-4626041.180	3634363.862
4833W-FATO-2	Top of grade	34	57	26.71614 N	J 1:	17 5	53	03.20501	w	662.168	-2447720.063	-4626018.455	3634375.871
4833W-FATO-3	Top of drill hole	34	57	25.62366 N	J 1:	17 5	53	03.77270	W	662.366	-2447741.893	-4626028.913	3634348.389
4833W-FATO-4	Top of drill hole	34	57	25.15927 N	J 1:	17 5	53	02.44554	w	661.865	-2447715.771	-4626051.547	3634336.371
4833W-FATO-PE-21	Top of asphalt	34	57	26.71018 N	J 11	17 5	53	03.18582	w	662.214	-2447719.699	-4626018.808	3634375.747
4833W-FATO-PE-23	Top of asphalt	34	57	26.69821 N	J 1:	17 5	53	03.21325	w	662.238	-2447720.423	-4626018.687	3634375.458
4833W-SA-1	Top of drill hole	34	57	26.35325 N	J 11	17 5	53	01.56336	w	661.780	-2447686.093	-4626043.318	3634366.482
4833W-SA-2	Top of grade	34	57	26.97114 N	J 1:	17 5	53	03.33142	w	662.171	-2447720.793	-4626012.976	3634382.313
4833W-SA-3	Top of drill hole	34	57	25.51941 N	J 11	17 5	53	04.08723	w	662.465	-2447749.846	-4626026.879	3634345.812
4833W-SA-4	Top of drill hole	34	57	24.89917 N	J 1:	17 5	53	02.31692	w	661.793	-2447715.007	-4626057.082	3634329.761
4833W-SA-PE-21	Top of asphalt	34	57	26.82970 N	J 1:	17 5	53	02.91625	w	662.132	-2447712.635	-4626020.082	3634378.719
4833W-SA-PE-23	Top of asphalt	34	57	26.54665 N	J 1:	17 5	53	03.55426	w	662.301	-2447729.346	-4626017.052	3634371.666
4833W-TLOF-1	Top of drill hole	34	57	26.04249 N	J 1:	17 5	53	02.50858	w	661.989	-2447709.938	-4626037.103	3634358.752
4833W-TLOF-2	Top of drill hole	34	57	26.19655 N	J 1:	17 5	53	02.95170	w	662.123	-2447718.656	-4626029.538	3634362.721
4833W-TLOF-3	Top of drill hole	34	57	25.83297 N	J 1:	17 5	53	03.14058	w	662.118	-2447725.893	-4626032.967	3634353.534
4833W-TLOF-4	Top of drill hole	34	57	25.67798 N	J 1:	17 5	53	02.69661	w	661.989	-2447717.166	-4626040.562	3634349.545
Building 4833 East Hel	ipad						-						
4833E-CENTER	Top of drill hole	34	57	24.65553 N	N 11	17 5	52	57.52063	w	661.647	-2447609.392	-4626117.694	3634323.523
4833E-FATO-1	Top of drill hole	34	57	24.96747 N	J 1:	17 5	52	56.57538	w	661.420	-2447585.529	-4626123.877	3634331.272
4833E-FATO-2	Top of drill hole	34	57	25.43558 N	N 1:	17 5	52	57.89959	w	661.605	-2447611.434	-4626100.991	3634343.202
4833E-FATO-3	Top of drill hole	34	57	24.34353 N	J 1:	17 5	52	58.46710	w	661.801	-2447633.255	-4626111.444	3634315.730
4833E-FATO-4	Top of concrete	34	57	23.87689 N	N 13	17 5	52	57.14023	w	661.563	-2447607.259	-4626134.300	3634303.806
4833E-SA-1	Top of drill hole	34	57	25.07189 N	N 11	17 5	52	56.25892	W	661.352	-2447577.544	-4626125.954	3634333.871
4833E-SA-2	Top of drill hole	34	57	25.69533 N	N 11	17 5	52	58.02552	w	661.499	-2447612.072	-4626095.366	3634349.702
4833E-SA-3	Top of drill hole	34	57	24.23976 N	N 11	17 5	52	58.78238	W	661.803	-2447641.184	-4626109.324	3634313.110
4833E-SA-4	Top of drill hole	34	57	23.61623 N	N 1:	17 5	52	57.01337	W	661.443	-2447606.520	-4626139.788	3634297.154
4833E-TLOF-1	Top of drill hole	34	57	24.75952 N	J 1:	17 5	52	57.20525	W	661.560	-2447601.427	-4626119.750	3634326.099
4833E-TLOF-2	Top of drill hole	34	57	24.91577 N	J 1:	17 5	52	57.64708	w	661.650	-2447610.081	-4626112.134	3634330.098
4833E-TLOF-3	Top of drill hole	34	57	24.55167 N	J 1:	17 5	52	57.83614	w	661.742	-2447617.363	-4626115.640	3634320.953
4833E-TLOF-4	Top of drill hole	34	57	24.39523 N	J 1:	17 5	52	57.39429	w	661.681	-2447608.721	-4626123.281	3634316.967
X-33 Helipad					•								
X33-CENTER	Top of drill hole	34	52	33.18394 N	1	17 3	37	04.15386	w	874.204	-2428665.555	-4642091.592	3627079.073
X33-FATO-1	Top of concrete	34	52	33.55351 N	1	17 3	37	03.37880	w	874.212	-2428645.096	-4642094.953	3627088.422
X33-FATO-2	Top of concrete	34	52	33.87926 N	1	17 3	37	04.45283	w	874.220	-2428666.609	-4642077.226	3627096.663
X33-FATO-3	Top of concrete	34	52	32.81343 N	1	17 3	37	04.92935	w	874.220	-2428686.041	-4642088.258	3627069.713
X33-FATO-4	Top of concrete	34	52	32.48746 N	1	17 3	37	03.85476	w	874.214	-2428664.517	-4642105.997	3627061.468
X33-TLOF-1	Top of drill hole	34	52	33.30676 N	1	17 3	37	03.83069	w	874.229	-2428657.288	-4642093.498	3627082.193
X33-TLOF-2	Top of drill hole	34	52	33.45081 N	1	17 3	37	04.30240	w	874.223	-2428666.725	-4642085.690	3627085.832
X33-TLOF-3	Top of drill hole	34	52	33.06103 N	1	17 3	37	04.47760	w	874.214	-2428673.849	-4642089.707	3627075.971
X33-TLOF-4	Top of drill hole	34	52	32.91689 N	1	17 3	37	04.00424	w	874.228	-2428664.379	-4642097.542	3627072.334

Landing Surface Activation Process

A sequential process exists to activate a landing site, to include registration via five forms and an approval process for each which result in population within the landing site database ahead of authorized operations. The NC team engaged in the process to register the experimental landing sites for the Dry Run seriesas seen in Figure 2.14 with the following steps within the process: *Notice of Construction Form 7480-1, Notice of Construction, Airport Master Record Form 5010, Activation Letter* and *e-NASR*.

Notice of Construction Form 7480-1: The first form addressed is the Notice of Construction Form 7480-1. Section C for the Purpose of Notification within the form pertains to the construction or establishment of a landing surface. The NC team selected the "Other" box outside the operating parameters of a heliport.


Notice of Construction: After a Notice of Construction has been populated, signed, and approved, a Letter of Determination must be granted from a local Flight Standards District Office in which an aeronautical study is performed that will determine if the use of the heliport landing surface will adversely affect the safe and efficient use of airspace by aircraft following any conditions or requirements maintained as directed by the letter of determination.


<u>Airport Master Record Form 5010</u>: The next form in the landing surface registration chain is the Airport Master Record Form 5010. The form covers the ownership, operation, location, and obstruction data associated with the landing surface. The NC team noted in the process that the "based" aircraft does not have a use case for an unmanned or highly automated vertical performing takeoff and landing aircraft. Lift-plus-cruise or powered-lift vehicle designations are also not options within the form.

Activation Letter: Once the Master Record has been determined, the next step is to acquire an Activation Letter to provide an International Civil Aviation Organization (ICAO) identifier in accordance with regulations for a public or private-use facility. The naming convention that is in use today may not be sufficient for a "K" or four-letter identifier to delineate a private landing surface as opposed to a public one for a UAM or highly automated operation.

<u>e-NASR</u>: For the final step, the NC compiled all of the vertical activation information into the National Airspace System Resource (eNASR) with the absolute minimal information that meets all helipad criteria. The eNASR registration establishes type of landing surface, pavement control number (PCN), width and length of the landing surface, ownership, operations, and any additional relevant information in accordance with local jurisdictional criteria. Information registered within the database includes calculated magnetic variation, publication date, latitude and longitude geodetic datum, and ellipsoidal heights in feet, and surveyed thresholds required by the FAA for landing surface accuracy with a takeoff or approach procedure.

Landing Surface Activation Process

Document No. AAM-NC-069-001

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

2.2 Helipad Airspace Construction

The following topics are discussed in the this section: *Helipad Evaluation* and *Helipad Approach Construction*.

<u>Helipad Evaluation</u>: A remote heliport evaluation tool was used in the evaluation of the experimental vertiports at XEDW, XVPT, and XX33. The tool used in Figure 2.15 was developed by the Flight Standards branch AFS-400 at the FAA. The tool allows the evaluator to map the helicopter dimensions against the Advisory Circular 150/5390-2C recommendation for safe helicopter operations. The tool allows the evaluator to answer questions about the final approach and takeoff area and its load bearing, marking, and standard helicopter descriptions. The evaluator is responsible for inputting the latitude and longitude of the center of the helipad using a survey-grade field elevation in MSL. Three courses are available to the evaluator for outbound departure use, the NC evaluated 360 degrees from the helipad center point for omnidirectional approach and departure operations. The tool also helps the evaluator determine the minimum touch-down and lift-off (TLOF) area length and width diameter based on the intended aircrafts specific controlling dimensions.

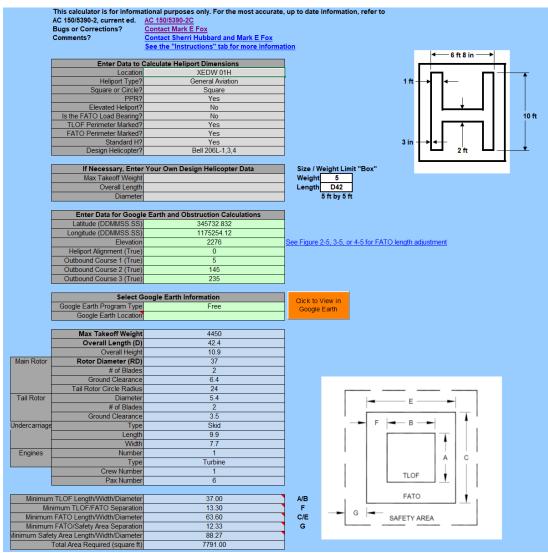


Figure 2.15. XEDW 01H Evaluation Worksheet.

XEDW 01H Helipad Evaluation: The NC team evaluated the surrogate aircraft with conventional criteria that are based on the diameter of the rotor system as well as the length of the fuselage for a traditional helicopter and the controlling dimension of a candidate UAM vehicle that might have wings in lift-pluscruise configuration or multirotor in a quadrotor configuration. Based on the evaluation the 26.2-foot radius of the quadrotor remained within the conventional TLOF as highlighted in the green box in figure 2.15, but the 47.72-foot wingspan of the lift-plus-cruise model could not remain within the TLOF helipad/vertiport highlighted in red in Figure 2.16.

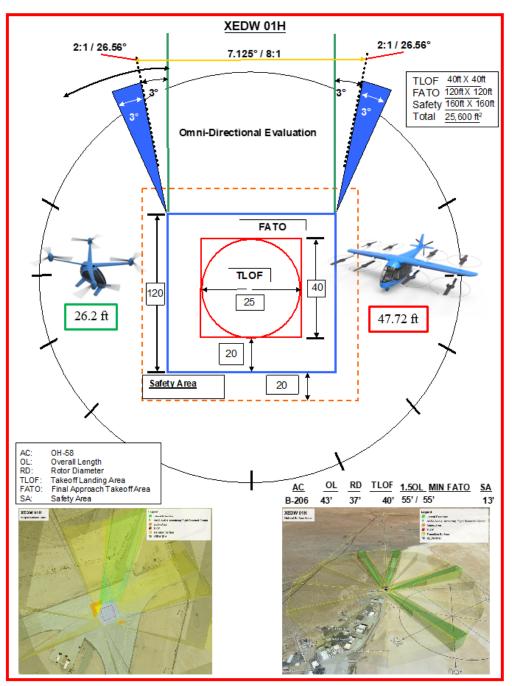


Figure 2.16. XEDW 01H Helipad Evaluation.

Helipad Approach Construction: The omnidirectional assessment of a vertiport is based on the rotor diameter of the aircraft (in this case, the OH-58C helicopter). Considerations for loadbearing and vertical obstructions were taken into account, ensuring the TLOF, Final Approach and Takeoff (FATO) Area, and Safety Area (SA) were free and clear for the NC test to proceed as seen in Figure 2.17.

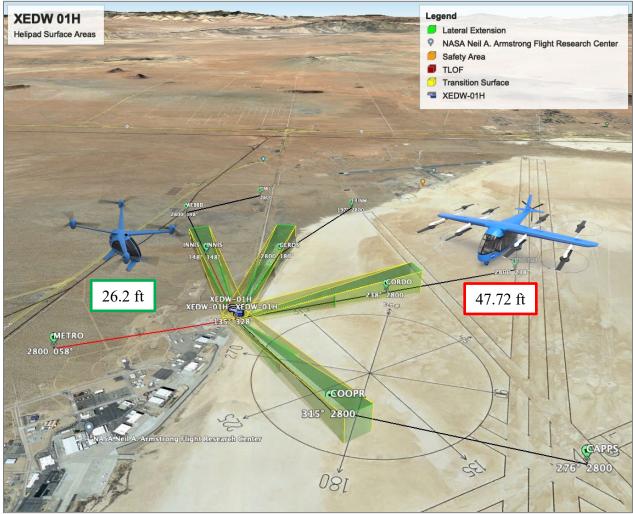


Figure 2.17. XEDW 01H Primary and Secondary Worksheet.

Once the avenues of approach at XEDW 01H were established, Localizer Performance with Vertical Guidance (LPV) splays were built. Figure 2.18 shows a primary area of evaluation (green) and secondary areas (yellow). The primary splay (green) used from each final approach fix inbound was evaluated at an 8:1 slope which equals 7.125 degrees. The secondary area (yellow) was set for a 2:1 slope which equals 26.56 degrees. The rise over run slope of 8:1 is an evaluation of 8 units that were laterally reversed on the inbound course to 1 unit vertically, creating a stair-step or minimum obstacle clearance slope. Per criteria, a penetration in the secondary area is allowed for approach, but on one side only. All final approach fixes were cleared through conventional criteria before the procedures were built and the test conducted.

Document No. AAM-NC-069-001

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

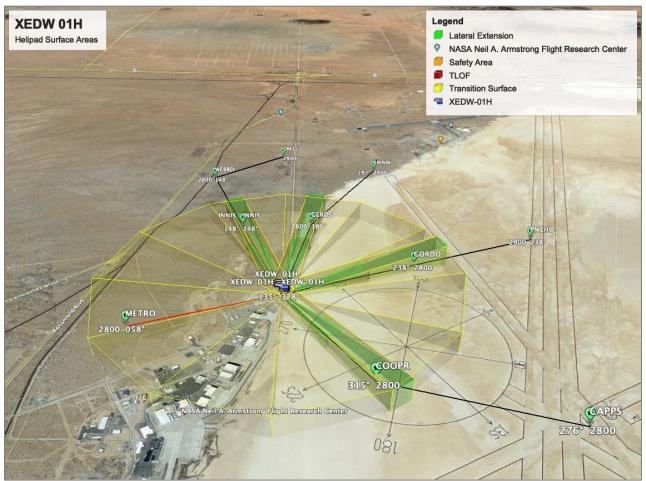


Figure 2.18. XEDW 01H Omnidirectional 8:1/7.125 Degree Assessment.

As part of the experiment, a 360-degree evaluation was conducted using the FAA heliport evaluation tool. The assessment was set at the 9-degree radius and an 8:1 slope was erected around the XEDW 01H center reference point. As depicted in figure 2.18, the omnidirectional assessment was overlaid within the pre-established avenues of approach in green. The purpose of this test was to enable dynamic evaluations given a radius, landing dimension, and required obstacle clearance slope. This process was completed for each and every landing surface for the NC flight tests.

National Campaign experimental landing surfaces XEDW 02H, XEDW 03H, XVPT 04H, XVPT 05H, XVPT RUNWAY 01/19 and XX33 06H are found in Annex 6.3.

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

2.3 Related Work: Precision For Landing Surfaces

New technology for landing surface evaluations within confined airspace of the future exemplified the striving toward precision approaches. Collaboration with FAA-provided related work for the NC Flight Test Infrastructure.

Emerging Lidar Survey Method

03.08.21-03.11.21

The NC partnered with the FAA Flight Program Office (AJF) and Technical Operations (AJW) groups from March 8-11, 2021, at Marina Municipal Airport (KOAR) (Marina, California) to conduct experimental Light Detection and Ranging (LiDAR) surveys to inform the development of novel UAM approach procedures for National Campaign research. The test marked the first of four planned airport surveys utilizing the LiDAR and Photogrammetry serveries. The FAA contract, awarded in October 2020, investigated the feasibility of using LiDAR to expedite the precision approach surveys and controlling obstacle capture which will increase the precision of landing surfaces, terrain, and vertical obstructions from the current 1A (3 feet) tolerance to 2-centimeter precision. The NC team provided the radius and diameter for the proposed descending /decelerating approaches at KOAR, which were then turned into survey traps for small Unmanned Aircraft System (sUAS) flights. The FAA will continue to test three additional airports in the NAS using LiDAR services to augment the traditional Instrument Landing Systems (ILS) and other current precision approach survey methods. The survey marked the first step toward increasing the accuracy of spatial data, which is an essential need for UAM operations and will help enable the execution of precise approach and departure procedures while maintaining safety.

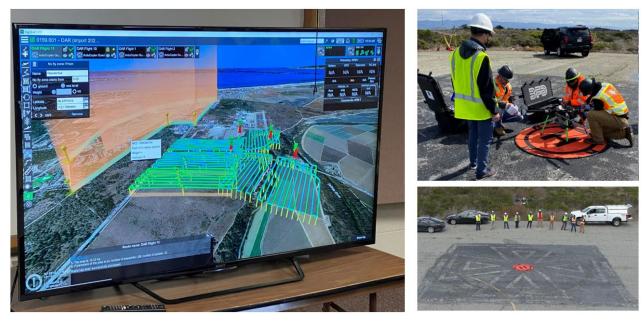


Figure 2.19. LiDAR High-Precision Survey Study.

Document No. AAM-NC-069-001

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

Terrain/Obstacle 3D Surveys

At least two terrain/obstacle 3D surveys were conducted to provide 3D point-cloud data for mapping and instrument procedure development. The partner contractor researched and documented operational approach framework approaches including inspection requirements for the terrain/obstacle survey. The task demonstrated the benefits of LiDAR and photogrammetry for various FAA use-cases.

Figure 2.20. Aerial View Of LiDAR Survey Research Areas.

Survey/Facility #1: The contractor conducted one survey using LiDAR as the primary sensor to acquire a point-cloud data set area of approximately 4 square nautical miles. The survey area was the final approach segment of an instrument approach procedure to a fixed-wing airport. Representative dimensions for the 4 square nautical miles were a trapezoid with dimensions:

a = .6 nautical miles; b = 2 nautical miles; and h = 3 nautical miles. The point-cloud resolution contained at least 1 point per square meter and also included sufficient resolution to represent protruding narrow obstacles such as towers, power lines, and treetops.

Document No. AAM-NC-069-001

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

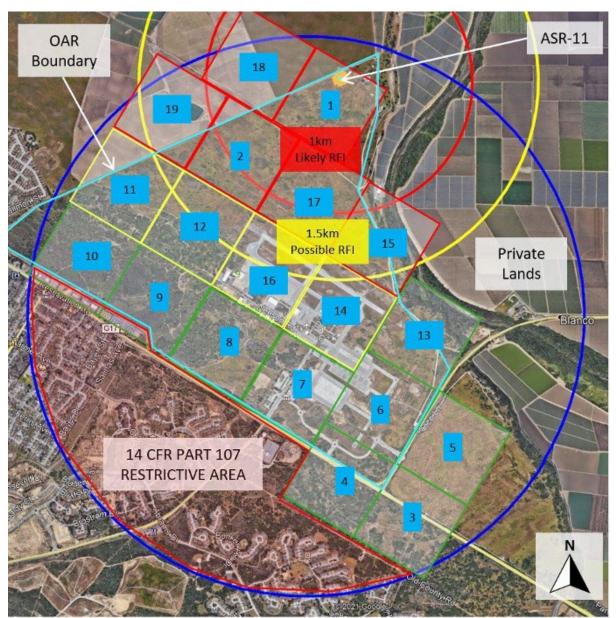


Figure 2.21. Lidar Survey KOAR ASR-11 Radio Frequency Interference (RFI).

Survey/Facility #2: The contractor conducted one survey using photogrammetry as the primary sensor to acquire a point-cloud data set for 4 nm². The survey area is a representative of an AAM environment with buildings, vertiports, and varying obstacles with representative dimensions for the 4 nm² area. The point-cloud resolution contained at least 1 point per m² and also included sufficient resolution to define terrain and obstacles in the immediate vicinity of the vertiport. The survey demonstrated the expected capabilities of photogrammetry to detect narrow obstacles such as towers, power lines, and treetops with respect to Vertical Takeoff and Landing (VTOL) aircraft procedure development.

2.4 Flight Test Infrastructure

In addition to landing surface processes and preparation for safe operations, was developing processes for range assets and instrumentation to enable accurate flight tests with valuable data.

The following topics are discussed in the this section: *Ground Range Assets, Data Systems and Processes* and *Flight Test Data Instrumentation.*

Ground Range Assets:

The NC team developed the necessary ground range instrumentation to enable guidance and atmospheric data Dry Run flight tests: *PLASI Approach Lighting System* and *Mission Control Center Portable Weather Stations.*

PLASI Approach Lighting System

Portable Pulse Light Approach Slope Indicators (PLASIs) provide visual guidance to support simulated IMC approaches to UAM Helipads and UAM Vertiports (all approaches will be flown in visual meteorological conditions) and will be positioned to support varying approach headings. Three PLASIs were procured for the NC Dry Run Flight Test to support the flight test sequence for each research sortie. The PLASIs have been modified to enable research objectives for UAM approach glidepath angle (GPA) guidance from 6 to 12 degrees, in 0.5-degree increments. The PLASI is a ground-installed, self-contained device which, visually provides vertical glide path information which includes: "Above glidepath," "On glidepath," "Slightly Below glidepath," and "Below glidepath" indications. The effective width of the beam was at least 10 degrees and the minimum range (day or night) was at least 2 miles at AFRC. The PLASI shall be located adjacent (left or right) and aligned with the UAM approach path 10 feet outside of the 60-foot radial FATO (70-foot radial distance from the center of the TLOF or intended Landing Spot). The beam angle will be set to the test glidepath angle. This location assures Approach and Departure (obstacle clearance) surfaces specified in the FAA Heliport and Vertiport Design Advisory Circular. With this placement, the PLASI provides vertical guidance on UAM approaches down to 125+/-40 feet above ground level (AGL).

PLASI Guidance for UAM Approaches

Simulated Research AAM instrument approaches were flown in Dry Run in Visual Meteorological Conditions (VMC), at varying GPAs, and under various environmental conditions, in a simulated "urban environment" (9 degrees +/- 2 degrees GPA). Landing zones in proximity of structures, obstacles, and winds representative of the urban environment were evaluated. Pilot cueing was provided by a visual approach aid PLASI and/or via verbal guidance callouts sourced from the FIAPA research Course Deviation Indicator (CDI) and/or other external visual aids. Flight characteristics were measured across a range of GPAs and approach headings under varying wind conditions.

Document No. AAM-NC-069-001

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

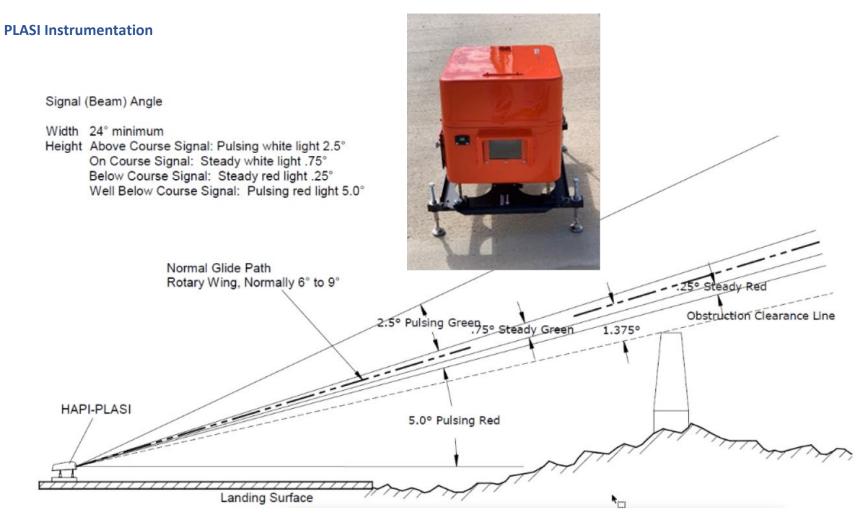


Figure 2.22. PLASI Light Frequency Indications.

Document No. AAM-NC-069-001

Document Name: National Campaign Airspace Operations, Infrastructure and Data

Mission Control Center Portable Weather Stations

The AFRC weather team operates a fleet of surface weather station suites that are customizable to project requirements. The systems measure weather conditions near ground level with the capability to retain and relay measurements at customizable intervals.

Measurement of Surface Weather Conditions

Surface sensors measure temperature, humidity, pressure, wind speed, wind direction, solar radiation, GPS location and time synchronization. The unit includes mounting hardware and cabling (1 set per station). Sensors are required to collect measurements at a minimum of 1-second intervals for post-processed data and at 1 minute to 2 minute intervals for real-time data.

Weather Stations Internal System Data Collection

Data loggers with mounting hardware and cabling (1 set per station) within the internal data systems are required to (1) collect measurements at a minimum of 1-second intervals for post-processed data and at 1-2-minute intervals for real-time data; and (2) store measurements for a minimum of 24 hours.

Weather Stations Equipment Specifications

Weather Stations are powered with a 20W solar panel, charge regulator, 24Ah/12V battery, mounting hardware and cabling (1 set per station). The set up and stabilization of weather sensors utilizes a tripod with leg fasteners (1 set per station); and 25-pound sandbags (at least 5 per station). Weather stations can be communicated with via laptop computer, using software compatible with each data logger, Wi-Fi hotspots, and cabling (1 set per field meteorologist), cellular modems, antennas, mounting hardware, and cabling (1 set per station). Communication with the mission controller is by way of handheld land mobile radio (LMR), post-processed with data distributed via laptop computer, software (with USB drive). Weather stations are transported via customized government vehicle designed to carry portable weather stations.

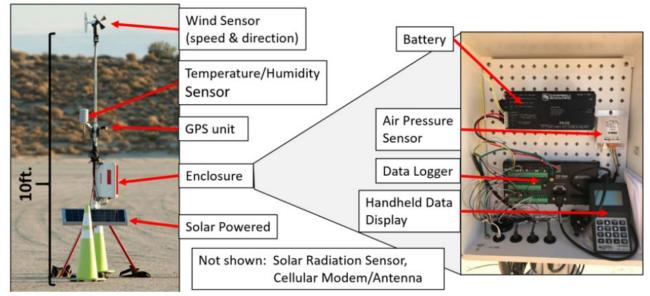
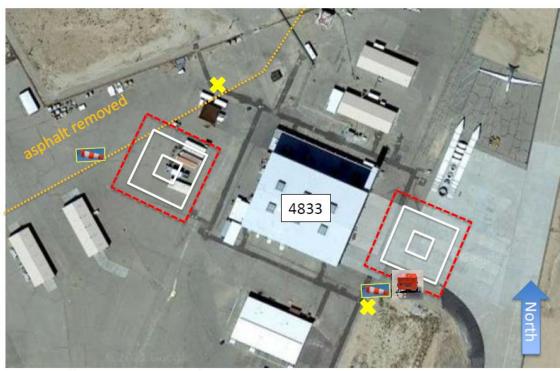


Figure 2.23. Mission Control Center Portable Weather Station Instruments.

Flight Test Infrastructure Ground Assets:

Ground Support Equipment Layout@ Northern Helipad XX33


Figure 2.24. National Campaign Ground Equipment XX33.

Calculated downwash is about 32 knots 25ft below the aircraft, dissipating to 50% roughly 2 rotorspans (70ft) from the vehicle and virtually 0% 4 rotorspans (140ft) away.

All weather stations are at least 100ft away from the edge of the FATO

Ground Support Equipment Layout @ Bldg. 4833 XEDW

03H (West side of 4833) will not be used but the GSE remains in place

Figure 2.25. National Campaign Ground Equipment XEDW.

Calculated downwash is about 32 knots 25ft below the aircraft, dissipating to 50% roughly 2 rotorspans (70ft) from the vehicle and virtually 0% 4 rotorspans (140ft) away.

All weather stations are at least 100ft away from the edge of the FATO

Ground Support Equipment Layout:

Runway 19-01 XVPT

Figure 2.26. National Campaign Ground Equipment XVPT.

Calculated downwash is about 32 knots 25 feet below the aircraft, dissipating to roughly 50%

2 rotor spans (70 ft.) from the vehicle and virtually 0% 4 rotor spans (140 feet) away

All weather stations are at least 100 feet away from the edge of the FATO

Mission Control Center Mobile Mini-SODAR

The AFRC weather team operates a fleet of Sonic Detection and Ranging (SODAR) units, including one mobile unit that was deployed for the NC Dry Run and Developmental Testing activities. The SODAR units measure low-altitude winds using sound pulses that reflect off of density variations in the atmosphere.

Measurement of Wind Conditions Aloft

SODAR unit mounted on accompanying trailer. The system is required to: (1) provide wind speed and direction; and (2) aloft be placed in an appropriate location on the test range per vendor specifications. Placement of the SODAR must be at least the same horizontal distance as its maximum vertical measurement distance from noise and echo sources in order to receive valid wind measurements. Data resolutions for the unit used are 2-minute wind speed and direction between 20 and 250 meters above ground level every 5 minutes.

Equipment Specifications

SODAR has 2 100W solar panels, charge regulator, 3 - 245Ah/12V batteries, mounting hardware, cabling, enclosures for the battery and charge regulator. Data are post-processed via laptop computer, software, formatted USB drive. SODAR is transported via a government vehicle customized to tow the SODAR trailer.

Figure 2.27. National Campaign SoDAR Unit.

Data Systems and Processes:

Airspace, Range, and Vehicle Systems are all within the FTI system-of-systems. Both real-time and postflight interfaces are managed by ATI data services to record, deliver, store, and manage NC flight event data. Three software processes were utilized to collect real-time data during flight test events.

The following topics are discussed in the this section: *Data Systems, Software Processes, Graphical User Interfaces* and *Flight Test Visualizations*.

Data Systems

Data enter through the FTI system via the cloud and other networks for real-time visualization and long-term storage in a secure data repository. The general flow of data below is as follows and shown in Figure 2.28: from the upper left in the vehicle subsystem (purple), down to the range assets on the bottom (green), and to the right through a cloud network (blue). The NC team requires both real-time and post-ops requirements in support of FTI, as indicated by the red and orange ovals. Two-way communication existed between range assets and airspace assets.

Figure 2.28. Flight Test Infrastructure Interface Diagram.

Software Processes

Airspace, Range, and Vehicle Systems are all within the FTI system-of-systems. Both real-time and postflight interfaces are managed by ATI data services to record, deliver, store, and manage NC flight event data.

Three software processes were utilized to collect real-time data during flight test events: Simple UDP Receiver Filter Extractor Router (SURFER), Universal Data Collector (UDC) and XTM Client.

<u>SURFER</u>

One working requirement of the UAM CONOPS (as well as the Unmanned Traffic Management, or UTM, CONOPS), is continuous position reporting during an operation of the aircraft from the operator to the PSU (or UAM Service Supplier provider (USS)). The position reports allow the service supplier to perform conformance monitoring ensuring that the aircraft is conforming to the active Operation Intent. The current working requirement calls for these position reports every one second (1 Hz). The SURFER supports instrumentation like ADS-B. Figure 2.29 illustrates the network configuration utilized for ADS-B data collection. The network configuration involved the ADS-B receiver, a network switch on the AFRC network and the IP address of the ATI 2 laptop in the form of user datagram protocol (UDP) packets which were forwarded to the UDC. Messages persist in SURFER on the ATI 2 laptop.

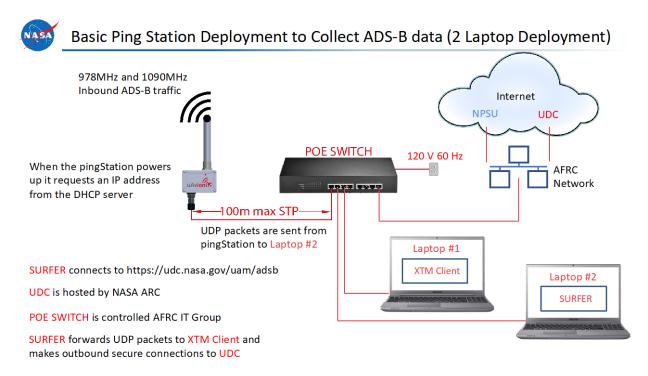


Figure 2.29. PingStation Configuration via SURFER.

UDC (Universal Data Collector)

The UDC enables real-time logging of information received from multiple partners that is relevant to UAM operations, such as messages, positions, surveillance, and airspace volume reservations. If the UDC is registered in a grid cell that a partner USS is using, then it will collect operational data exchanged between any USS within the network in a "listen-only" way.

Real-time ADS-B data were propagated to multiple display clients for live visualizations (e.g.; iUTM; Google Earth; or the Grafana open-source application). For the purpose of the Dry Run Connectivity Test, the pingStation pushed raw UDP packets to SURFER, a secure client, which then forwarded secured UDP packets to the UDC. The UDC then forwarded the ADS-B data to the Data Pipeline which was used by the Grafana dashboard. All data sent to the UDC are persisted on ARC Airspace Operations Lab (AOL) servers.

XTM Client

The Experimental Traffic Management (xTM) Client application is a Web-based User Interface (UI) serving as the gateway between the operator and the NASA Provider of Services for UAM (NPSU). The Client enables the vehicle operator to submit operations to the NPSU and receive as well as display information about the status of the proposed operation. For the purposes of the Dry Run Connectivity Testing, the xTM Client leveraged the NASA PSU (NPSU) to exchange operations, messages, and positions. All data collected from the xTM Client were stored locally on the ATI 1 laptop.

Create / Update Operation	Create / Update Opera	ition	
Data Entry Prefills	GUFI	8d858922-eaaa	defa32a41e58
Use previously used Operation model values to fill all or parts of your form. *Please	Operation Volumes	[["ordinal": 1, "volur	ne_type*: "ABOV",
note: importing a model will overwrite any values currently on form!	Name	Fu-Tai Shih	
No Data	Phone Numbers	123-456-7890	
Json Model Import	Email Addresses	notanemail@notanemail.cor	
Import operation model files. *Please note: importing a model will overwrite any	Contact Comments	extra	
values currently on form!	Operation Start Time	2020-23-07 T 16:47 Z	
{ "gufi": "12345678-5798-45eb-8a7a-2c3fba786b99",	Operation End Time	2020-23-07 T 16:50 Z	
"submit_time": null, "update_time": null,	Tail Number		
"aircraft commente": "vdΩnerator∆ni nost Ωn flinht" Cancel import	UAS Registration ID b1c1841e-7dc3-41)/7-903a-d0c		d0c05618c2da
	UAS Registration	https://utmregistry.arc.nasa.	gov/api/uvins/
Volumes Data File Import Import operation volumes as KML, waypoint files,	Priority Level	Low - 0	
	Priority Status	PUBLIC SAFETY	
riangle Drop file here or click me for file selector dialog	Volume Duration in		
	minutes (if uploading a KML file) Data Collection		
Cancel Import	Event ID	08141195-c62c-45ef-8290-4	
Cancel Submit	Scenario		
	Test Card		
Operations			
[utility] cancel activate close state o LS,	gufi flight_number	submit_time	update_time
	e58 fshih123	2020-07-23T23:46:36.723Z	2020-07-23123:46:3
> 2 cancel vertinate dose CLOSED 414	a1c fshih123	2020-07-22T23:08:44.906Z	2020-07-22123:08:44

Figure 2.30. xTM Client.

Graphical User Interfaces

Two graphical user interface (GUI) components were developed for the NC Dry Run: *Event Marker GUI* and *Flight Test Monitor GUI*.

Event Marker GUI

The NC team developed a SURFER and Flight Event Marker system graphical user interface (GUI). The interface was used to monitor the connectivity and throughput of ADS-B data through the real-time ADS-B network and to enter events as dictated by the OH-58C helicopter crew. The event marker provides valuable metadata to the NC data systems and repositories for useful post-flight retrieval and analysis.

📡 Surfer

Live Stream as of 2021-07-19 14:27:11.238

System Health	
Inbound ADS-B Messages	11575
Inbound ADS-B Timeouts	1078

💇 ICAO Details

ICAC) A1878A
Timestamp	2021-07-19T21:27:10.392Z
Sequence	1454005
Traffic Source	1090ES
Callsign	SKW3413
Squawk Code	1035
Aircraft Type	Large - 75,000 to 300,000 lbs
Latitude	36.732182
Longitude	-121.885952
Altitude	5836920
Heading	33245
Velocity	20217

Active Aircraft

Tracking 35 aircraft over the past 15 seconds. Change ICAO

Click on any ICAO link to start tracking its detailed telemetry.

Tracking detailed telemetry for ICAO A1878A. HTTP Status Code = 200 (Good) ✓

Active ICAO Addresses						
2B02D2	2B0FE0	7805DC	<u>780B34</u>			
<u>8695A4</u>	A01C76	A102B0	A124A0			
A13C43	<u>A1878A</u>	A3DB3E	<u>A40060</u>			

Figure 2.31. SURFER and Build 2 Follow-On Flight Test Event Marker.

💗 Receiver Heartbeat

Н	eartbeat sta	Balked Landing to GA
		Balked Landing to GA - HP
		Balked Landing to GA - VP
		Cntl Resp
	Timestam	Cntl Resp - Heave
	Receiver S	Cntl Resp - Yaw
	Receiver 5	Cntl Resp (Long)
	Latitude	Cntl Resp (Long) - Heave
		Cntl Resp (Long) - Yaw
	Longitude	Critical Azimuth
	Altitude	Critical Azimuth - 90
	Annuae	Critical Azimuth - 135
	Altitude T	Critical Azimuth - 180
		Critical Azimuth - 215
	GPS Statu:	Critical Azimuth - 270
	Version	Decel IGE
	rension	Decel IGE
		Dyn Interface
1111.5	Even	Dyn Interface
23		Dyn Stab
	_	Dyn Stab - Hover - 0
		Dyn Stab - Hover - Heavy Mode
	Event	Dyn Stab - Short Period - 0
	Event	✓ Dyn Stab - Short Period - Heavy Mode
	Stort/Store	Dyn Stab - Short Period Yaw - 0
	Start/Stop	Dyn Stab - Short Period Yaw - Heavy Mode
	Time	Dyn Stab (Long)
		Dyn Stab (Long) - Hover - 0 Dyn Stab (Long) - Hover - 50
	Comment	Dyn Stab (Long) - Hover - 50 Dyn Stab (Long) - Hover - 80
		Dyn Stab (Long) - Hover - Heavy Mode
	Submit E	Dyn Stab (Long) - Short Period - 0
	Submit L	Dyn Stab (Long) - Short Period - 50
F		Dyn Stab (Long) - Short Period - 80
E	nter ADS-B	Dyn Stab (Long) - Short Period - Heavy Mode
S	ubmitted AI	Dyn Stab (Long) - Short Period Yaw - 0
		Dyn Stab (Long) - Short Period Yaw - 50
Н	TTP Statu:	Dyn Stab (Long) - Short Period Yaw - 80
		Dyn Stab (Long) - Short Period Yaw - Heavy Mode
		Dyn Stab (Long) - Long Period - 0
		Dyn Stab (Long) - Long Period - 50
		Dyn Stab (Long) - Long Period - 80
		Dyn Stab (Long) - Long Period - Heavy Mode
		Hover
		Hover - IGE
		Hover - OGE
		Hover - Terminal
		Hover - Precision
		House Turn

Flight Test Monitor GUI

The FTI GUIs were used by ATI personnel during flight tests, including the monitors that were available. The ATI personnel were allocated test-related duties to oversee and monitor the conduct of each test from the range.

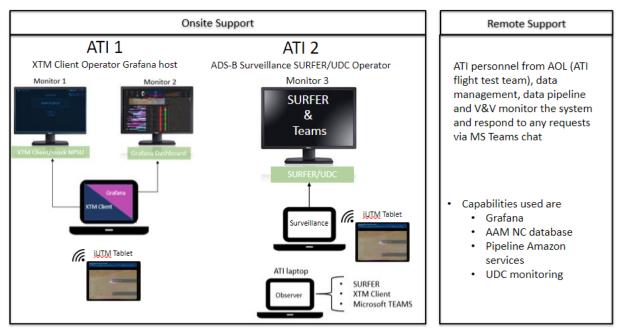


Figure 2.32. Overview of onsite and offsite support and GUI resources.

Flight Test Visualization

The ADS-B data from the OH-58C helicopter that was received by surveillance tools such as the uAvionix pingStation, SURFER, and the UDC were forwarded through the Data Pipeline to data visualization software. Two data visualization tools were used: the Grafana dashboard and the NASA-developed Insight UAS Traffic Management (iUTM) application. Data visualization tools allowed researchers to visually track the flight in real time from remote locations. The Grafana open-source application and iUTM served researchers real-time data visualizations both in the MCC and in the Airspace Operations Lab (AOL). The following Flight Test Visualizations were utilized: *Grafana Dashboard* and *IUTM*.

Grafana Dashboard

The Grafana dashboard is built on a Web-based, open-source platform and is used to create visualization displays for either real-time or historical operational data, 3D displays, or position reports (Figure 2.33). As incoming operational data collected by the UDC are shared through the data pipeline, they appear on the Grafana dashboard in the form of 2D or 3D maps. The dashboards are non-interactive for the front-end user because the framework segregates the data-source layer which manages all data exchanges and back-end operations from the visualization layer.

Figure 2.33. Grafana 3D Visualization Display for Real-Time Tracking.

<u>iUTM</u>

iUTM is a NASA-developed tool used for tracking and displaying multiple aircraft operations simultaneously. The tool hosts an interactive user interface which displays aircraft information such as vehicle type, speed, altitude, and current vehicle location. Real-time data from the UDC are used to provide the underlying data that are displayed in the iUTM user interface.

Figure 2.34. iUTM User Display.

Flight Test Data Services:

The following topics are discussed in the this section: *Data Repositories, Timestamp Synchronization, Fusion and Modeling: Integrated Data Product, Aerograph* and *Data Governance.*

Post-Flight Data Transfer

National Campaign representatives having appropriate NASA credentials transferred data generated by Vehicle and Range domains to an access-controlled Box cloud-storage location. Due to the high volume of post-flight data, each point of contact (POC) was provided with a metadata Comma Separated File

(CSV) file template along with instructions to populate the metadata file associated with each data file. The ATI developers then downloaded this source, raw data, and executed automated scripts to ingest the data and metadata information into the appropriate NC data repositories.

Data Repositories

Several different software resources comprise the AAM NC data repository. The repository consists of Amazon Web Service (AWS) Simple Storage Structure (S3) subsystems (also known as "S3 buckets"); AWS Relational Data Store (RDS) instances; and other NASA internal databases which include state-of-the-art database technologies such as graph and time series databases.

Timestamp Synchronization

Data ingested from disparate data sources that were recorded independently require synchronization to support meaningful output and findings from data. This challenge was addressed by documenting data source availability (real-time versus post-flight), clock synchronization source, and data output format from data source SMEs. Airspace domain data were recorded in Coordinated Universal Time (UTC), and utilized clocks synchronized via Network Time Protocol (NTP). Real-time data were transmitted through the NC ATI system at a granularity within 100 milliseconds. Each post-flight data source was synchronized with the GPS time scale maintained by GPS satellites and provided by atomic clocks in the GPS ground control stations. The GPS times were also normalized to the UTC time stamp standard by Extract, Transform, and Load (ETL) Data adapters when UTC was not available in the raw output. The ETL Data adapters factored in the time difference between GPS and UTC while transforming data records prior to being uploaded to databases. The UTC-GPS offset was tracked and applied. The NC ATI system accepted, preserved, and stored data at the highest level of precision available from the native source.

Time Syncronization Process

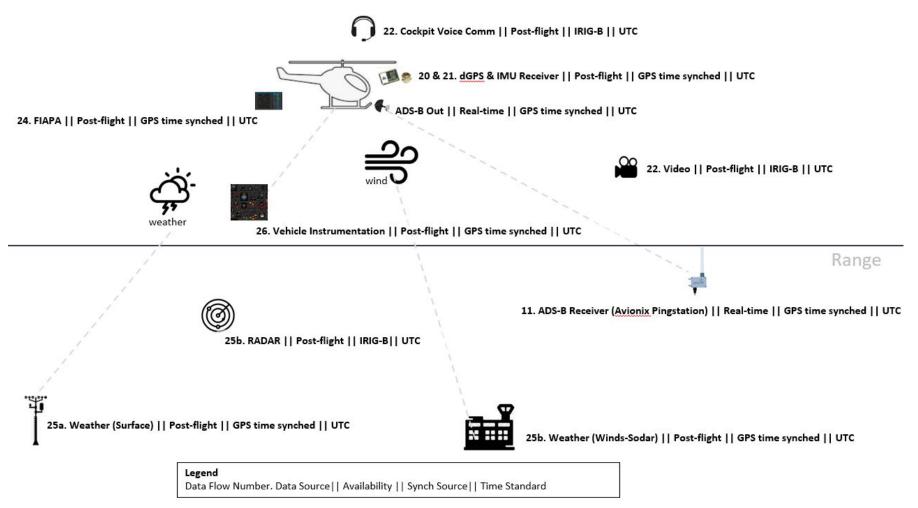


Figure 2.35. Time Synchronization across National Campaign Data Sources.

Fusion and Modeling: Integrated Data Product

Data across various disparate instruments and data rates require processing, cleaning, and synching. The AAM Integrated Data Product (IDP) is a combined dataset that provides a holistic view of an individual flight event sortie. The IDP currently integrates Interactive Authoring and Display Software (IADS), differential global positioning system (DGPS), SODAR, ADS-B Surveillance Broadcast Services Monitor (SBSM), ADS-B pingStation, and Surface Weather data using the IADS timestamp as the base frequency of record (which is approximately 40 Hz or 40 records per second). Other data sources, which report at lower frequencies are left-merged onto IADS using their respective timestamp columns as merge keys and using a "back-filled" value merge, such that the last reported value is duplicated to fill the higher-frequency IADS data. Each IDP file represents one sortie.

To reduce size and assist researchers with relevant data intervals, original SODAR data, which contain wind data up to an altitude of 250 meters at 5-meter intervals, are focused in the IDP so that only the SODAR data for the actual altitude of the aircraft is displayed. Also included are the SODAR data for +-20 meters of the aircraft at 5-meter intervals so that the IDP has the actual altitude-based wind data for aircraft height as well as a little above and a little below the aircraft as long as the aircraft is at or below the 250-meter SODAR height limit.

The IDP also includes several minor feature-engineered columns or modified names, such as converting altitude columns from meters to feet (keeping and labeling both) and horizontal, vertical, and slant distances of the aircraft to the 01H vertiport and to the SODAR instrument.

The generation of the IDP yields a dataset file in both CSV and in Apache Parquet open-source file formats, as well as "cleaned" versions of the input data sources (IADS, DGPS, and SODAR).

To complement the IDP, ATI personnel developed an AAM IDP data dictionary which defines each field of the integrated data set.

The NC IDP is undergoing refinement to standardize attribute names across data instrumentation to account for different NC overarching goals that will become different foci across future flight events, and support differences in vehicle partners and instrumentation across upcoming NC-1 activities. The new IDP will also flex and shrink to customize various partner systems. Additionally, the new IDP will likely be processed with a null-fill technique whereby lower frequency data are reported at the actual time of reception and null, or blank, against higher frequencies.

Knowledge Graph System

Aerograph is the NASA official data management system for the NC. The primary purpose behind Aerograph is to support AAM research by providing a reliable and secure data management system that collects, stores, protects, and shares NC data. The overarching goal is to provide a system that AAM research scientists, aerospace engineers, data scientists, and analysts trust for obtaining NC data and performing key analyses.

An intuitive Aerograph User Interface provides qualified aerospace engineers, analysts, scientists, researchers, and other SMEs with secure access to raw and processed flight test data, as well as automated reports that share data views, figures, and charts. Automated reports help fulfill a NC goal to provide repeatable views and metrics across flight tests.

Data Governance

Data Governance is a framework of principles and processes that ensure the secure management of proprietary AAM NC data from NASA and external partners. Dry Run data were managed as a business asset, and formal accountability was established. Data quality was defined and managed consistently across the life cycle of data, in compliance with Findability, Accessibility, Interoperability, and Reuse (FAIR) principles. In addition to the official records maintained by the NASA Asset Management System (NAMS), the Data Management Team documented data sharing on the Confluence™ Collaboration Tool (Atlassian, Sydney, Australia). These records also included low-level decisions that did not impact governance policy or the NC project as a whole. Higher-level data-sharing decisions were brought up by the Data Management Team through AAM NC Management, Agency (NASA, the FAA, et cetera), Aeronautics Research Mission Directorate, Center Boards, other Boards (Security Management, Applications, Cloud, et cetera) and the NASA Data Governance Board (DGB) as appropriate.

Data governance policies allow NASA-badged personnel and external partners with NAMS-approved access privileges to view integrated data and utilize any tools or software necessary to analyze the data. User-specific access to data was granted to qualified individuals and organizations to the extent possible and when appropriate. Prior to gaining access, users consented to governance requirements and detailed audit trails of downloads with no expectation of privacy. Organizations desiring data access were required to maintain a chain-of-custody log prior to NAMS approval for new users. Data were released as needed from the data partners to the parties needing the information to conduct the NC planning and testing. Credentials were not to be shared (were for individual use only). Copies of the data – whether complete, partial, original, or transformed – were only to be transferred to individuals who consented to the data-sharing agreement. In addition to maintaining records of parties that received copies, the data-sharing agreement required users to track and preserve the versioning information provided to them and others (e.g., the date or the version number, or both, were embedded in file names).

In future builds, the Aerograph system is expected to provide a GUI to manage access and sharing of data. This approach would introduce an intuitive Web client with multi-faceted data access capabilities and role-based, secure access for NAMS-approved users. The GUI shall be suited for a variety of user experience levels, and an application programming interface (API) will also be available for Machine-to-Machine secure access for advanced users.

Aerograph Features	
FEATURE	DESCRIPTION
 Data Governance: NAMS Approval NASA Launchpad (SAML 2.0) Authentication Role-based Access Control/Authorization 	 AAM NC data must be carefully protected to ensure access is limited to only those formally approved by the program. Candidate Aerograph users must have a NASA identity and be a U.S. citizen Candidate Aerograph users must submit an official NAMS request. This NAMS request then proceeds through a NASA workflow where the requester is vetted and approved for Aerograph access. Aerograph authenticates users using NASA Launchpad identity (SAML 2.0) Authentication (NASA personnel that have not been approved in the previous will not be allowed to log in) Aerograph authorizes users via Role Based Access Control (RBAC). RBAC is another security layer atop authentication where users are assigned to roles with various privileges. Before allowing users to access certain data, Aerograph vets the user's role against allowable roles for the data.

Document No. AAM-NC-069-001

Document Name: National Campaign Airspace Operations, Infrastructure and Data

Raw and Processed Data:ViewingDownloading	• Aerograph allows qualified users to view and download both raw and processed data. Raw data may include files such as an unprocessed differential GPS data file (DGPS) or an unprocessed IADS data file. Aerograph will serve these files to the user in much the same structure as they are received from the data source manager. Processed data include custom data tables and data frames that the ATI team designed to facilitate AAM NC research and analysis. This includes files such as the Integrated Data Product (IDP). The capability to view and download data will depend on the user's privileges as specified by assigned groups and roles. Some users will only be able to view data, whereas other users will be able to view and download data. Depending on the data provenance (e.g., DT flight test data), some users will not be able to view or download data.
Flight Test Reports:ViewingDownloading	• Aerograph will automatically generate flight test reports with various tables, figures, charts, and other data views to characterize and explain flight test data. The goal is to generate these reports as soon as possible after a day of flight testing, providing key stakeholders with a common and standard view of data and metrics. The capability to view and download these reports will likewise depend on the user's privileges as specified by assigned groups and roles.

Knowledge Graph System

Aerograph		× +							- C	3
$\leftarrow \rightarrow$ C \triangle (i) localhost:3000								* 🏨 🛱 🗯 🚯		
		Aerogra	oh National Knowledg	Campaign Je Graph Syste	em					
Entity		Mission Function: Separation Physical Function: Airborne Separation							Event	
Airspace Atmosph Crew Heliport Partner Range Vehicle Vertiport	neric ¢	Airspace X-3 Amount of flight Mission Functio X3-METRIC Airspace X-3 Number of oper Mission Functio X3-METRIC Airspace X-3	 Scenario 2 time with loss of well on: Separation Physic Scenario 2 Scenario 2 ations that submit updations th	al Function: Airborne ated operation volum /sical Function: Airsp:	Separation es which contain u ace Volumes	pdated route waypoints		Scenario 1 Scenario 2 Scenario 3	Build-un	2
		Number of oper	ations with active volu	mes outside of LIAM.A	wrspace and with	X3-METRIC-10 X	X3-METRIC-4 X	۹		
Metric Name	Metric Total	Metric Part	Partner Name	Scenario ID	Test ID	Call Sign	Description	Flight Type	Start Time	
X3-METRIC-10	64	501	Partner A	0	event X3	dc4-4ace-8e69- f3d190ba78e3	desc 87c-4884-a81c- af82f606324c	Simulated	2020-07- 20T16:34:93	
K3-METRIC-10	64	501	Partner A	0	event X3	dc4-4ace-8e69- f3d190ba78e3	desc 87c-4884-a81c- af82f606324c	Simulated	2020-07- 20T16:34:93	
3-METRIC-4	64	501	Partner A	0	event X3	dc4-4ace-8e69- f3d190ba78e3	desc 87c-4884-a81c- af82f606324c	Simulated	2020-07- 20T16:34:93	
3-METRIC-4	64	501	Partner A	0	event X3	dc4-4ace-8e69- f3d190ba78e3	desc 87c-4884-a81c- af82f606324c	Simulated	2020-07- 20T16:34:93	1

Figure 2.37. Aerograph Prototype for Access to Data Services.

Flight Test Data Instrumentation

Instrumentation

The NC team provisioned instrumentation that covers data found within each aspect of operations. Data instrumentation covers flight surveillance, vehicle sensors (power, control, energy, status, position, rates, and acceleration), flight inspection software, time synchronization across instruments, differential Global Positioning System reference (DGPS), inertial data, weather via atmospheric condition instrumentation, acoustics evaluation equipment, and range safety and recording instruments. Data are expected to expand in great volume as research expands to sensor data on vehicles and airspace technologies in NC-1.

Data Instrument	Data Attribute Types	Data Instrument	Data Attribute Types	Data Instrument	Data Attribute Types
FAA ADS-B & Pingstation ADS-B	Signal Integrity Velocities Engage Settings Position	Differential-GPS & IMU	Signal Integrity Velocities Position Attitude & Rates	(NPSU) NASA Provider of Services for UAM	Exchange Messaging Exchange Timing Trajectory Monitoring Communication Protocols Discovery Services Authorization
Vehicle Sensors	Power Parameters Collective Positioning Energy Management Motor & Rotor Status Pressure Status Attitude & Rates Acceleration	SODAR, Radar & Surface Weather Stations	Temperature Solar Radiation Air Pressure Relative Humidity Wind Speed Wind Gusts Wind Direction	Data Instrument SBSM ADS-B Pingstation ADS-B Vehicle Sensors FIAPA d-GPS	Data Columns 6-B 0395 6-B 0033 ors 0030 PA ~49
FAA Flight Inspection (FIAPA)	Position Tolerance Flight Technical Error ARINC Experimental Route Coding	در المراجع الم	Microphone Arrays Acoustic System Acoustic Weather	IMU Radar SODAR Weather Stations Acoustics	0025 0033 1127 0007 ~20
Synchronized Time	Stored as Coordinated Universal Time (UTC)	Reports & Recordings	Observations Test Cards Flight Reports Voice Communications Terminal Video	X3 NPSU Metrics TOTAL	0036 +/- 1750 Attributes Range, Weather & Acoustics Team

Figure 2.38. National Campaign Collections of Data.

The following topics are discussed in the this section: *Interactive Authoring Display Software, ADS-B SBSM, Real-Time ADS-B Pingstation, Portable Real-Time ADS-B Pingstation, Video, Audio, Radar, Flight Inspection Airborne Processor Application, dGPS & IMU and Test Cards & Dance Cards.*

Interactive Authoring Display Software

The OH-58C helicopter was equipped with an instrumentation system that sent real-time telemetry data to a server connected to the IADS, which allowed for monitoring of most onboard instrumentation sensors from a display client located in the control room (NC Build 2 Control Room Plan). An instrumentation technician from FRI converted the flight recorder data collected from the front-end system (Omega 3000 series) to .csv format, with output timestamps conformant to GPS syncing requirements. Following post-processing, the exported data were transmitted to the NC Range representative responsible for uploading to the internal NASA Box cloud for post-flight consumption.

Parameter	Range	Units
Airspeed	0 to 120	KIAS
Altitude	0 to 20,000	ft
N ₁	0 to 100	%
N _R (Rotor RPM)	0 to 100	%
φ, Roll	+/-80	0
Θ, Pitch Attitude	+/-90	0
Ψ, Heading	0 to 360	۰
P, Roll Rate	+/-50	°/s
Q, Pitch Rate	+/-50	°/s
R, Yaw Rate	+/-50	°/s
Nx, fwd accel	+/-8	g
Ny, side accel	+/-8	g
Nz, normal accel	+/-8	g
Static Pressure	0 to 15	PSI
Dynamic Pressure	+/-2	PSI
Collective Control		
Position	0 to 100	%
Lateral Control Position	0 to 100	%
Longitudinal Position	0 to 100	%
Directional Control		
Position	0 to 100	%
Throttle Position	0 to 100	%
Torque	0 to 100	%
β, sideslip	+/-90	0
OAT	0 to 100	°C

Table 2.39. Surrogate Vehicle Interactive Authoring Display Software Attributes and Parameters

ADS-B SBSM

The FAA shared a secondary, post-flight source of ADS-B data leveraging SBSM system, which is a constellation of ADS-B receivers that provide sweeping coverage of the NAS in order to collect time, space, and position information (TSPI) for surveillance and signal quality checks for the flight events.

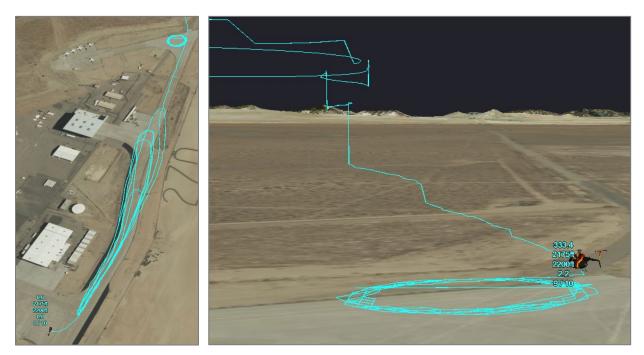


Figure 2.40. ADS-B SBSM track for pirouette and approach maneuvers.

Real-Time ADS-B Pingstation

Real-time position information for the surrogate vehicle was collected via the NASA ADS-B pingStation. The xTM Client collected position messages for the specific flight used in the test by filtering for ICAO address. The SURFER and the UDC collected ADS-B messages and latency metrics for all incoming messages from the pingStation, as well as Operation messages produced by the xTM Client. The pingStation was configured to send ADS-B data to the IP address of the ATI 2 laptop in the form of UDP packets. Though the pingStation may receive any ADS-B broadcast within range, the receiver was configured to filter out aircraft beyond a specified radius and altitude threshold to focus on aircraft within a reasonable proximity to the vehicle of interest (the OH-58C helicopter surrogate vehicle). The laptop ran the SURFER application to receive data as UDP packets, secure them, and forward them to the UDC. The UDC enabled the real-time logging of information received from multiple partners that is relevant to UAM operations, such as Operation and Vehicle Telemetry. Real-time ADS-B data were propagated to multiple display clients for live visualizations (e.g.; iUTM; Google Earth; or the Grafana open-source application) and forwarded to the Data Pipeline. All ADS-B messages were persisted in SURFER and stored on the ATI 2 laptop. All remaining data sources in this report were collected post-flight.

Portable Real-Time ADS-B Pingstation

A post-flight portable ADS-B receiver was deployed in Build 2 Follow-on Flight Test (11.02.21 and 12.06.21) to investigate if a strategically located receiver could compensate for coverage gaps. The new portable system successfully covered a majority of the existing pingStation ADS-B signal shortcomings and yielded 794 additional unique TSPI messages for the target vehicle (see the red in Figure 2.41).

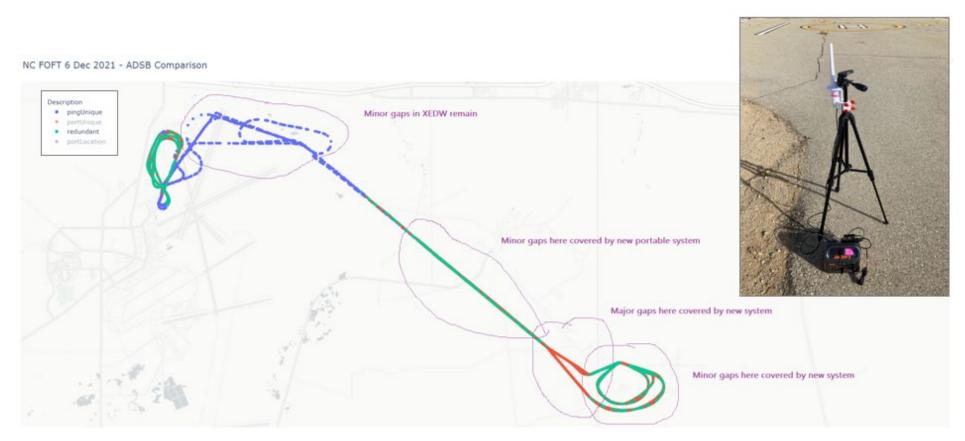


Figure 2.41. Portable PingStation ADS-B rectifies previous signal deficiencies in red.

<u>Video</u>

Videos of the Build 2 Flight Test were recorded from two perspectives within the standard Dryden Aeronautical Test Range (DATR) network. Ramp camera recordings captured aircrew step, takeoff, and landing on the taxiway. Airborne mission testing was captured by the Long Range Optics (LRO) camera. Following post-production by Armstrong TV after each flight, the Range Control Officer (RCO) transmitted the data to the NC Range POC responsible for uploading to the internal NASA Box cloud. National Campaign personnel processed the video for aircraft tracking purposes, event monitoring, anomaly detection, approach stability analysis, situational analysis, and playback of recorded incidents along with analysis and evidence capture.

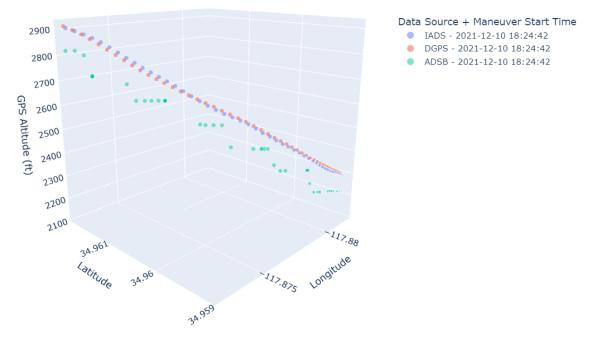
<u>Audio</u>

Flight audio data consisted of air-to-ground and ground-to-ground communications across continuous, two-way ultra-high frequency (UHF) and very-high frequency (VHF) radio frequencies. Audio files included interactions between active mission participants (primary source) as well as operations personnel. Participants include the pilot, the FTE, and mission control. NASA recorded audio from the MCC located on the third floor of Building 4800 at AFRC. The interactions of each channel were output in .wav format onto a DVD, with each file labeled by circuit name. After each flight, the RCO transferred the audio data to the NC Range POC responsible for uploading to the internal NASA Box cloud. The ATI team actively investigated the application of speech-to-text software products and, depending on the translation success, the application of Natural Language Processing (NLP) technologies.

<u>Radar</u>

C-band Beacon tracking downlinked vehicle position information to Range radar station and the Mission Controller (MC) display using the standard DATR network. Raw data from the C-band Beacon were exported to .rdf and space delimited .txt formats using the Radar Information Processing System (RIPS). Upon exportation, the RCO transmitted the files to the NC Range POC responsible for uploading to the internal NASA Box cloud.

Flight Inspection Airborne Processor Application


The FAA Flight Check team provisioned the FIAPA. Developed at the Mike Monroney Aeronautical Center (Oklahoma City, Oklahoma) the FIAPA software is designed to measure coded path deviations for AAM (or surrogate) vehicles during NC flight events. The FIAPA software ingests FAA AirNav and ARINC 424 data via an antenna affixed to the AAM vehicle for centerline accuracy over landing. The FIAPA Trimble Yuma-7 tablet was secured onboard the vehicle (glare shield) for Build 2, with a geometry for the antenna of 4 feet 4 inches vertical; forward 2 feet, 8 inches; and right 2 feet 8 inches from the reference point. The tablet uses a Trimble EM-100 GNSS module for submeter accuracy using an EM-100 sensor module, Satellite Based Augmentation System (SBAS) Wide Area Augmentation System (WAAS) and Trimble processing techniques to check the consistency of spatial data correctness with respect to the marked vertipad. Data were collected from GPSs with Satellite Based Augmentation System (SBAS) monitoring with a +/-1 meter accuracy threshold. Once FIAPA data were validated post-flight using playback configuration software residing on FAA Flight Program computers, they were then securely transferred from an FAA representative to the data management team for upload to the NC repositories.

dGPS & IMU

The integrated DGPS and inertial measurement unit (IMU) system data were collected from a NovAtel PwrPak7-E1[®] (NovAtel Inc., Alberta, Canada) rover equipped with an Epson G320N (Epson Seiko Corporation, Nagano, Japan) micro-electromechanic system (MEMS) IMU onboard the flight vehicle. Measurements included the force, angular rate, and attitude (roll, pitch, and yaw) of the aircraft through a combination of accelerometers and gyroscopes. Timestamps in the data output were GPS

synchronized. Following flights, bits (information/data) requests were submitted to enable AFRC Code 620 to receive electronically transmitted data from the rover and third-floor base station in order to post-process it using inertial explorer. Upon completion, Code 620 returned the post-processed data to the NC Range representative responsible for uploading it to the internal NASA Box cloud.

The NC DGPS and IMU units serve as a secondary source of information and validation for vehicle sensors and instruments. Additionally, the post-flight data provide a secondary surveillance for the flight tests. Data Services team used the various instruments to compare results and troubleshoot.

Track Overlay Altitude - 20211210 - 2021-12-10-sortie-1-a5.2-approach-to-faf-wheel-6-20211210182442

Figure 2.42. Track Overlay: altitude for an approach on December 10, 2021, observing synchronicity and offset between instruments (dGPS in red, new PingStation unit in green, vehicle data in purple).

Test Cards & Dance Cards

The NC Dance Cards provide daily sortie flight plans and serve as a tool to the range and flight crews to sequence the flight event and coordinate supporting activities. The NC Test Cards provide detailed information to the flight crew for each test or Airspace Procedure tested. The example cards in Figure 2.43 provide test maneuvers to a Precision Final Approach Fix utilizing a novel UAM wheel procedure, as a baseline for future UAM flight events, to test the controllability and passenger comfort with the surrogate vehicle for the approach maneuvers.

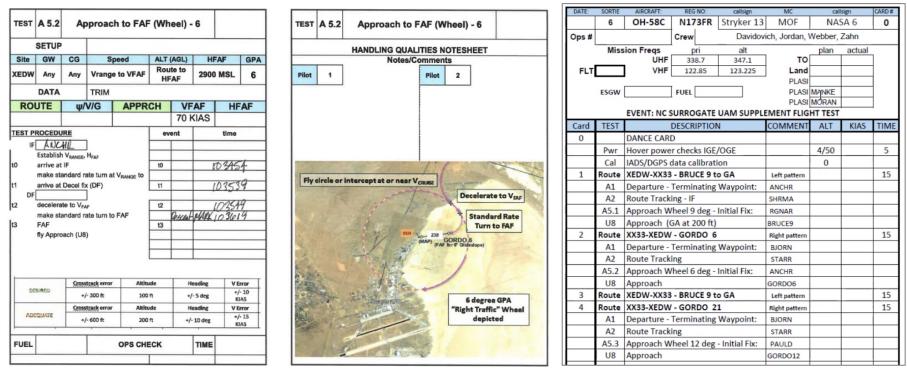


Figure 2.43. National Campaign Flight Test Cards (left and center) and Dance Card (right).

Document Name: National Campaign Airspace Operations, Infrastructure and Data

Key Flight Test Data Integration Developments

Through iterative development, key enablers to FTI were developed through Flight Test Data Integration:

Table 2.44. Key Flight Test Infrastructure Developments.

Key Flight Test I	Infrastructure Developmer	ıts	
ASSET	SIGNIFICANCE	DEVELOPMENTAL ITERATIONS	LAUNCH POINT
Grafana	Eliminated potential blockers to view NC flights in real time and remotely	Developers reduced screen size compatibility from full-scale wall size to laptops for mobility and just in time for COVID-induced workplace limitations	Expansion of role Grafana plays with flight following to include Flight Errors and off- nominal flags for advanced analyses
Event Marker	Enabled well-defined data for post-flight analyses	Developers created a tool and methodology to improve metadata, tagging and analyses	Foundational to future development of automated phase of flight classification and associated metrics
Auto Glide Path Angle Finder	Enabled automated recognition of approaches and associated glide path angles	Developers corrected errors of closely-spaced intended landing surfaces	Improved glide path angle analyses will potentially play a role in Flyability and Go- Around procedures in urban environments
ADS-B	Enabled ADS-B reliability for comparative metrics against FAA surveillance	Comparative analysis identified dropouts in the Dry Run range requiring a new receiver	Low level operations are expected to experience poor FAA ADS-B surveillance
	Improved message reliability	Introduced additional portable system to address deficiencies	Reliable system for vehicle surveillance
Data Security and Governance	Assured permissioned access only	Security Officers reconstructed BOX hierarchies to manage growing complexities and permissions with incoming partner data	Trusted partnerships will enable valuable data for NC and relevant findings for the FAA
Metadata	Improved post-flight data storage and access	Great care was taken to optimize NC metadata	Enables sortable, identifiable access and analysis
Automated Data Product Generation	Provide data products, views, and metrics for easy user access	As standard data products are developed, a script runs against fused data and metadata to produce plots	Enable analysts to focus on new and novel research
Integrated Data Product	Provides a standardized platform for analyses	Data fusion is applied while data synchronization is verified	IDP underwent standardization to apply across various domains and research partners
Real-time and post-flight data ETL	Data are cleaned and available for use via Extract, Transform and Load processes	Timestamp and frequency synchronization of disparate data sources completed and verified for end-user	New data can be applied as research complexity grows
Aerograph	Data Managements System encompassing all ARMD data	Developed for roles, governance, raw and processed, store metrics, IDP and products	Scalable to store and access data across the ARMD projects

3 FLIGHT TEST DATA

3.1 Flight Test Operations Data

Flight test vehicles will be tracked and assessed across key domains of operational integration. Data are to be measured across flight operational domains including Vehicle, Obstacles, Weather, and PSU to support each Flight Path execution of each event Flight Plan; see Figure 3.1. The NC System of Systems approach aims to evaluate each component of flight and the necessary technologies, responsibilities, and interactions of each domain of the operation to ensure safe operations under maturation of autonomy.

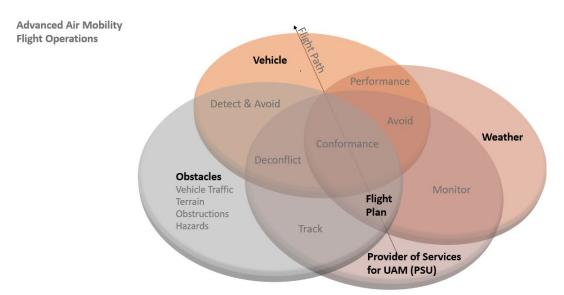


Figure 3.1. Advanced Air Mobility Flight Test Infrastructure and Data Service Overview.

Provider of Services for UAM: To address capabilities toward the PSU functions of the future, the NC ran Dry Run MOF V&V Testing for readiness to test components and capabilities of iterative development. The NC team will test various aspects of PSU possibilities in NC-1 series surrogate flights.

<u>Obstacles</u>: Data are measured against obstacle evaluations, Minimum Enroute Altitudes (MEA) and required obstacle clearance (ROC), terrain (Example Flight Level Engineering (FLE) Study), Hazards (NPSU Studies) and other vehicle traffic (injected through ATI and/or X-4 Airspace Mangement Architecture

<u>Vehicle</u>: The performance and flight characteristics of the target vehicle are the key focus for the NC and for desired data across the FAA. The NC-1 will begin to explore conformance to novel approaches and other terminal procedures. Some NC-1 projects will begin to research future DAA and deconfliction via automation.

<u>Flight Plan and Flight Path</u>: Flight track and surveillance is data under collection across flight activities to include flight tests and simulation. Additional features of flight plan will be assessed in NC-1 to include battery, temperature and other parameters.

<u>Weather</u>: National Campaign weather was captured to identify the impact of winds and other atmospheric measurements against vehicle performance. The NC team consulted with MCC Meteorologists before each flight as protocol but especially required the SME expertise to identify opportune flight days for specific weather conditions and limits specifically needed for Build 2 Follow-on Flight Test such as Dynamic Interface tests such as wind drafts shown in Figure 3.2.

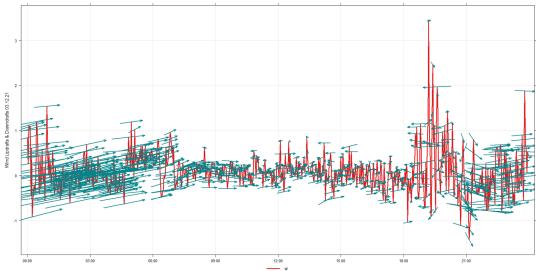


Figure 3.2. Wind Drafts meters/second with direction indicated by arrow.

Obstacles: Data against obstacle evaluations, MEA and ROC is evaluated such as the Infrastrucutre developed for Dry Run and prior to all future flight tests.

Research Priorities

Early NC series test events such as Dry Run Familiarization flight events were focused on answering a foundational set of research questions and topics utilizing a subset of related Data Elements and metrics as seen in Figure 3.3. As early research questions are baselined and characterized, the next complexity of any given focus will be expanded in the next round of testing.

First Priorities		Estimated Flight Performance	Focus
	Vehicle Performance Plan	Other -	
		Flight Procedures	Flight Procedures
hicle Performance	Vehicle Performance Verification	Actual Flight Performance	Flight Performance
		Force Rates Control Vehicle Health Navigation Business Case Requirements Terminal Procedures	
	Flight Plan	Contingencies	Contingencies
		Schedules	
Flight Plan	Flight Plan Conformance	Updates Time Geolocation Position Distance Velocity	
Safety	Continued Operational Safety Monitor	Performance Errors Obstacle Avoidance Detect & Avoid Degraded Performance	Performance Errors
		Off-Nominal Report Acutal Flight Performance Communication	Communication
	Airspace Integration Plan	Separation	Separation
rspace Integration	Airspace Integration Performance	Sequencing Operational Volumes Message Latency Other Data Providers Security	
Infrastructure	Infrastructure Design	Information Integrity Maintenance Weather Stations Verticort	Weather
	Infrastructure Performance	Downwash	Credits: NC Data Team
	Certification Planning	Vehicle — Passenger Cabin Safety — Minfastructure — Automation Systemes — Aitspac Operations — Manufacturing — Regulations — Regulations —	NASA C

Figure 3.3 . National Campaign Early Data Priorities

Data Dependencies

Within the purview of the Data Elements portfolio and the developmental rollout of UAM Maturity Level for associated metrics, the NC Data team tracked categories of relationships and associations across the ecosystem in Figure 3.4.. As NC-1 develops and expands, the web of information, metrics and relationships will continue to evolve into a complex matrix of interdependences that will be ported into the MagicDraw Software Modeling Tool (Dassault Systemes, Velizy-Villacoublay, France) with System Engineering. This tracking inately develops a traceable approach to safety processes and data dependencies that could potentially benefit the FAA as AAM is operationalized.

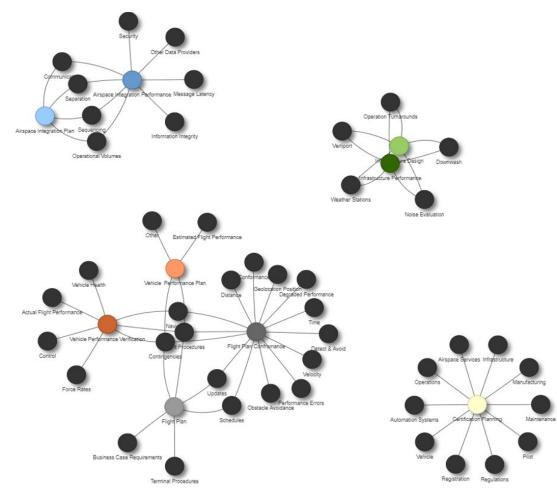


Figure 3.4. Graphical Representation of Early National Campaign Foci Associations.

Approach to Gaps

Gaps in technology or processes that are not accounted for are actively being identified and addressed through NC mini-white papers. The activity endeavors to enable further engagement starting at the National Campaign Working Group Focal level for each appropriate Line of Business or Staff Office and the integration offices of the FAA UAS Integration Office (AUS). The National Campaign team is identifying, tracking, and researching areas of opportunity that relate to current regulations and how research activities relate back to current operations and standards as well as identifying, tracking, and researching areas of opportunity that relate to a so Figure 3.5.

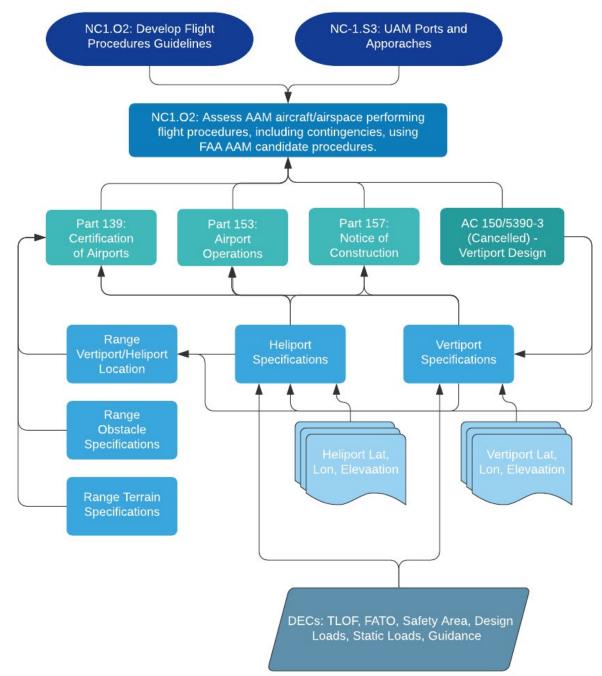


Figure 3.5. National Campaign Decomposition for Vertiport Considerations.

Research Plans & Technological Gaps

The National Campaign team endeavors to capture comprehensive details in mini-white papers or summary documents for each gap explored throughout the NC series. The NC team is managing a Gap Portfolio in an attempt to unpack the problems, including applicable standards, current state, new challenges, and shortfall for existing standards, related NC test objectives at general and specific levels, and future work remaining toward testing or data still needed. The intent then is to invoke the information (the connections to standards gaps) directly in NC test planning resulting in clear, traceable test objectives. Key details are captured around how current standards may be insufficient for AAM and why, then establish the potential ways in which NC tests and data may be able to contribute to the gap resolution as demonstrated in Figure 3.6. The NC gap analysis goal is to map, align, and trace NC testing to needed steps to resolve specific standards or technology gaps.

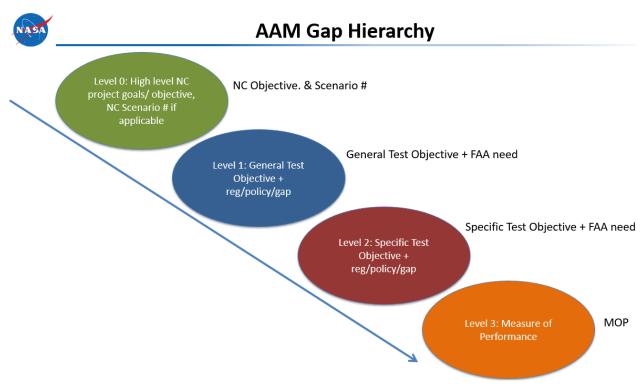


Figure 3.6. National Campaign Advanced Air Mobility Gap Hierarchy.

Gap Whitepapers

National Campaign gap mini-white papers decompose and describe all NC test activities and related standards gaps. Specifically, each white paper, sampled in Table 3.7, strives to capture the context and key details of each gap; describe the current state; break down related regulations, policies, or standards; describe the new AAM challenges, such as how or why the existing standards are insufficient; and then expand into how the gap can be resolved: how to get from the current to the desired future state and how the NC test efforts relate. Additionally, the work captures who will benefit from the testing, who are the customers for the data, and how or why the test results will add value. The NC team is developing the hierarchy and utilizing Magic Draw software (under development) to capture the decomposition from high-level NC objectives down to specific test points and data measures.

Table 3.7. Subset of National Campaign Tier 3 Gap Snapshot.

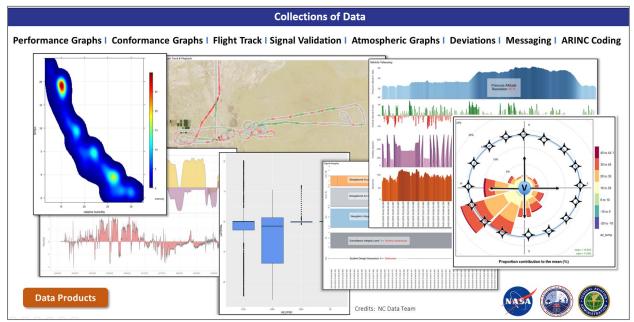
NC Gap Analysis

TIER 3 GAP SUBJECTS FOR FUTURE GAP WHITEPAPERS

Evaluate VHF/UHF coverage in urban areas with comparison to computer ElectroMagnetic (EM) modeling

Improve Global Navigation Satellite System (GNSS) interference locating

Determine latency requirements for surveillance solutions


Determine required ARINC 424 standard support AAM UML4

Evaluate integrity of RTK corrections as a GPS augmentation service

Evaluate draft mission task element performance metrics (desire/adequate criteria) for handling quality evaluations for compliance to the applicable airport certification controllability requirement (23.2135, related VTOL special condition, EASA VTOL 2135, et cetera) and other additional rules.

Findings and Results

The NC flight event generated data are available to permissioned users. The NASA researchers and FAA Lines of Business or Staff Offices have opportunity to acquire the data that are processed and integrated for specialized analyses. Additionally, a portfolio of data products is created by NC Data Services that cover Performance Graphs, Conformance Graphs, Flight Track, Signal Validation, Atmospheric Graphs, Deviation metrics, Messaging and ARINC Coding. Products and coding continue to develop and align to flight test plan objectives and metrics (Figure 3.8).

Figure 3.8. National Campaign Collections of Data and Data Products.

Data Elements

The NC team developed a portfolio of non-exhaustive expected and desired data at the elemental level. The scope of the Data Elements portfolio entails instruments (utilized and anticipated), data attributes from each system, metrics, and an effort to track the initiation of each data element as appropriate across UMLs. The Data Elements Portfolio served as a planning tool while data systems were still in infancy and flight plans were yet to be developed. The portfolio, while not definitive, assisted with FAA and NASA engagement, directing research, and tracking for various interdependencies among NC teams and subprojects. The portfolio captures the following content (Figure 3.9 from left to right and Figure 3.10):

Function	Focus	Sub-Component	Enti	ity	Metric	Data Element	Me	tric Type	Priority	Scenario	UML
		Takeoff Accuracy	0	Vehicle	UTE 13	Reaction and Role (RR)	0	Distance	Safety	1-2-3	1
			0	Vehicle	UTE 14	Final Roll Out Point	0	Distance	Safety	1-2-3	1
Flight Plan			0	Vehicle		Termination Point/Altitude		Accuracy	Safety	1-2-3	1
	Terminal Procedures		0	Vehicle		Climb Gradient		Accuracy	Safety	1-2-3	1
Flight Plan	Time	Phase Completion	•	Airspace		Phase Time	0	Time	Efficiency	1-2-3	1
Conformance			•	Airspace	X3-METRIC-19	Flight Time	0	Time	Efficiency	1-2-3	1
		Flight Time Planning		Airspace	T3SV.1.16	NOP Flight Plan Reliability	0	Time	Efficiency	1-2-3	1
	Geolocation	Latitude		Airspace		Latitude	0	Distance	Efficiency	1-2-3	1
	Position	Longitude		Airspace		Longitude	0	Distance	Efficiency	1-2-3	1
		Altitude		Airspace		Altitude		Distance	Efficiency	1-2-3	1
	Distance	Total Flight Distance		Airspace	X3-METRIC-18	Total Distance		Distance	Efficiency	1-2-3	1
		Landing Distance		Airspace	X3-METRIC-21	Landing Location		Distance	Efficiency	1-2-3	1
	Velcoity	Ground Path		Airspace		Operation Ground Track		Quantitative	Efficiency	1-2-3	1
		Airborne		Airspace	X3-METRIC-6A	Operation Air Velocity		Quantitative	Efficiency	1-2-3	1
				Airspace	X3-METRIC-6B	PSU Average Air Velocity		Rate	Efficiency	1-2-3	1
	Conformance	Ground Path	0	Vehicle	UTE 9	Ground Track	0	Distance	Safety	1-2-3	1
		Flight Path	0	Vehicle	UTE 8	Vertical Flight Track	0	Distance	Safety	1-2-3	1
			0	Vehicle		Lateral Flight Track		Distance	Safety	1-2-3	1

Table 3.9 National Campaign Data Elements Snapshot

Function: Operational Category	
Vehicle Performance Plan	
Vehicle Performance Verification	
Flight Plan	
Flight Plan Conformance	
Airspace Integration Plan	
Airspace Integration Performance	
Infrastructure Design	
Infrastructure Performance	
Certification Planning	
Continued Operational Safety Monitoring	
Focus: Increased specificity	
Sub-Component: Greatest specificity	
Entity: Vehicle, Airspace or Range	
• • •	
Metric: Captures early metrics across t	he project: X3, ATI, UTEs, MTEs or operational measures
Data Element: Specific name for measu	ıre
Metric Type: Distance, Accuracy, Time,	Quantitative, Qualitative, Rate
Priority: Safety, Efficiency, Ride Quality	
Scenario: Integrated NC Scenarios 1-7	
UML: Expected UAM Maturity Level	
OWE. Expected OAM Maturity Level	

Figure 3.10. National Campaign Data Elements Format

Data Elements (1 of 11)

Table 3.11. National Campaign Data Elements

Agency POC	Function	Focus	Sub-Component	Entity	Metric	Data Element	Metric Type	Priority	Scenario	UML
AIR, AJF	Vehicle	Estimated Flight	Departure	Vehicle		Aircraft Gross Weight	Quantitative	Safety	1-2-3	1
AIR, AJF	Performance Plan	Performance		Vehicle		Pressure Altitude	Quantitative	Safety	1-2-3	1
AIR, AJF	_			Vehicle		Free Air Temperature (FAT) (total air temp)	Quantitative	Safety	1-2-3	1
AIR, AJF				Vehicle	UTE 25	Dual Motor Energy Capacity	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Single Motor Energy Capacity	Quantitative	Safety	1-2-3	1
AIR, AJF				O Vehicle		Battery Reserves	Rate	Efficiency	1-2-3	1
AIR, AJF				Vehicle		Fuel Reserves	Rate	Efficiency	1-2-3	1
AIR, AJF				Vehicle		Max Allowable Gross Weight	Quantitative	Safety	1-2-3	1
AIR, AJF				Vehicle		Predicted Hover Torque/Power (10 ft. IGE)	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Predicted Hover Torque/Power (50 ft. OGE)	Rate	Safety	1-2-3	1
AIR, AJF	-			Vehicle		Hover Energy Flow	Rate	Safety	1-2-3	1
AIR, AJF	-			Vehicle		Hover Torque/Power Setting	Rate	Safety	1-2-3	1
AIR, AJF	-			Vehicle		Max Rate of Climb (Dual Motor)	Rate	Safety	1-2-3	1
AIR, AJF	-			Vehicle		Min Rate of Climb (Single Motor)	Rate	Safety	1-2-3	1
AIR, AJF	-			Vehicle		Max Acceleration	Rate	Safety	1-2-3	1
AIR, AJF	-			Vehicle		Nacelle Angle Change Rate	Rate	Safety	1-2-3	1
AIR, AJF	-		Cruise	Vehicle		MacTorque/Power Available	Rate	Safety	1-2-3	1
AIR, AJF	-		cruise	Vehicle		Velocity Never to Exceed (VNE) - Indicated Air Speed (IAS)	Rate	Safety	1-2-3	1
AIR, AJF	_						-			-
· · · · · · · · · · · · · · · · · · ·	_			Vehicle		Cruise Speed (kts.)	Quantitative	Safety	1-2-3	1
AIR, AJF	_			Vehicle		Cruise Torque/Power Setting	Rate	Safety	1-2-3	1
AIR, AJF	_			Vehicle		Cruise Energy Flow	Rate	Safety	1-2-3	1
AIR, AJF	_			Vehicle		Max Range-Indicated Air Speed	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Max Range Torque/Power	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Max Endurance	Rate	Safety	1-2-3	1
AIR, AJF				O Vehicle		Indicated Air Speed (IAS)	Rate	Safety	1-2-3	1
AIR, AJF				O Vehicle		Max Endurance Torque/Power	Rate	Safety	1-2-3	1
AIR, AJF		Ap	Approach	O Vehicle		Aircraft Gross Weight	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Pressure Altitude	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Free Air Temperature (FAT)	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Hover Torque/Power	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Hover Energy Flow	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Max Allowable Gross Weight	Rate	Safety	1-2-3	1
AIR, AJF	-			Vehicle		Predicted Hover Torgue/Power (10 ft. IGE)	Rate	Safety	1-2-3	1
AIR, AJF	-			Vehicle		Predicted Hover Torgue/Power (50 ft. OGE)	Rate	Safety	1-2-3	1
AIR, AJF	-			Vehicle		Max Torque/Power Setting Available	Rate	Safety	1-2-3	1
AIR, AJF	-			Vehicle		Nacelle Angle Change Rate	Rate	Safety	1-2-3	1
AIR, AJF	-	Flight Procedures	Phases of Flight	Vehicle	MTE 1	Taxi	O Qualitative	Safety	1-2-3	1
AIR, AJF	-	Flight Procedures	Phases of Flight	-	NIEI	laxi				-
AIR, AJF AIR, AJF				Vehicle			Distance	Safety	1-2-3	1
				Vehicle			O Qualitative	Safety	1-2-3	-
AIR, AJF				Vehicle			O Time	Safety	1-2-3	1
AIR, AJF				O Vehicle	MTE 3	Takeoff	Rate	Safety	1-2-3	1
AIR, AJF	_			Vehicle			Distance	Safety	1-2-3	1
AIR, AJF				Vehicle			O Time	Safety	1-2-3	1
AIR, AJF				Vehicle		Transition to Cruise	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Cruise	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle	MTE 5	Flight Path Changes: Steep Turns	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Flight Path Changes: Pull Up	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Flight Path Changes: Push Over	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle		Transition to Landing	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle	MTE 6	Approach	Rate	Safety	1-2-3	1
AIR, AJF				Vehicle			Rate	Safety	1-2-3	1
AIR, AJF				Vehicle			Rate	Safety	1-2-3	1
AIR, AJF				Vehicle	MTE 6	Landing	Rate	Safety	1-2-3	1
AIR, AJF	-			-	11120	Lanung	-			1
	_			Vehicle			Rate	Safety	1-2-3	-
AIR, AJF				🔴 Vehicle			Rate	Safety	1-2-3	1

Data Elements (2 of 11)

		<u>,</u>								
AIR, AJF			Performance Tests	Vehicle	MTE 2	All Azimuth	O Distance	Safety	1-2-3	1
AIR, AJF				Vehicle	-		Qualitative	Safety	1-2-3	1
AIR, AJF				Vehicle	-		O Qualitative	Safety	1-2-3	1
AIR, AJF				Vehicle			Distance	Safety	1-2-3	1
AIR, AJF				Vehicle	UTE 6	HoverTaxi	Distance	Safety	1-2-3	1
AIR, AJF				Vehicle	MTE 7	Takeoff and Abort	Distance	Safety	1-2-3	1
AIR, AJF				Vehicle	MTE 8	Landing	Distance	Safety	1-2-3	1
AIR, AJF			Ride Quality Tests	Vehicle	MTE 4	Level Flight	O Qualitative	Ride Quality	1-2-3	1
AIR, AJF				Vehicle			O Qualitative	Ride Quality	1-2-3	1
AIR, AJF				Vehicle			Distance	Ride Quality	1-2-3	1
AIR, AJF, AFS		Contingencies	Power	Vehicle		Reserve Energy Consumption	Rate	Safety	1-2-3	1
AIR, AJF, AFS				Vehicle		Power Hierarchy	O Qualitative	Safety	1-2-3	1
AIR, AJF, AFS		Other	Additional	Vehicle		External Sling Load	Rate	Safety	1-2-3	1
AIR, AJF, AFS	Vehicle			Vehicle		Anti-Ice System	Rate	Safety	1-2-3	1
AIR, AJF, AFS	Performance Plan			Vehicle		Environmental Control System	Rate	Safety	1-2-3	1
AIR, AJF, AFS				Vehicle		FMS	O Qualitative	Safety	Future State	Future State
AJO, ANG, AFS, AJF, AIR	Vehicle	Actual Flight	Departure	Vehicle		Aircraft Gross Weight	Quantitative	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR	Performance	Performance		Vehicle		Pressure Altitude	Quantitative	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR	Verification			Vehicle		Free Air Temperature (FAT)	Quantitative	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle	UTE 25	Dual Motor Energy Capacity	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle	01225	Single Motor Energy Capacity	Quantitative	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle			Quantitative	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Max Allowable Gross Weight	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				-		Predicted Hover Torque/Power (10 ft. IGE)	-			1
				Vehicle		Predicted Hover Torque/Power (50 ft. OGE)	Rate	Safety	1-2-3	
AJO, ANG, AFS, AJF, AIR				O Vehicle		Hover Energy Flow	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				O Vehicle		Hover Torque/Power Setting	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Max Rate of Climb (Dual Motor)	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Min Rate of Climb (Single Motor)	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Max Acceleration	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Nacelle Angle Change Rate	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR			Cruise	Vehicle		Max Torque/Power Available	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Velocity Never to Exceed (VNE) - Indicated Air Speed (IAS)	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Cruise Speed (kts.)	Quantitative	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Cruise Torque/Power Setting	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Cruise Energy Flow	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Max Range-Indicated Air Speed	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Max Range Torque/Power	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Max Endurance	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		(Indicated Air Speed (IAS)	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Max Endurance Torque/Power	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR			Approach	Vehicle		Aircraft Gross Weight	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Pressure Altitude	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Free Air Temperature (FAT)	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Hover Torque/Power	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Hover Energy Flow	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Max Allowable Gross Weight	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Predicted Hover Torque/Power (10 ft. IGE)	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle		Predicted Hover Torque/Power (50 ft. IGE)	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR				Vehicle			Rate	Safety	1-2-3	1
AJO, ANG, AFS, AJF, AIR AJO, ANG, AFS, AJF, AIR						Max Torque/Power Setting Available	-			1
		Mark faile that the	5	Vehicle	1175.05	Nacelle Angle Change Rate	Rate	Safety	1-2-3	
AJO, ANG, AFS, AIR		Vehicle Health	Energy Supply Management	Vehicle	UTE 25	Battery Reserve	Rate	Efficiency	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Fuel Reserve	Rate	Efficiency	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Weather	Quantitative	Safety	1-2-3	
AJO, ANG, AFS, AIR			Temperature	Vehicle		Motor Controller Temperature	Quantitative	Efficiency	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Thermal Control	Rate	Safety	1-2-3	1

Data Elements (3 of 11)

				<u>.</u>	1	·	<u> </u>			1.
AJO, ANG, AFS, AIR				Vehicle		Configuration	O Distance		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Nacelle Angle	O Distance	Efficiency	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Rotor RPM	Rate	-	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Fan RPM	Rate	Efficiency	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Static Pressure	Quantitative		1-2-3	1
AJO, ANG, AFS, AIR		Vehicle Health		Vehicle		Dynamic Pressure	Quantitative		1-2-3	1
AJO, ANG, AFS, SBSM		Navigation		Vehicle		Navigational Integrity Code (NIC)	Rate	Safety	1-2-3	1
AJO, ANG, AFS, SBSM				Vehicle		Navigational Accuracy Code Position (NACp)	Rate		1-2-3	1
AJO, ANG, AFS, SBSM				Vehicle		Navigational Accuracy Code Velocity (NACv)	Rate		1-2-3	1
AJO, ANG, AFS, SBSM				Vehicle		System Design Assurance (SDA)	Rate Rate	Safety	1-2-3	1
AJO, ANG, AFS, SBSM				Vehicle		Source Integrity Level (SIL)	Rate	Safety	1-2-3	1
AJO, ANG, AFS, SBSM				Vehicle		Signal Integrity	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AIR		Flight Procedures	Handling Qualities	Vehicle		Descend Transition	Rate	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			Ι Γ	Vehicle		Vertical Reposition and Hold	Rate	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Hovering Turn and Hold	Rate	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Acceleration and Deceleration	Rate	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			F	Vehicle		Lateral Reposition and Hold	Rate	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Pirouette	Rate		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Pull-up - Pushover	Rate	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		DeceleratingTurn	Rate		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Decelerating Approach	Rate	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	MTE 1	Taxi	O Qualitative		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	MTE 3	Takeoff	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Takeon .	Distance		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Transition to Cruise	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Cruise	Rate	Safety	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle			Rate		1-2-3	1
AJO, ANG, AFS, AIR AJO, ANG, AFS, AIR				-		Transition to Landing	-		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	MTE 6	Approach	Rate			
				Vehicle	-		Rate	Safety	1-2-3	1
AJO, ANG, AFS, AIR	Vehicle			Vehicle			Rate		1-2-3	1
AJO, ANG, AFS, AIR	Performance			Vehicle		Landing	Rate		1-2-3	1
AJO, ANG, AFS, AIR	Verification			Vehicle	MTE 2	All Azimuth	O Distance	Safety	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	_		Qualitative		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	_		O Qualitative	Safety	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle			Distance		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Takeoff and Abort	Qualitative		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Landing	O Qualitative	Safety	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Acceleration	O Qualitative	Safety	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Deceleration	O Qualitative		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Lift Mode Transitions	O Qualitative	Safety	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Maneuver Characteristics	O Qualitative		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	UTE 6	Precision Hover	O Qualitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Vertical Reposition and Hold	O Qualitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Hovering Turn and Hold	O Qualitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			Γ	Vehicle		Acceleration - Deceleration	O Qualitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			[Vehicle		Lateral Reposition and Hold	O Qualitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			Ē	Vehicle		Pirouette	O Qualitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Pull up - Push over	O Qualitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Decelerating Turn	O Qualitative		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Decelerating Approach	O Qualitative		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	MTE 4	Level Flight	O Qualitative		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	1		O Qualitative		1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	-		Distance	Ride Quality	1-2-3	1
				- remere			• Distance	ine quarry		-

Data Elements (4 of 11)

				1							
AJO, ANG, AFS, AIR		Vehicle Impact	Force Rates	Vehicle		Vibrations		Rate	Ride Quality	4-5-6	Future State
AJO, ANG, AFS, AIR				Vehicle	MTE 4	Accelerations in Cabin		Rate	Ride Quality	4 -5 - 6	Future State
AJO, ANG, AFS, AIR				Vehicle		Inertia		Rate	Ride Quality	4-5-6	Future State
AJO, ANG, AFS, AIR				Vehicle		G-Force		Rate	Ride Quality	4-5-6	Future State
AJO, ANG, AFS, AIR				Vehicle		Torque		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS, AIR		Control	Positions	Vehicle		Collective		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Lateral		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Longitudinal		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Directional		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle		Throttle		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS, AIR		Automated Flight	Time	Vehicle	AFCM-1	Timestamp	0	Time	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR		Contingency	Position	Vehicle	AFCM-2	Latitude	0	Distance	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR		Management		Vehicle	AFCM-3	Longitude	Õ	Distance	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR		, in the second s		Vehicle	AFCM-4	Altitude	ŏ	Distance	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			Distance	Vehicle	AFCM-5	Distance to Landing Zone		Distance	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			Offset	Vehicle	AFCM-6	L/R Offset to Landing Zone		Distance	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-7	Fore/Aft Offset to Landing Zone		Distance	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			Battery Reserve	Vehicle	AFCM-8	Energy Reserve		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			Speed	Vehicle	AFCM-9	True Speed		Rate	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			opeed	Vehicle	AFCM-10	Calibrated Airspeed		Rate	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-10	Vertical Velocity		Rate	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR					AFCM-11 AFCM-12				Ride Quality	1-2-3	
AJO, ANG, AFS, AIR			A	Vehicle		Ground Speed		Rate		1-2-3	1
AJO, ANG, AFS, AIR AJO, ANG, AFS, AIR			Acceleration	Vehicle	AFCM-13	Acceleration		Quantitative	Ride Quality		1
			Vehicle Orientation	Vehicle	AFCM-14	Heading		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-15	Magnetic Heading		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-16	Pitch Attitude (x)		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-16	Pitch Rate		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-16	Yaw (y)		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-16	Yaw Rate		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-17	Roll (z)		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-17	Roll Rate		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-18	Angle of Attack		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-19	Side-Slip Angle		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				O Vehicle	AFCM-20	Flight Path Angle		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			Wind Factors	Vehicle	AFCM-21	Wind Direction		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-22	Wind Speed		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			Camera	Vehicle	AFCM-25	Camera Tilt Angle		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			Control Settings	Vehicle	AFCM-23	Lateral Stick		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR			_	Vehicle	AFCM-24	Longitude Stick	•	Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-26	Collective Trim Up	•	Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-27	Collective Trim Down		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-28	Pedal Trim Right		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-29	Pedal Trim Left		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-30	Stick Trim Up		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR				Vehicle	AFCM-31	Stick Trim Down		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR	Vehicle			Vehicle	AFCM-32	Rudder Pedal		Quantitative	Ride Quality	1-2-3	1
AJO, ANG, AFS, AIR	Performance	Contingencies	Power	Vehicle		Reserve Energy Consumption		Rate	Safety	1-2-3	1
AJO, ANG, AFS, AIR	Verification	contingencies		Vehicle		Power Hierarchy		Qualitative	Safety	1-2-3	1
AJO, ANG, AFS	Flight Plan	Schedules	Clearance	Airspace		Closure Rate		Rate	Safety	4-5-6	Future State
AJO, ANG, AFS	right Plan	achedules	Clearance	Airspace	+	Weather Accuracy				1-2-3	1
AJO, ANG, AFS AJO, ANG, AFS					UTE 7			Accuracy	Safety		
				Range	UTE 7	Traffic		Distance	Safety	1-2-3	1
AJO, ANG, AFS				Range	-	Weather		Distance	Safety	1-2-3	1
AJO, ANG, AFS				Range		Terrain		Distance	Safety	1-2-3	1
AJO, ANG, AFS				Range		Hazards		Distance	Safety	1-2-3	1
AJO, ANG, AFS				Range		Required Obstacle Clearance (ROC)		Distance	Safety	1-2-3	1

Data Elements (5 of 11)

AJO, ANG, AFS				Airspace	X3-METRIC-3		Quantit		Safety	1-2-3	
AJO, ANG, AFS			Waypoints	Vehicle	X3-METRIC-3	Operational Volume Expedient Path	Quantit		Efficiency	1-2-3	1
AJO, ANG, AFS			Pre-departure Scheduling	Vehicle	UTE 31	Pre-departure ETD	O Time		Efficiency	1-2-3	1
AJO, ANG, AFS AJO, ANG, AFS			Pre-departure Scheduling	Vehicle		Pre-departure ETA	O Time		Efficiency	1-2-3	1
AJO, ANG, AFS				 Venicie Airspace 	X3-METRIC-10	Operational Volume Time	O Time		Efficiency	1-2-3	1
AJO, ANG, AFS			Flight Direct (Alternatives		X5-WEIKIC-10					1-2-3	-
AJO, ANG, AFS AJO, ANG, AFS			Flight Plans / Alternatives	Vehicle	7701445	Five Flight Plans	Quantit	lave	Safety	1-2-3	1
AJO, ANG, AFS AJO, ANG, AFS	-		Flight Time Planning	Airspace		NOP Flight Plan Reliability	O Time		Efficiency		-
AJO, ANG, AFS AJO, ANG, AFS			Vertiport Management	Airspace		Time at Vertiport	Rate		Efficiency	4.	Future State
AJO, ANG, AFS AJO, ANG, AFS	-			Airspace		Vertiport Takeoff Throughput	Rate		Efficiency	3+	1
				Airspace		Vertiport Landing Throughput	Rate		Efficiency	3+	1
AJO, ANG, AFS				Airspace		Pre-departure scheduling for conflict avoidance	O Qualita		Safety	7+	Future State
AJO, ANG, AFS		Updates	Clearance	Airspace		Closure Rate	Rate		Safety	4-5-6	Future State
AJO, ANG, AFS				Airspace		Weather Accuracy	Accurac		Safety	1-2-3	1
AJO, ANG, AFS				Range	UTE 7	Traffic	O Distanc		Safety	1-2-3	1
AJO, ANG, AFS				Range	_	Weather	Distance		Safety	1-2-3	1
AJO, ANG, AFS				Range		Terrain	Distance		Safety	1-2-3	1
AJO, ANG, AFS				Range		Hazards	Distance		Safety	1-2-3	1
AJO, ANG, AFS				Range		Obstruction	Distance		Safety	1-2-3	1
AJO, ANG, AFS			Waypoints	Airspace	X3-METRIC-4	Updated Operational Volume	Quantit	tative	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle		Expedient Path	Distance	e	Efficiency	4-5-6	Future State
AJO, ANG, AFS			In-flight Scheduling	Vehicle	UTE 32	In-flight ETD	🔵 Time		Efficiency	7+	Future State
AJO, ANG, AFS				Vehicle		In-flight ETA	🔵 Time		Efficiency	4-5-6	Future State
AJO, ANG, AFS				Airspace	X3-METRIC-5	Update Rate	Rate		Safety	1-2-3	1
AJO, ANG, AFS, AVP		Contingencies	Degraded Vehicle Systems	Vehicle	UTE 38	Degraded Vehicle Performance	O Qualita	tive	Safety	4-5-6	Future State
AJO, ANG, AFS, AVP	Flight Plan		[Vehicle	UTE 39	Degraded Avionics Performance	O Qualita	tive	Safety	4-5-6	Future State
AJO, ANG, AFS, AVP			[Vehicle	UTE 40	Degraded Vehicle Control	O Qualita	tive	Safety	4-5-6	Future State
AJO, ANG, AFS, AVP	1		Airspace Emergencies	Airspace	UTE 47	Emergency Response	O Qualita	tive	Safety	4-5-6	Future State
AJO, ANG, AFS, AVP			CNS	Airspace	UTE 27	Communication Navigation Surveillance Contingency	O Qualita	tive	Safety	4-5-6	Future State
AJO, ANG, AFS, AVP			Operations Failure	Vehicle	MTE 7	Takeoff Failure Case	O Qualita	tive	Safety	4-5-6	Future State
AJO, ANG, AFS, AVP				Vehicle	MTE 8	Landing Failure Case	O Qualita	tive	Safety	4-5-6	Future State
AJO, ANG, AFS, AVP			Landing	Vehicle	UTE 28	Balked Landing	O Qualita	tive	Safety	3	1
AJO, ANG, AFS, AVP				Vehicle	UTE 26	Precautionary Landing	O Qualita	tive	Safety	1-2-3	1
AJO, ANG, AFS, AVP	1			Airspace		Distance to Contingent Landing	O Distanc		Safety	1-2-3	1
AJO, ANG, AFS, AVP			Divert & Reroute	Airspace	UTE 45	Weather Degradation	O Qualita	tive	Safety	4-5-6	Future State
AJO, ANG, AFS, AVP				Airspace		Constrained Airspace	O Qualita		Safety	3	1
AJO, ANG, AFS, AVP			Airspace Sequence & Spacing	Airspace		Delayed Sequencing & Spacing	O Qualita		Safety	4-5-6	Future State
AJO, ANG, AFS, AVP		Business Case	Fleet Management	Vehicle		Operational Success Criteria	Rate		Efficiency	4-5-6	Future State
AJO, ANG, AFS		Flight Procedures	Phases of Flight Timing	Vehicle	MTE 1	Taxi	O Time		Efficiency	1-2-3	1
AJO, ANG, AFS				Vehicle	MTE 3	Takeoff	O Time		Efficiency	1-2-3	1
AJO, ANG, AFS				Vehicle		Transition to Cruise	O Time		Efficiency	2-2-3	2
AJO, ANG, AFS				Vehicle		Cruise	O Time		Efficiency	3-2-3	3
AJO, ANG, AFS				Vehicle		Transition to Landing	O Time		Efficiency	4-2-3	4
AJO, ANG, AFS				Vehicle	MTE 6	Approach	O Time		Efficiency	5-2-3	5
AJO, ANG, AFS				Vehicle	WILCO	Landing	O Time		Efficiency	6-2-3	6
AJO, ANG, AFS, AJF		Planned Conformance	Track Tolerances	Vehicle	-	Cross Track Tolerance	Distance		Safety	1-2-3	1
AJO, ANG, AFS, AJF		rianneu coniormance	Track rolerances	Vehicle		Vehicle Track Tolerance	Distance		Safety	1-2-3	1
AJO, ANG, AFS, AJF				Vehicle			Quantit		Safety	1-2-3	1
AJO, ANG, AFS, AJF AJO, ANG, AFS, AJF		Terminal Procedures	Approach to Landing Accuracy	Vehicle		Bank Angle Decision Point	Quantit		Safety	1-2-3	1
AJO, ANG, AFS, AJF AJO, ANG, AFS, AJF		reiminai Procedures	Approach to Landing Accuracy	-		Glideslope	Distance Rate			1-2-3	1
AJO, ANG, AFS, AJF AJO, ANG, AFS, AJF				Vehicle	1175.4.0				Safety		-
				Vehicle	UTE 12	Turn Anticipation	Distance		Safety	1-2-3	1
AJO, ANG, AFS, AJF				Vehicle		Automated Flight Rules	O Qualita		Safety	7+	Future State
AJO, ANG, AFS, AJF				Vehicle		Initial Approach Ring	Distance		Safety	1-2-3	1
AJO, ANG, AFS, AJF				Vehicle		Turn Initiation Area (TIA)	Distance	e	Safety	1-2-3	1

Data Elements (6 of 11)

AJO, ANG, AFS, AJF			Takeoff Accuracy	Vehicle	UTE 13	Reaction and Role (RR)		Distance	Safety	1-2-3	1
AJO, ANG, AFS, AJF	-		Takeon Accuracy	Vehicle	UTE 14	Final Roll Out Point)istance	Safety	1-2-3	1
AJO, ANG, AFS, AJF	Flight Plan			Vehicle	01214	Termination Point/Altitude		ccuracy	Safety	1-2-3	1
AJO, ANG, AFS, AJF				Vehicle		Climb Gradient		ccuracy	Safety	1-2-3	1
AJO, ANG, AFS	Flight Plan	Time	Phase Completion	Airspace		Phase Time	Ŏī		Efficiency	1-2-3	1
AJO, ANG, AFS	Conformance		i hase completion	Airspace	X3-METRIC-19	Flight Time	ŏī		Efficiency	1-2-3	1
AJO, ANG, AFS	comornance		Flight Time Planning	Airspace	T3SV.1.16	NOP Flight Plan Reliability	ŏт		Efficiency	1-2-3	1
AJO, ANG, AFS, AJF	-	Geolocation Position	Latitude	Airspace	1301.1.10	Latitude		Distance	Efficiency	1-2-3	1
AJO, ANG, AFS, AJF	-	decideation obtion	Longitude	Airspace		Longitude		Distance	Efficiency	1-2-3	1
UO, ANG, AFS, AJF	-		Altitude	Airspace		Altitude		Distance	Efficiency	1-2-3	1
UO, ANG, AFS		Distance	Total Flight Distance	Airspace	X3-METRIC-18	Total Distance		Distance	Efficiency	1-2-3	1
JO, ANG, AFS			Landing Distance	Airspace	X3-METRIC-21	Landing Location		Distance	Efficiency	1-2-3	1
UO, ANG, AFS		Velocity	Ground Path	Airspace		Operation Ground Track		Quantitative	Efficiency	1-2-3	1
UO, ANG, AFS	-		Airborne	Airspace	X3-METRIC-6A	Operation Air Velocity		Quantitative	Efficiency	1-2-3	1
UO, ANG, AFS				Airspace	X3-METRIC-6B	PSU Average Air Velocity		•	Efficiency	1-2-3	1
UO, ANG, AFS		Conformance	Ground Path	Vehicle	UTE 9	Ground Track		Distance	Safety	1-2-3	1
AJO, ANG, AFS			Flight Path	Vehicle	UTE 8	Vertical Flight Track		Distance	Safety	1-2-3	1
UO, ANG, AFS				Vehicle		Lateral Flight Track		Distance	Safety	1-2-3	1
JO, ANG, AFS				Vehicle	UTE 10	Delta ISA		Distance	Safety	1-2-3	1
JO, ANG, AFS				Vehicle	UTE 11	Along Track Tolerance		Distance	Safety	1-2-3	1
JO, ANG, AFS			Track Tolerances	Vehicle		Cross Track Tolerance		Distance	Safety	1-2-3	1
JO, ANG, AFS				Vehicle		Vehicle Track Tolerance		Distance	Safety	1-2-3	1
O, ANG, AFS				Vehicle		Bank Angle		Distance	Safety	1-2-3	1
JO, ANG, AFS			Timing	Vehicle	UTE 32	Pre-departure Scheduling	ÕΤ	ïme	Efficiency	1-2-3	1
O, ANG, AFS				Vehicle	UTE 33	ATD Metric	ΟT		Efficiency	1-2-3	1
JO, ANG, AFS				Vehicle	UTE 32	TOA	ΟT	ïme	Efficiency	1-2-3	1
JO, ANG, AFS			Operational Volumes	Airspace	X3-METRIC-11	Count Operational Volume Conformance) o	Juantitiave	Safety	1-2-3	1
JO, ANG, AFS				Airspace	X3-METRIC-25	Time Operational Volume Non-Conformance	ΟT	ïme	Safety	1-2-3	1
JO, ANG, AFS, AJV		Performance Errors	Flight Path Errors	Vehicle	UTE 15	Bias Errors	R		Safety	1-2-3	1
JO, ANG, AFS, AJV			-	Vehicle	UTE 16	Body geometry (BGNB or BGWB)	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle	UTE 17	Actual navigation performance error (ANPE)	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle	UTE 18	Waypoint precision error (WPR)	R		Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle	UTE 19	Flight technical error (FTE)	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle	UTE 20	Altimetry system error (ASE)	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle	UTE 21	Vertical angle error (VAE)	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle	UTE 22	Automatic terminal information system (ATIS)	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV			RNP	Vehicle		FIAPA Required Navigational Performance 0.3 (?)	• 0)uantitiave	Safety	1 -2 - 3	1
JO, ANG, AFS, AJV			Flight Attitude	Vehicle		Heading	• 0)uantitiave	Safety	1-2-3	1
JO, ANG, AFS, AJV			-	Vehicle		Pitch Attitude	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle		Roll	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle		Yaw rate	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle		Pitch Rate	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle		Sideslip	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle		OAT	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV			Force Rates	Vehicle		Inertia	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle		G-Force	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV			Velocity	Vehicle		Air	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle		Ground	R	late	Safety	1-2-3	1
JO, ANG, AFS, AJV				Vehicle		Vertical	R		Safety	1-2-3	1
			Acceleration	Vehicle		Acceleration	● R		Safety	1-2-3	1

Data Elements (7 of 11)

				-							
AJO, ANG, AFS		Schedules		Airspace		Closure Rate		Rate	Safety	4-5-6	Future State
AJO, ANG, AFS				Airspace		Weather Accuracy		Accuracy	Safety	1-2-3	1
AJO, ANG, AFS				Range	UTE 7	Traffic		Distance	Safety	1-2-3	1
AJO, ANG, AFS				Range	_	Weather		Distance	Safety	1-2-3	1
AJO, ANG, AFS				Range	_	Terrain		Distance	Safety	1-2-3	1
AJO, ANG, AFS				Range	_	Hazards		Distance	Safety	1-2-3	1
AJO, ANG, AFS				Range		Required Obstacle Clearance (ROC)		Distance	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle		Expedient Path	- -	Distance	Efficiency	4-5-6	Future State
AJO, ANG, AFS				Vehicle	UTE 31	Pre-departure ATD		Time	Efficiency	7	Future State
AJO, ANG, AFS				Vehicle		Pre-departure ATA		Time	Efficiency	4-5-6	Future State
AJO, ANG, AFS				Vehicle	UTE 32	In-flight ATD		Time	Efficiency	7	Future State
AJO, ANG, AFS				Vehicle		In-flight ATA	0	Time	Efficiency	4-5-6	Future State
AJO, ANG, AFS				Airspace	X3-METRIC-5	Update Rate		Rate	Safety	1-2-3	1
AJO, ANG, AFS			Flight Plans and Alternatives	Vehicle		Five Flight Plans	•	Quantitiave	Safety	1-2-3	1
AJO, ANG, AFS	Flight Plan		Vertiport Management	Airspace		Time at Vertiport		Rate	Efficiency	4+	Future State
AJO, ANG, AFS	Conformance			Airspace	X3-METRIC-16	Vertiport Takeoff Throughput	\circ	Rate	Efficiency	3+	1
AJO, ANG, AFS	comormance			Airspace	X3-METRIC-17	Vertiport Landing Throughput		Rate	Efficiency	3+	1
AJO, ANG, AFS				Airspace	UTE 33	Pre-departure scheduling for conflict avoidance	0	Qualitative	Safety	7+	Future State
AJO, ANG, AFS		Updates	Clearance	Airspace	X3?	Closure Rate		Rate	Safety	4-5-6	Future State
AJO, ANG, AFS				Airspace		Weather Accuracy		Accuracy	Safety	1-2-3	1
AJO, ANG, AFS				Range	UTE 7	Traffic		Distance	Safety	1-2-3	1
AJO, ANG, AFS				Range		Weather	0	Distance	Safety	1-2-3	1
AJO, ANG, AFS				Range		Terrain	0	Distance	Safety	1-2-3	1
AJO, ANG, AFS				Range		Hazards	0	Distance	Safety	1-2-3	1
AJO, ANG, AFS				Range		Required Obstacle Clearance (ROC)	0	Distance	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle		Expedient Path	Õ	Distance	Efficiency	4-5-6	Future State
AJO, ANG, AFS			Pre-departure Scheduling	Vehicle	UTE 31	Pre-departure ATD	Õ	Time	Efficiency	7	Future State
AJO, ANG, AFS				Vehicle	-	Pre-departure ATA		Time	Efficiency	4-5-6	Future State
AJO, ANG, AFS			In-flight Scheduling	Vehicle	UTE 32	In-flight ATD	ŏ	Time	Efficiency	7	Future State
AJO, ANG, AFS				Vehicle	-	In-flight ATA	õ	Time	Efficiency	4-5-6	Future State
AJO, ANG, AFS				Airspace	X3-METRIC-5	Update Rate		Rate	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle		Five Flight Plans		Quantitiave	Safety	1-2-3	1
AJO, ANG, AFS			-	Airspace		Time at Vertiport		Rate	Efficiency	4+	Future State
AJO, ANG, AFS				Airspace	X3-METRIC-16	Vertiport Takeoff Throughput		Rate	Efficiency	3+	1
AJO, ANG, AFS				Airspace	X3-METRIC-17	Vertiport Landing Throughput		Rate	Efficiency	3+	1
AJO, ANG, AFS				Airspace	UTE 33	Pre-departure scheduling for conflict avoidance		Qualitative	Safety	7+	Future State
AJO, ANG, AFS		Contingencies		Vehicle	UTE 37	Degraded Communication		Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS		contingencies		Vehicle	01237	TBD		Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS	-			Airspace	UTE 44	Divert & Reroute		Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle		Divert & Reroute		Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle	-	Divert & Reroute	- <u> </u>	Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle	UTE 41	Conflict Management – Horizontal Maneuver	- <u> </u>	Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS			-	Vehicle	UTE 42	Conflict Management – Vertical Maneuver		Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle	UTE 43	Conflict Management – Speed Change		Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle	UTE 38	Degraded Vehicle Performance		Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle	UTE 39	Degraded Venicie Performance	- <u> </u>	Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle	UTE 40	Degraded Avionics Performance Degraded Vehicle Control		Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS				-		Emergency Response		Qualitative	-	4-5-6	
AJO, ANG, AFS AJO, ANG, AFS					UTE 27			Qualitative	Safety Safety	4-5-6	Future State Future State
AJO, ANG, AFS AJO, ANG, AFS				Airspace		CNS Contingency				4-5-6	
AJO, ANG, AFS AJO, ANG, AFS				Vehicle	MTE 7	Takeoff Failure Case		Qualitative	Safety		Future State
AJO, ANG, AFS AJO, ANG, AFS				Vehicle	MTE 8	Landing Failure Case		Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS AJO, ANG, AFS				Vehicle	UTE 28	Balked Landing		Qualitative	Safety	3	-
				Vehicle	UTE 26	Precautionary Landing		Qualitative	Safety	1-2-3	1
AJO, ANG, AFS				Airspace	X3-METRIC-31 UTE 45	Distance to Contingent Landing		Distance	Safety	1-2-3 4-5-6	1
						Divert & Reroute	1 ()	Qualitative	Safety		Future State
AJO, ANG, AFS AJO, ANG, AFS				 Airspace Airspace 	UTE 45	Divert & Reroute		Qualitative	Safety	3	

Data Elements (8 of 11)

AJO, ANG, AFS		Contingencies	Airspace Sequence & Spacing	Airspace	UTE 46	Delayed Sequencing & Spacing	<u> </u>	Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS		Obstacle Avoidance	Ground Path	Vehicle	UTE 29			Rate	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle		Ground Obstacle Avoidance		Rate	Safety	4-5-6	Future State
AJO, ANG, AFS			Air to Air	Vehicle	UTE 30			Rate	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle]	Air Obstacle Avoidance		Rate	Safety	4-5-6	Future State
AJO, ANG, AFS		Detect & Avoid	Contingency Procedures Execution	Vehicle	Future	TCAS	0	Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle	Future	Eyeball Closure Rate	0	Rate	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle	Future	Autonomous Algorithm Closure Rates	Õ	Rate	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle	Future	Autonomous Algorithm Avoidance Maneuvers		Rate	Safety	4-5-6	Future State
AJO, ANG, AFS			Weather Avoidance Optimization	Vehicle	Future	Onboard Weather Sensing		Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS				Vehicle	Future	Onboard Urban Wind Sensors		Qualitative	Safety	4-5-6	Future State
AJO, ANG, AFS		Navigation	Information Integrity	Vehicle		Navigational Integrity Code (NIC)	- <u> </u>	Quantitative	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle		Navigational Accuracy Code Position (NACp)		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle		System Design Assurance (SDA)		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle		Source Integrity Level (SIL)		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS		Degraded	Redundant Systems	Vehicle		Source integrity Lever (SIC)		Qualitative	Safety	1-2-3	1
AJO, ANG, AFS		Performance	Occurrence Reporting	Vehicle				Qualitative	Safety	1-2-3	1
AJO, ANG, AFS			Speed Control	-						1-2-3	1
AJO, ANG, AFS		Flight Procedures	All Azimuth	Vehicle	MTE 2			Qualitative	Ride Quality	1-2-3	1
AJO, ANG, AFS AJO, ANG, AFS				Vehicle	MIE2		<u> </u>	Qualitative	Ride Quality		1
	Flight Plan		Takeoff and Abort	Vehicle				Qualitative	Ride Quality	1-2-3	1
AJO, ANG, AFS	Conformance		Flight Path Changes	Vehicle	MTE 5			Qualitative	Safety	3-5-6	Future State
AJO, ANG, AFS			Vibrations	Vehicle				Rate	Ride Quality	4-5-6	Future State
AJO, ANG, AFS		Terminal Procedures	Approach to Landing Accuracy	Vehicle		Decision Point		Distance	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle		Glideslope		Rate	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle	UTE 12	Turn Anticipation		Distance	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle		Automated Flight Rules	0	Qualitative	Safety	7+	Future State
AJO, ANG, AFS				Vehicle		Initial Approach Ring	\circ	Distance	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle		Turn Initiation Area (TIA)	\circ	Distance	Safety	1-2-3	1
AJO, ANG, AFS			Takeoff Accuracy	Vehicle	UTE 13	Reaction and Role (RR)	0	Distance	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle	UTE 14	Final Roll Out Point	0	Distance	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle		Termination Point/Altitude	0	Qualitative	Safety	1-2-3	1
AJO, ANG, AFS				Vehicle		Climb Gradient	Ō	Qualitative	Safety	1-2-3	1
AJO, ANG, AFS	Airspace	Separation	Airborne	Airspace	X3-METRIC 8	Separated Operational Volumes		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS	Integration Plan			Airspace	X3- METRIC-7	Intersected Operational Volumes	Ō	Quantitative	Safety	1-2-3	1
AJO, ANG, AFS				Airspace	X3- METRIC-27	Contingent Intersected Operational Volumes	ŏ	Quantitative	Safety	1-2-3	1
AJO, ANG, AFS	-			Airspace	X3-METRIC-28	Contingent Intersected Replanned Operational Volumes	ŏ	Quantitative	Safety	1-2-3	1
AJO, ANG, AFS	-			Airspace	X3- METRIC-13	Constraint Intersected Operational Volumes		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS	-			Airspace		Airborne Constraint Intersected Operational Volumes		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS	-			Airspace		Before Airborne Constraint Intersected Operational Volumes		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS	-			Airspace	X3-METRIC-12D	Replanned Airborne Constraint Intersected Operational Volumes		Quantitative	Safety	1-2-3	1
AJO, ANG, AFS	-			Airspace	X3-METRIC-39	Loss of Well Clear		Time	Safety	1-2-3	1
AJO, ANG, AFS	-			Airspace	X3- METRIC-39	3D Distance		Distance	Safety	1-2-3	1
AJO, ANG, AFS	-			Airspace	X3- METRIC-38			Distance	Safety	1-2-3	1
AJO, ANG, AFS	_			<u> </u>		Spacing				7+	1
	_			Airspace	UTE 34	Tactical In-flight Separation		Time	Safety		Future State
AJO, ANG, AFS	_		Surface	Airspace	Future		0			4-5-6	Future State
AJO, ANG, AFS	_	Sequencing	Prioritization	Airspace	Future	Operational Status		Qualitative		4-5-6	Future State
AJO, ANG, AFS	_			Airspace	Future	Reservation Order		Time	Efficiency	4-5-6	Future State
	_		Optimization	Airspace	Future	Consistent Flow		Rate		4-5-6	Future State
AJO, ANG, AFS				Airspace	Future	Wake Vortex Separation; Sequence on Final		Rate	Efficiency	1-2-3	1
AJO, ANG, AFS	_			Airspace	UTE 49	Virtual Traffic		Rate		1-2-3	1
AJO, ANG, AFS AJO, ANG, AFS	_		Fleet Management	- Anapace							
AJO, ANG, AFS			Fleet Management	Airspace	Future	Live Traffic		Rate		4-5-6	Future State
AJO, ANG, AFS AJO, ANG, AFS	-	Operational Volumes	Fleet Management Operational Volume Size x, y, z	<u> </u>	Future X3- METRIC-9	Live Traffic Latitude	•	Rate Quantitative	Safety	4-5-6 1-2-3	Future State
AJO, ANG, AFS AJO, ANG, AFS AJO, ANG, AFS	-	Operational Volumes		Airspace			Ō		Safety Safety		Future State 1 1
AJO, ANG, AFS AJO, ANG, AFS AJO, ANG, AFS AJO, ANG, AFS	- - - -	Operational Volumes		Airspace Airspace Airspace		Latitude	•	Quantitative		1-2-3	1
AJO, ANG, AFS AJO, ANG, AFS AJO, ANG, AFS AJO, ANG, AFS AJO, ANG, AFS		Operational Volumes		 Airspace Airspace Airspace Airspace 		Latitude Longitude	•	Quantitative Quantitative	Safety	1-2-3 1-2-3	1 1

Data Elements (9 of 11)

AJO, ANG, AFS			Class D	Airspace	X3- METRIC-40	Class D Active Operational Volumes		uantitative	Efficiency	1-2-3	1
AJO, ANG, AFS	-	Communication		 Airspace Airspace 		Reported Flights Nearby		Juantitative	Safety	1-2-3	1
AJO, ANG, AFS		Commencerion		 Airspace Airspace 		PSU Messages			Safety	1-2-3	1
AJO, ANG, AFS			-	<u> </u>	X3- METRIC-35	PSU Response	ŏ		Safety	1-2-3	1
AJO, ANG, AFS			Contingency Updates	 Airspace Airspace 		Constraint Plan Update	ŏ		Safety	1-2-3	1
AJO, ANG, AFS				 Airspace Airspace 		Contingent Status		uantitative	Safety	1-2-3	1
AJO, ANG, AFS				 Airspace Airspace 		PSU Contingent Update			Safety	5-2-3	1
AJO, ANG, AFS	-			 Airspace Airspace 	X3- METRIC-22	Non-Conforming Status		Juantitative	Safety	5-2-3	1
AJO, ANG, AFS	-		-	 Airspace Airspace 		Non-Conforming Status			Safety	5-2-3	1
AJO, ANG, AFS	-		ATC Interaction	 Airspace Airspace 	UTE 51	ATC Communications	- ĕ		Safety	1-2-3	1
AJO, ANG, AFS	Airspace			 Airspace Airspace 	X3- METRIC-36	Request Rate			Efficiency	1-2-3	1
AJO, ANG, AFS	Integration Plan			 Airspace Airspace 	X3-METRIC-36 X3-METRIC-32	Vinsuccessful Response		ccuracy	Safety	1-2-3	1
AJO, ANG, AFS	integration Plan		Discovery Service	 Airspace Airspace 	X3-METRIC-32 X3-METRIC-33	Non-Conforming Status			Safety	5-2-3	1
AJO, ANG, AFS	Airspace	Separation		 Airspace Airspace 		-			Safety	1-2-3	1
AJO, ANG, AFS		Separation		<u> </u>	X3-METRIC 8	Separated Operational Volumes		ccuracy	Safety	1-2-3	1
AJO, ANG, AFS AJO, ANG, AFS	Integration			-		Intersected Operational Volumes		ccuracy			1
AJO, ANG, AFS AJO, ANG, AFS	Performance			Airspace		Contingent Intersected Operational Volumes		ccuracy	Safety	1-2-3	1
AJO, ANG, AFS AJO, ANG, AFS				Airspace		Contingent Intersected Replanned Operational Volumes		ccuracy	Safety		1
				Airspace	X3-METRIC-13	Constraint Intersected Operational Volumes		ccuracy	Safety	1-2-3	1
AJO, ANG, AFS AJO, ANG, AFS				Airspace	T3SV.1.13	NPSU Constraint Intersected Operational Volumes		Juantitative	Safety	1-2-3	1
				Airspace		Airborne Constraint Intersected Operational Volumes		ccuracy	Safety	1-2-3	1
AJO, ANG, AFS				Airspace		Before Airborne Constraint Intersected Operational Volumes		ccuracy	Safety	1-2-3	1
AJO, ANG, AFS				Airspace	T3SV.1.12	NPSU Post Constraint Submissions		Juantitative	Safety	1-2-3	1
AJO, ANG, AFS				Airspace	X3- METRIC-14	Replanned Airborne Constraint Intersected Operational Volumes		ccuracy	Safety	1-2-3	1
AJO, ANG, AFS				Airspace		NPSU Replanned Airborne Constraint		uantitative)	Safety	1-2-3	1
AJO, ANG, AFS				Airspace	X3-METRIC-39	Loss of Well Clear	01		Safety	1-2-3	1
AJO, ANG, AFS				Airspace		3D Distance		istance	Safety	1-2-3	1
AJO, ANG, AFS				Airspace	X3- METRIC-20	Spacing		istance	Safety	1-2-3	1
AJO, ANG, AFS	-			Airspace		Tactical In-flight Separation		afety	Safety	7+	Future State
AJO, ANG, AFS	-		Surface	Airspace				istance	Safety	1-2-3	1
AJO, ANG, AFS		Sequencing		Airspace		Operational Status		ualitative)	Efficiency	7+	Future State
AJO, ANG, AFS				Airspace	Future	Reservation Order	_ O 1		Efficiency	7+	Future State
AJO, ANG, AFS			Optimization	Airspace	Future	Consistent Flow			Efficiency	1-2-3	1
AJO, ANG, AFS				Airspace	Future	Wake Vortex Separation; Sequence on Final		ate	Efficiency	1-2-3	1
AJO, ANG, AFS				Airspace	UTE 49	Virtual Traffic		ate	Efficiency	1-2-3	1
AJO, ANG, AFS				Airspace	Future	Live Traffic		ate	Efficiency	4-5-6	Future State
AJO, ANG, AFS		Operational Volumes	Operational Volume Size x, y, z	Airspace	X3- METRIC-9	Latitude		uantitative)	Safety	1-2-3	1
AJO, ANG, AFS				Airspace		Longitude		uantitative)	Safety	1-2-3	1
AJO, ANG, AFS				Airspace		Altitude		uantitative)	Safety	1-2-3	1
AJO, ANG, AFS			Route	Airspace	X3- METRIC-2	Route Active Operational Volumes		ccuracy	Efficiency	1-2-3	1
AJO, ANG, AFS			Airspace	Airspace	X3- METRIC-1	Airspace Active Operational Volumes		ccuracy	Efficiency	1-2-3	1
AJO, ANG, AFS			Class D	Airspace	X3-METRIC-40	Class D Active Operational Volumes		ccuracy	Efficiency	1-2-3	1
AJO, ANG, AFS		Communication	PSU Reporting	Airspace	X3- METRIC-37	Reported Flights Nearby		ccuracy	Safety	1-2-3	1
AJO, ANG, AFS			Contingency Updates	Airspace	X3- METRIC-26	Contingent Status		ccuracy	Safety	1-2-3	1
AJO, ANG, AFS			[[Airspace	X3-METRIC-22	Non-Conforming Status	0 /	ccuracy	Safety	5-2-3	1
AJO, ANG, AFS			ATC Interaction	Airspace	UTE 51	ATC Communications	0	ualitative)	Safety	1-2-3	1
AJO, ANG, AFS		Status Monitoring	Other Service Providers	Airspace	UTE 53	Vehicle Status	0	ualitative)	Safety	4-5-6	Future State
AJO, ANG, AFS				Airspace		Fleet Status	0	ualitative)	Safety	4-5-6	Future State
AJO, ANG, AFS				Airspace		Terminal Status	0	ualitative)	Safety	4 -5 - 6	Future State
AJO, ANG, AFS				Airspace	UTE 52	Airspace Service Providers	0	ualitative	Safety	4 -5 - 6	Future State
AGC, ATR, ANG, AJO		Information Integrity	Validation Tokens	Airspace	X3-METRIC-36	Request Rate	Ŭ F		Efficiency	1-2-3	1
AGC, ATR, ANG, AJO				Airspace		Unsuccessful Response		ccuracy	Safety	1-2-3	1
AGC, ATR, ANG, AJO				Airspace		NPSU Registration		Jualitative	Safety	1-2-3	1
AGC, ATR, ANG, AJO				Airspace	T3SV.1.2	NPSUTime		ualitative	Safety	1-2-3	1
AGC, ATR, ANG, AJO				Airspace		NPSU Time Review	- <u> </u>	Jualitative	Safety	1-2-3	1
AGC, ATR, ANG, AJO				Airspace	T3SV.1.4	NPSU Time Acceptance		ualitative	Safety	1-2-3	1
AGC, ATR, ANG, AJO			Updates	 Airspace 		NPSU Time Position Update		ualitative	Safety	1-2-3	1
				- mopace			\square				-

Data Elements (10 of 11)

	Reliability Security Contingency Updates	 Airspace Airspace Airspace Airspace Airspace Airspace 	T3SV.1.11 T3SV.1.17 Future X3-METRIC-29	Message Dropouts Tablet to NOP Message Security	0	Accuracy Accuracy Qualitative	Safety	1-2-3 1-2-3 1-2-3	1 1 1
		Airspace Airspace	Future	Message Security	Ō	Qualitative			-
		Airspace					Safety	1-2-3	1
Message Latency	Contingency Updates		X3- METRIC-29						
		Airsnace	112 11121110 22	PSU Contingent Update		Time		5-2-3	1
		- mapace	T3SV.1.7	NPSU Contingent Update	0	Time	Safety	1-2-3	1
		Airspace	X3- METRIC-15	Constraint Plan Update	0	Time	Safety	1-2-3	1
		Airspace	T3SV.1.7	NPSU Constraint Update	0	Time	Safety	1-2-3	1
		Airspace	X3- METRIC-23	Non-Conforming Status	0	Time	Safety	5-2-3	1
		Airspace	T3SV.1.8	NPSU Non-Conforming Update	0	Time	Safety	1-2-3	1
pace	Network to Network	Airspace	X3- METRIC-33	Time PSU to Discovery	0	Time	Safety	5-2-3	1
gration		Airspace	T3SV.1.6	Time Vehicle to NOP	Õ	Time	Safety	1-2-3	1
ormance		Airspace	X3- METRIC-34	Time PSU to PSU		Time	Safety	1-2-3	1
		Airspace	T3SV.1.9	NPSU Consistency		Accuracy			1
structure Vertiport Safety Plan	Safety Dimensions	Range	UTE 1	TLOF		Distance			1
gn	concept of menorial states								1
P.,									1
									1
Halfaart Safatu Diaa	Cofee Dimensions								1
Heliport Safety Plan	Safety Dimensions								-
									1
									1
					<u> </u>				1
									1
Operation Turnaround	Pre-flight	Range	UTE 24	Function & Reliability		Rate			Future State
		Vehicle	UTE 23	Energy Resupply	0	Time	Efficiency	1-2-3	1
		Vehicle	Future	Load	0	Time	Efficiency	1-2-3	1
structure Landing Conditions	ISA	Range	UTE 10	Delta ISA		Distance	Safety	1-2-3	1
ormance Downwash	Rotor	Range	UTE 5		Õ	Distance	Safety	1-2-3	1
Operation Turnaround	Pre-flight		UTE 24	Function & Reliability			Efficiency	Future State	Future State
-					- - -				1
									1
Acoustics Evoluption	Acoustics Missophone Array	-							1
	· · · · ·		ACOUSTICS-1	Acoustics Analysis					1
									1
	Acoustics Wind Evaluation		ACOUSTICS-2		- - -				-
			_						1
									1
	Acoustics Weather Evaluation		ACOUSTICS-3			Quantitative			1
						Quantitative			1
		Range		Air Pressure		Quantitative	Community Acceptance	4+	1
		Range		Temperature		Quantitative	Community Acceptance	4+	1
		Range		Humidity		Quantitative	Community Acceptance	4+	1
Range Weather	Range Weather Stations	Range	WX -1	Wind Speed- Campbell Scientific Wx Tower		Rate	Safety	1-2-3	1
		Range	WX -2	Wind Direction- Campbell Scientific Wx Tower	Ō	Rate	Safety	1-2-3	1
			WX -3	Air Temperature- Campbell Scientific Wx Tower					1
			WX -4						1
									1
				· · · · · · · · · · · · · · · · · · ·					1
						-			1
									1
			WX-8	SOUAK					1
									Future State
							Safety	Future State	Future State
				· · · · · · · · · · · · · · · · · · ·					L
Vehicle		0		AIR Aircraft Evaluation Group	0	Qualitative	Safety	Future State	Future State
Infrastructure		0			0	Qualitative	Safety	Future State	Future State
Passenger Cabin		0			0	Qualitative			
Automation Systems		Ō			Q	Qualitative	Safety	Future State	Future State
st	n Heliport Safety Plan Provide the observation of the safety Plan Provide the safety Plan Coperation Turnaround Downwash Operation Turnaround Acoustics Evaluation Acoustics Evaluation Range Weather Pilot School Vehicle Urbicle Vehicle Infrastructure Passenger Cabin	n Heliport Safety Plan Safety Dimensions tructure Landing Conditions ISA tructure Landing Conditions ISA Downwash Rotor Operation Turnaround Pre-flight Acoustics Evaluation Acoustics Microphone Array Evaluation Acoustics Wind Evaluation Acoustics Evaluation Acoustics Weather Evaluation Range Weather Range Weather Stations firstion Pilot Pilot School U Vehicle Infrastructure Infrastructure Infrastructure Passenger Cabin Infrastructure	n A ange Range Vehicle Vehicle Range Range	n Range UTE 2 Range UTE 3 Heliport Safety Plan Safety Dimensions Range UTE 4 Range UTE 1 Range UTE 1 Range UTE 3 Range UTE 1 Range UTE 3 Range UTE 3 Operation Turnaround Pre-flight Range UTE 23 Vehicle UTE 24 Vehicle Vehicle UTE 24 Vehicle Vehicle Vehicle UTE 24 Vehicle Vehicle Vehicle Vehicle Vehicle Downwash Rotor Range Range UTE 24 Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Acoustics Evaluation Acoustics Wind Evaluation Range Range Acoustics Weather Evaluation Range Range Range Range WX -1 Range Range Range Range WX -1 Range Range Range Range WX -1 <td>n i Bange UTE 2 FATO Bange UTE 3 Safety Area Parking Separation Parking Separation Heliport Safety Plan Safety Dimensions Image UTE 1 TUD Facturguiar Coperation Turnaround Pre-flight Image UTE 2 FATO Coperation Turnaround Pre-flight Image UTE 2 FATO Coperation Turnaround Pre-flight Image UTE 2 Farth Coperation Turnaround Pre-flight Image UTE 3 Safety Area Turuaround Pre-flight Image UTE 3 Safety Area Coperation Turnaround Pre-flight Image Image UTE 3 Operation Turnaround Pre-flight Image Image Image Operation Turnaround Pre-flight Image Image Image Acoustics Evaluation Acoustics Microphone Array Range Acoustics Analysis Evaluation Image Acoustics Wind Evaluation Image Acoustics Analysis</td> <td>n Parge UTE 2 FATO Image UTE 3 Fator Image Imag</td> <td>n</td> <td>n i ange UT2 FATO Distance Safety Heliport Safety Plan Safety Dimensions inage UT2 FATO Distance Safety Heliport Safety Plan Safety Dimensions inage UT2 TLOF Circular Distance Safety Operation Turnaround Per-flight inage UT2 FATO Distance Safety Operation Turnaround Per-flight Inage UT2 FATO Distance Safety Operation Turnaround Per-flight Inage UT2 A Pancing Separation Distance Safety Operation Turnaround Per-flight Inage UT2 A Pancing Separation Distance Safety Operation Turnaround Per-flight Inage UT2 A Pancing Separation Distance Safety Operation Turnaround Per-flight Inage UT2 A Pancing Separation Distance Safety Operation Turnaround Per-flight Inage UT2 A Pancincin S Reliability Dis</td> <td>n</td>	n i Bange UTE 2 FATO Bange UTE 3 Safety Area Parking Separation Parking Separation Heliport Safety Plan Safety Dimensions Image UTE 1 TUD Facturguiar Coperation Turnaround Pre-flight Image UTE 2 FATO Coperation Turnaround Pre-flight Image UTE 2 FATO Coperation Turnaround Pre-flight Image UTE 2 Farth Coperation Turnaround Pre-flight Image UTE 3 Safety Area Turuaround Pre-flight Image UTE 3 Safety Area Coperation Turnaround Pre-flight Image Image UTE 3 Operation Turnaround Pre-flight Image Image Image Operation Turnaround Pre-flight Image Image Image Acoustics Evaluation Acoustics Microphone Array Range Acoustics Analysis Evaluation Image Acoustics Wind Evaluation Image Acoustics Analysis	n Parge UTE 2 FATO Image UTE 3 Fator Image Imag	n	n i ange UT2 FATO Distance Safety Heliport Safety Plan Safety Dimensions inage UT2 FATO Distance Safety Heliport Safety Plan Safety Dimensions inage UT2 TLOF Circular Distance Safety Operation Turnaround Per-flight inage UT2 FATO Distance Safety Operation Turnaround Per-flight Inage UT2 FATO Distance Safety Operation Turnaround Per-flight Inage UT2 A Pancing Separation Distance Safety Operation Turnaround Per-flight Inage UT2 A Pancing Separation Distance Safety Operation Turnaround Per-flight Inage UT2 A Pancing Separation Distance Safety Operation Turnaround Per-flight Inage UT2 A Pancing Separation Distance Safety Operation Turnaround Per-flight Inage UT2 A Pancincin S Reliability Dis	n

Data Elements (11 of 11)

AFS		Operations		0		Aircraft Certification Group	0	Qualitative	Safety	Future State	Future State
AFS		Maintenance		0			0	Qualitative	Safety	Future State	Future State
AFS		Maintenance School		0			0	Qualitative	Safety	Future State	Future State
AFS		Manufacturing		0		FS AEG Aircraft Evaluation Group AFS 300	0	Qualitative	Safety	Future State	Future State
AFS		Registration	Vehicle Partners	v	/ehicle	Flight Readiness Review	0	Qualitative	Safety	1-2-3	1
AFS			Airspace Partners	A	virspace	Airspace Annex Agreements	0	Qualitative	Safety	1-2-3	1
AFS			Vertiport	R	lange	Range Annex Agreements	0	Qualitative	Safety	1-2-3	1
AFS	Certification		Heliport	R	lange	Range Annex Agreements	0	Qualitative	Safety	1-2-3	1
All	Planning	Regulations		0			0	Qualitative	Safety	Future State	Future State
AIR, AFS, AVP	Continued	Off-Nominal Report	Incidents & Accidents	0 V	/ehicle		0	Qualitative	Safety	1-2-3	1
AIR, AFS, AVP	Operational Safety	Contingencies	Incidents & Accidents	0 V	/ehicle		0	Qualitative	Safety	1-2-3	1
AIR, AFS	Monitor	Off-Nominal Report	Vehicle Deviations	0 V	/ehicle		0	Qualitative	Safety	1-2-3	1
AIR, AFS		Conformance	Vehicle Deviations	0 V	/ehicle	Pilot (near term) or Vehicle Deviations	0	Qualitative	Safety	1-2-3	1
AIR, AFS		Off-Nominal Report	Service Difficulty	0 V	/ehicle		0	Qualitative	Safety	1-2-3	1
AIR, AFS		Vehicle Health	Service Difficulty	0 V	/ehicle	Subsystem Failures: log failure, total time running, time since last ma	in 🔂	Qualitative	Safety	1-2-3	1
AIR, AFS		Maintenance	Maintenance Reports	0 V	/ehicle	Scheduled & Unscheduled Maintenance	0	Qualitative	Safety	1-2-3	1
AIR, AFS		Off-Nominal Report	Mechanical Interruption Summary	0 V	/ehicle		0	Qualitative	Safety	1-2-3	1
AIR, AFS		Vehicle Health	Malfunction & Defect	0 V	/ehicle	Subsystem Failures: log failure, total time running, time since last ma	ir 🔂	Qualitative	Safety	1-2-3	1
AFS, AJO		Off-Nominal Report	Airspace Technical Summary	A	virspace		0	Qualitative	Safety	1-2-3	1
AJO, AVP		Separation	Infrastructure Mishap		irspace		0	Qualitative	Safety	1-2-3	1
AFS, AVP		Off-Nominal Report	Airspace Failures	A	irspace		0	Qualitative	Safety	1-2-3	1
ANG		Message Latency	Airspace Technical Failures	O A	lirspace		0	Qualitative	Safety	1-2-3	1

3.2 Data Elements Card Overview

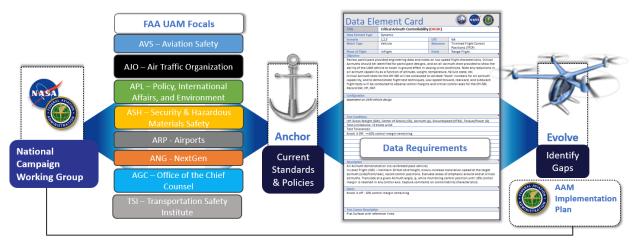


Figure 3.12. NASA-FAA National Campaign Working Group Overview

Data Collection Plan: The purpose of the Data Element Plan is to assemble various research tasks, supporting data elements and SMEs from the FAA and NASA required to execute each phase of the National Campaign. To that end, the plan provided a points of contact list which records the policy and technical POCs, SMEs assigned to each task, the data element and the required equipment needed for data capture from each task.

Data Collection Plan Objectives: The Data Plan contains primary and secondary objectives along with the success criteria for each objective. To ensure traceability throughout the National Campaign test, each data element was filtered through a regulatory and technical POC in the National Campaign Working Group (NCWG), which took place weekly for over 18 months.

Objectives

The following tables itemize the objectives for the data collection as it relates to NCWG Data Elements Cards.

Primary Objectives	
DCPPO	SUCCESS CRITERIA
Provide situational awareness for all NC participants	All NC participants have access to a regularly updated
to all other NC participants	POC list for all other NC participants
Standardize the data captures by the SMEs	SMEs provided with data element cards upon which to
	record the data captures needed by the data managers
Provide SMEs with the information needed to	SMEs have regularly updated required data capture
engage in a data capture task	equipment lists and associated reference material
Provide agency managers with situational	Agency managers have access to a regularly updated
awareness of all tasks being executed and the	data collection plan showing which data captures have
processes for all data captures	occurred and which ones are still pending and who are
	the POCs for each

Table 3.13. Data Collection Plan Primary Objectives and Success Criteria.

Table 3.14. Data Collection Secondary Objectives and Success Criteria.

Secondary Objectives	
DCPPO	SUCCESS CRITERIA

Provide all NC participants with references for each data element capture	NC participants provided with regularly updated data element references improving the coordination of efforts across the NC
Provide SMEs with situational awareness on	SMEs are empowered to identify intersecting data
intersecting data capture tasks	capture tasks and interface with their counterparts on
	those tasks.

Data Collection Plan Scope and Rationale: The scope of the Data Collection Plan is to illuminate participants managing each task and data element and to provide the SMEs, selected to perform the research tasks, with clear guidance on the information, metrics and fidelity that needs to be captured for analysis. The Data Collection Plan is not intended to be the authority on the assignment of tasks, nor is it intended to replace applicable standards for that task.

Data Review: Once the data have been captured by a given SME, those data will be provided to the NASA and the FAA point of contact identified on the Data Element Cards, for processing and review with the Data Management team. After review, adjustments to the Data Element Cards may occur.

<u>Related Documentation</u>: Table 3.15 contains a list of documents of supplemental information to guide SMEs and Data Managers in the application of documentation.

Reference Documents	
DOCUMENT NUMBER	DOCUMENT TITLE
AFOP-7900.3-023 Revision G	Airworthiness and Flight Safety Review Process
AAM-NC-006-001	NC-DT Mishap Plan
AAM-NC-002-001	NC Sub-Project Plan
AAM-NC-005-001	NC Scenarios Document
AAM-NC-32-001	National Campaign Dry Run Build Up 1 Control Room Plan
AAM-NC-031-001	Helicopter Statement of Work
AAM-NC-018-001	UTE Spreadsheet

Table 3.15. List of Reference Documents.

Data Collection Instrumentation List: Table 3.16 contains a list of the Data Collection Instrumentation List to be provided by NASA and integrated into the vehicle. The data collection instrumentation will be installed by the contractor and inspected by AFRC.

Table 3.16. Data Collection Instrumentation List.

Data Collection Instrumentation List
Instrumentation Box-DGPS/INS rover and battery
ATI Tablet
FIAPA Tablet

<u>Vehicle Instrumentation List</u>: Vehicle Instrumentation assets enable vehicle tracking, ATI connectivity, more precise vehicle maneuvering, and the collection of baseline vehicle performance data.

Table 3.17. Vehicle Instrumentation List.

Vehicle Instrumentation List
ADS-B Out and C-band Beacon
RNAV
Interactive Authoring Display

<u>Range Equipment List</u>: Range Equipment List encompasses the equipment and interfaces required for providing data and real-time communications and situational awareness in support of conducting National Campaign flight tests.

Table 3.18. Range Equipment List.

Range Equipment List
Air-to-ground UHF or VHF voice communications
Ground-to-ATC communications voice communications via UHF or VHF
Ground-to-ground voice communications via Land Mobile Radio (LMR) on VHF at 130 to 174 MHz and UHF at
225 to 500 MHz
Video recording capabilities, which may be aided by use of a deployable video van
C-band Beacon tracking to facilitate vehicle position tracking
Meteorological instruments including weather stations and Sonic Detection and Ranging (SODAR) sensors

<u>Airspace</u>: All Dry Run flights will occur within the R-2508 complex. The majority of Dry Run flights will occur within the R-2515 complex, to allow communication between the MOF and helicopter. For the first build-up, the vehicle will be communicating with the MCC, so line-of-sight MOF communications matters were not of concern.

NCWG Data Element Cards: The Data Element Plan uses Data Element Cards to capture data for tasks or sub-tasks. Data Element Cards were reverse-engineered from the NC data network that mapped each scenario, maneuver, or event to the correct instrumentation package as well as the phase of flight. The following breakdown is an example of the Data Element Card drop-down menus designed for multiple users to title the data required and annotate the applicable regulations the data element will support.

Data Blement Type Static Scenario All WEtk Type Static Scenario All Metric Type Static Phase of Fight Post-Fight Detective Weather The objective Weather Configuration N/A N/A Scenario Configuration N/A N/A N/A Configuration N/A N/A N/A Test Conditions Scenario 1. Conduct site surve/ Outprotective area to site with the scenario scenario scenario scenario 2. Deploy weather sensing equipment Outprotective 3. Perform quality control and formating checks Site of the scenario of t	Title	Post-flight Weather D	ata & Study		Test Course Descriptio			
Scenario All UTE All Metric Type Infrastructure Maneuver N/A Pasc of Flight Post-Flight Control Weather Objective The objectives are to (1) collect data that describe atmospheric conditions near helipads/vertiports during flight tests, (2) deliver data to stakeholders post-flight Image: Configuration The objective sare to (1) collect data that describe atmospheric conditions near helipads/vertiports during flight tests, (2) deliver data to stakeholders post-flight Success Criteria Collective Track flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight test activities and distribute data to stake track atta during flight activities and during flight activities and during flight activities and during flight activities and during flight activiti	Data Element Type	Static			g lest course Description			
Metric hype Infrastructure Maneveet N/A Phace of Fight Out-Fight Event Weather Objective The objective are to (1) collect data that describe atmospheric conditions near helipads/vertiports during flight tests. Collect track data during flight test activities and distribute data to stake the discribe atmospheric conditions near helipads/vertiports during flight tests. Collect track data during flight test activities and distribute data to stake the discribe atmospheric conditions near helipads/vertiports during flight tests. Collect track data during flight test activities and distribute data to stake the discribe atmospheric conditions near helipads/vertiports during flight tests. Success Ciferia Collect track data during flight test activities and distribute data to stake the discribe atmospheric conditions near helipads/vertiports during flight tests. Success Ciferia N/A 10 Instrumentation Package Task Velocity tracking Success Ciferia N/A 11 Instrumentation Package 300 m/s Desired 150 m/s^2 12 Task LackTong jump Etween Time Spant Resolution 0.25 kts 12 Task LatXtong jump Etween Time Spant Resolution 0.25 kts 13 Perform quality control and formatting checks Spant mestas the data		2 (2 (2 ())						
Ministry Ministry Market Big Phase of Fight Post-fight Vertice Objective Weather Weather Objective AC 150/350 2C Heligort Design AC 150/350 2C Heligort Design The objectives are to (1) collect data that describe atmospheric conditions near helipads/vertiports during flight tests, (2) deliver data to stakeholders post-flight Success Criteria Configuration Success Criteria Velocity tracking N/A N/A Success Criteria N/A Success Criteria Velocity tracking Required 300 m/s Success Criteria 10 Fast Velocity tracking Required 100 m/s ² Success Criteria 11 Task Acceleration Tracking Required 100 m/s ² Success Substance 12 Deploy weather-sensing equipment Success Criteria 13 Perform operations checks Name Substance 14 Function Tracking Required 100 m/s ² 15 Perform operations checks Nationation Package Natinture Miscompare (Sris-			0.202					
Phase of Flight Post-Flight Dest Flight Dest Flight Dest Flight The objectives are to (1) collect data that describe atmospheric conditions near helipads/vertiports during flight tests, (2) deliver data to stakeholders post-flight Collect track data during flight test activities and distribute data to stake flight (2) deliver data to stakeholders post-flight Success Criteria Collect track data during flight test activities and distribute data to stake flight (1) Pass/Fail Criteria N/A Instrumentation Package Success Criteria Collect track data during flight test activities and distribute data to stake flight for tracking Required 300 m/s Desired 150 m/s Instrumentation Package N/A Instrumentation Package Stash Required 10 m/s Required 10 m/s Instrumentation Package Stash Resolution 10 m/s Required 10 m/s 10 m/s Required 10 m/s 10 mane Stash Resolution 10 mane Stash Resolution 10 mane Stash Resolution 0.25 vis to 10 mane Stash Resolution 0.25 vis to			Maneuver	N/A				
Objective 14 CHR §77.23 Helipot imaginary surfaces. (2) deliver data to stakeholders post-flight (3) deliver data to stakeholders post-flight (4) deliver data to stakeholders post-flight (4) deliver data to stakeholders post-flight (4) deliver data to stakeholders post-flight (5) deliver data to stakeholders post-flight (6) deliver data to stakeholders post-flight (7) deliver data will be collected viring National Campaign flight activities and made available post-flight for stakeholders to ue in their analyse. Surface weather data will be collected/recorded at 1-secord seather data will be collected/recorded at 1-secordedat 1-secorder solution, potention <	Phase of Flight	Post-Flight	Event	Weather				
The objectives are to [1] collect data that describe atmospheric conditions near helipads/vertiports during flight tests. Collect track data during flight test activities and distribute data to stake flight Configuration Configuration N/A N/A Instrumentation Package N/A Test Conditions Encode at the stake of the s	Objective							
(2) deliver data to stakeholders post-flight Success Orieris Collect track data during flight test activities and distribute data to stake holders post-flight (2) deliver data to stakeholders post-flight Success Orieris Collect track data during flight test activities and distribute data to stake holders post-flight (2) deliver data to stakeholders post-flight Success Orieris N/A (2) deliver data to stakeholders post-flight Task Collect track data during flight test activities and distribute data to stake holders post-flight or track data during flight test activities and distribute data to stake holders post-flight or track data during flight test activities and distribute data to stake holders post-flight or track data during flight test activities and distribute data to stake holders post-flight or track data during flight activities and distribute data to stake holders post-flight or track data will be collected during flight activities and made available post-flight for taskeholders to us in their analyses. Surface weather data will be collected/recorded at 1-second resolution, and SoDAR teored as verifies or track data will be collected/recorded at 1-second resolution, and SoDAR teored as verifies or the source or transmission 10 Automent NAAP DOC Pavid Zahn 11 Conception Required 2 bavid Zahn 12 Task Resolution 2 Str (DSBR) (GSF) 13 Conception Resolution 2 Str (DSBR) (GSF) 14 Task Task <	The objectives are to	(1) collect data that describe ate	ocobacic conditions par	r balinade /vertigerte during flight teste				
Configuration N/A N/A Velocity tracking Required 300 m/s Desired 1. Conduct bis survey Est Conditions 2. Deploy weather-sensing equipment Acceleration Tracking 3. Perform operations checks Est Manuer table of the survey 2. Deploy weather-sensing equipment Acceleration Tracking 3. Perform operations checks Estored weather data 5. Distribute data State of the survey 2. Deploy weather-sensing equipment Acceleration Package 1. Messure and record weather data State of the survey 5. Perform guality control and formatting checks Environmentation Package 6. Distribute data Name State of the survey State of the survey Description Required 2000 ft Weather data will be collected during National Campaign flight activities and made available post-flight for stateholders to use in their analyses. Surface weather data will be collected/recorded at 1-second resolution, and State of the survey of the sur			nospheric conditions nea	r nenpads/vertiports during ringnic tests,	Success Criteria		activities and dis	stribute data to stakeholders
Configuration Task Velocity tracking N/A Required 300 m/s Desired 150 m/s Instrumentation Package Name SBSM Resolution 0.25 k ts 1. Conduct site survey 2. Deploy weather-sensing equipment Required 300 m/s Desired 0.25 k ts 3. Perform operations check on equipment 4. Mesure and record weather data SBSM Resolution 0.25 k ts 4. Mesure and record weather data 5. Perform quality control and formatting checks Resolution 0.01 Degree 5. Distribute data Task Atticute Miscompare (B/S - Pressure Altitude) [Miscompare (B/S - Pressure Altitude) [Pass/Fail Criteria	N/A		
Configuration NA WA 300 m/s Desired 150 m/s Instrumentation Package Resolution 0.25 kts Task Acceleration Tracking Resolution 0.25 kts Instrumentation Package Name SBSM Resolution 0.25 kts Instrumentation Package Resolution 0.25 kts Resolution 0.25 kts Name SBSM Resolution 0.25 kts <td< td=""><td></td><td></td><td></td><td></td><td>Instrumentation Packa</td><td>ige</td><td></td><td></td></td<>					Instrumentation Packa	ige		
N/A Instrumentation Package 1.00 m/s Test Conditions Instrumentation Package Instrumentation Package Name S55M Resolution 0.25 x ts 2. Conduct site survey Desired 0.m/s/2 Desired 0.m/s/2 3. Perform operations check on equipment Accertation Package Iso Minute Pash Resolution 0.25 x ts 4. Messure and record weather data Iso Minute Pash Required 10 m/s/2 Desired 0.05 x ts 5. Perform quality control and formatting checks Iso Minute Pash Resolution 0.01 Degree 6. Distribute data Task Altridue Miscompare (Gr5 - Pressure Altridue) (Max Adjusted) Description Required 2000 Fr Desired 585M Name SBAM Resolution 25ft (DSB) (6.55 Task Time Span Validation (Update Interval Interval) 700 ms Task Time Span Validation (Update Interval Interval) 700 ms Task Time Span Validation (Update Interval I					Task	Velocity tracking		
Test Conditions Name SBSM Resolution 0.25 ks 1. Conduct site survey I. Conduct site survey Description Task Acceleration Tracking Resolution 0.25 ks 2. Deploy weather-sensing equipment Betrom operations Scheck on equipment Name SBSM Resolution 0.25 vs ks 3. Perform operations Scheck on equipment Name SBSM Resolution 0.25 vs ks 4. Measure and record weather data S. Perform quality control and formatting checks Description Description Description Description Staff and the collected during National Campaign flight activities and made available post-flight for task Task Resolution 2.50 ms Alder will be collected during National Campaign flight activities and made available post-flight for taskeholders to use in their analyses. Surface weather data will be collected/recorded at 1-second resolution, and SoDAR records werage wind data every 20m (SH) Task Resolution 2.50 ms Materia VII De collected/recorded at 1-minute resolution. The SoDAR records werage wind data every 20m (SH) Task Resolution 2.50 ms 10 Task Alfermate NASA POC Alex Moreno Task Task Resolution 2.50 ms Required 2.58.2					Required	300 m/s	Desired	150 m/s
Test Conditions Acceleration Tracking Image: Condition Tracking 1. Conduct site survey Imature StaSM Resolution 0.25~2 kts 2. Deploy weather sensing equipment End of my/s2 Desired 0.05~2 kts 3. Perform operations check on equipment End of my/s2 Desired 0.05~2 kts 4. Measure and record weather data End of my/s2 Desired 0.05~2 kts 5. Perform operations check on equipment End of my/s2 Desired 180 ft (55 Metres) 5. Distribute data End of musting checks Ensemble Ensemble Ensemble 5. Distribute data StaM Ensemble Ensemble Ensemble 1 Description StaM Resolution 25ft (ADSB) (6.55 Task Task Task Resolution 25ft (ADSB) (6.55 Task Untrue Span Validation (Update Interval latency) Resolution 25ft (ADSB) (6.55 Task Untrue Span Validation (Update Interval latency) Resolution 25ft (ADSB) (6.55 Task Untrue Span Validation (Update Interval latency) Resolution 25ft (ADSB) (6.55 Task Untrue Span Validation (Update Interval latency) Resolution 20 ms Task Untrue Span Validation (Update Interval latency) Resolution 250 m	N/A				Instrumentation Packa	ige		
Test Conditions Instrumentation Package 1. Conduct site survey Instrumentation Package 2. Deploy weather-sensing equipment Required 2624.67 ft (800 Meters) Desired 3100 ft (55 Meters) 3. Perform operations Secks on equipment Required 262.46.7 ft (800 Meters) Desired 100 ft (55 Meters) 5. Perform quanty control and formatting checks 0.01 Degree Name S85M Resolution 0.01 Degree 6. Distribute data Name S85M Resolution 0.01 Degree Name S85M Resolution 0.01 Degree 1. Instrumentation Package Resolution 0.01 Degree Name S85M Resolution 0.01 Degree 1. Instrumentation Package 2000 ft Desirbute data Desirbute data Desirbute data 2000 ft Desirbute 25t (ADS8) (6.25 Ttable data) Description Name S85M Resolution 25t (ADS8) (6.25 Ttable data) 25t (ADS8) (6.25 Ttable data) 25t (ADS8) (6.25 Ttable data) SobAken data will be collected during National Campaign flight activities and made available post-flight for stakeholders to use in their analyses. Surface weather data will be collected/recorded at 1-second resolution, and SobAR records average wind data every 20m (65t)							Resolution	0.25 kts
Test Conditions 1. Conduct site survey 1. Conduct site survey 1. Conduct site survey 1. Survey surv					Task	Acceleration Tracking		
Cell Conductions SBSM Resolution 0.25°2 kts 12. Onduct site survery 2. Deploy weather-sensing equipment 3. Required 2624.65 /rt (B0D Meters) Desire main intraction 2. Deploy weather-sensing equipment 3. Reform operations Check on equipment Desire main intraction							Desired	6 m/s^2
1. Conduct site survey 1. Conduct site survey 1. Conduct site survey 2. Deploy weather sensing equipment 3. Deploy weather sensing equipment 1. Conduct site survey 4. Measure and record weather data 5. Perform conjecting control and formatting checks 0. Depressure Altitude (flaw vs. Adjusted) 6. Distribute data 6. Distribute data 2. Stefform conjecting checks 0. Depressure Altitude (flaw vs. Adjusted) 6. Distribute data SaSM Resolution 2.50 Ft ft 1. Conduct site survey 2.50 ft Sast Resolution 2.50 ft 1. Conduct site survey Sast Resolution 2.50 ft 1.50 ft 1. Conduct site survey Sast Resolution 2.50 ft 1.50 ft 1. Conduct site survey Sast Resolution 2.50 ft 1.50 ft 1. Conduct site survey Sast Resolution 2.50 ft 1.50 ft 1.50 ft 1. Conduct site survey Sast Resolution 2.50 ft 1.50 ft 1.50 ft 1. Survementation Package Name Sast Resolution 2.50 ms Resolution 2.50 ms 1. Survementation Package Name Sast								
2. Deploy weather-sensing equipment 2624.67 ft (800 Meters) Desired 180 ft (55 Meters) 3. Perform operations check on equipment 4. Measure and record weather data Resolution 0.01 Degree 4. Measure and record weather data 5. Perform quality control and formatting checks Resolution 0.01 Degree 5. Distribute data 5. Distribute data 7ask Altitude Miscompare (GFS - Pressure Altitude) (Racompare (GFS - P							Resolution	0.25^2 kts
2. Deploy weather-sensing equipment 3. Deploy weather-sensing equipment 4. Measure and record weather data 4. Measure and record weather data 5. Distribute data 5. Distribute data 6.	 Conduct site survey 	/			12 Task	Lat/Long Jump Between Time Span		
	2. Deploy weather-ser	nsing equipment			Required		Desired	180 ft (55 Meters)
4. Mesarve and record weather data 4. Mesarve and record weather data 4. Mesarve and record weather data 5. Distribute data 700 PT 700 P	3. Perform operations	s check on equipment					1	
5. Perform quality control and formatting checks 6. Distribute data 6. Distribute data 6. Distribute data 7. Description 7. D	4 Measure and recor	d weather data						
6. Distribute data Instrumentation Package Instrumentation Package 25ft (DSB) (6.25) Name SBSM Resolution 25ft (DSB) (6.25) Task Time Span Validation (Update Interval Intervo) Resolution 25ft (DSB) (6.25) Weather data will be collected /uring National Campaign flight activities and made available post-flight for stakeholders to use in their analyses. Surface weather data will be collected/recorded at 1-second resolution, and SoDAR data will be collected/recorded at 2-minute resolution. The SoDAR records average wind data every 20m (65ft) Name SBSM Resolution 250 ms PAA Technical POC Alex Moremo Fasial Omar / Sovy Verma FAA Technical POC Alex Moremo FAA Technical POC Alex Moremo FAA Technical POC Alex Moremo FAA Technical POC FAA Technical POC Alex Moremo SBSM SBSM SBSM SBSM								
Description SB5M Resolution 25ft (ADSB) (6.25 Task Time Span Validation (Update interval latency) Required 2 secs (time of generated position Description Weather data will be collected during National Campaign flight activities and made available post-flight for stakeholders to use in their analyses. Surface weather data will be collected/recorded at 1-second resolution, and 50DAR data will be collected/recorded at 2-minute resolution. The SoDAR records average wind data every 20m (65h) Nation Tide Span Span Span Span Span Span Span Span		ntrol and formatting checks					Desired	50 Ft
Description D	6. Distribute data						Resolution	25ft (ADSR) (6.25 ft Ability
Description Pequired 2 secs (time of generated position Desired 700 ms Weather data will be collected during National Campaign flight activities and made available post-flight for stakeholders to use in their analyses. Surface weather data will be collected/recorded at 1-second resolution, and SoDAR data will be collected/recorded at 2-minute resolution. The SoDAR records average wind data every 20m (65ft) Name S95M Resolution 250 ms Harmate NASA POC David Zahn Name / Savay Verma FAA Periodical POC Alex Moreno FAA Periodical POC FAA Technical POC Wision Fish FAA Technical POC Wision Fish FAA Technical POC Wision Fish FAA Technical POC Wision Fish SaSM SaSM SasM								2.5ht (A0.5b) (0.25 ft Ability)
Description to transition 700 ms Weather data will be collected during National Campaign flight activities and made available post-flight for stakeholders to use in their analyses. Surface weather data will be collected/recorded at 1-second resolution, and SoDAR data will be collected/recorded at 2-minute resolution. The SoDAR records average wind data every 20m (65ft) Name S65M Resultant 250 ms MASA POC David Zahn Altermiste INSA POC Faisal Omar / Sovy Verma FA FAA Folksy POC Altermiste INSA POC Faisal Omar / Sovy Verma FA FAA Folksy POC Altermiste INSA POC Wede Price FAA FAA Folksy POC Wede Price S65M S65M S65M								
Description Weather data will be collected during National Campaign flight activities and made available post-flight for stakeholders to use in their analyzes. Surface weather data will be collected/recorded at 1-second resolution, and SoAR data will be collected/recorded at 2-minute resolution. The SoDAR records average wind data every 20m (65ft) EAX Technical POC Wision Flich FAA Technical POC Wisi					Required		Desired	700 mt
Description Weather data will be collected during National Campaign flight activities and made available post-flight for stakeholders to use in their analyses. Surface weather data will be collected/recorded at 1-second resolution, and SoDAA data will be collected/recorded at 2-minute resolution. The SoDAR records average wind data every 20m (65ft) Detween 20-250m (65-8320ft) AGL. All data will be tagged with UTC time.					Instrumentation Packs			700 113
Wester data will be collected during National Campaign flight activities and made available post-flight for stakeholders to use in their analyzes. Surface weather data will be collected/recorded at 1-second resolution, and SoDAR data will be collected/recorded at 2-minute resolution. The SoDAR records average wind data every 20m (65ft) FAA Technical POC Vision Flih SaSAM	Description						Resolution	250 ms
Weather data will be collected during National Campaign high activities and made available post-light for stabeholders to use in their analyses. Surface weather data will be tagged with UTC time. 131 142 143 143 143 143 143 143 143 143 143 143			·	1 11 11 11 11 11 11 11	Requirements			
SoDAR data will be collected/recorded at 2-minute resolution. The SoDAR records average wind data every 20m (65ft) between 20-250m (65-820ft) AGL. All data will be tagged with UTC time.						David Zahn		
between 20-250m (65-820ft) AGL. All data will be tagged with UTC time. FAA Technical POC Wision Fish FAA Technical POC Wision Fish FAA Technical POC Wision Fish Seast								
between 20-250m (65-820ft) AGL All data will be tagged with UTC time. FAA Technical POC Wision Fish FAA Technical POC Wision Fish FAA Technical POC Wision Fish Season FAA Technical POC Wision Fish Season FAA Technical POC Wision Fish Season FAA Technical POC FAA	SoDAR data will be co	ellected/recorded at 2-minute res	solution. The SoDAR reco	rds average wind data every 20m (65ft)	13 FAA Policy POC			
Minimum Equipment List SBSM	between 20-250m (65	-820ft) AGL All data will be tage	red with UTC time.		FAA Technical POC			
14 SBSM			and the second second					
						List		
Data Collection Requirements						amanta		
High Precision Lat/Long in degrees or radians								

Figure 3.19. NCWG Data Element Cards.

2

Document Name: National Campaign Airspace Operations, Infrastructure and Data

 Header: Data Element Card, collaborative effort between NASA/FAA research with National Campaign.

Title: Name of Data Element that will be tested - assigned from UTE, MTE, Scenario's document, or Flight Test Plan.

Data El	ement Car	a	
Title	Spatial Data Integrity V	alidation	
Data Element Type	Static		
Scenario 1 Stati Metric Type 2 Dyna	T		
Phase of Flight	Pre-Flight	Event	Range Evalution

Static: Data Element type that does not involve flight. (Example Site evaluation)

Dynamic: Data Element type that does involve flight activity. (Example hover)

Data El	ement Card		- 😔 💇 🥮
Title	Spatial Data Integrity Validat	ion	
Data Element Type	Dynamic		
Scenario	1	UTE	1,2,3,4
Metric Type	Airspace	- Maneuver	N/A
Phase of Fligh		Event	Range Evalution
Objective 2 Infra	structure cle		

Airspace: Data Element Card, collaborative effort between NASA/FAA research with National Campaign.

Infrastructure: Data Element Card, collaborative effort between NASA/FAA research with National Campaign.

3 Vehicle: Name of Data Element that will be tested - assigned from UTE, MTE, Scenario's document, or Flight Test Plan.

Title	Spatial Data Integrity	Validation		
Data Element Type	Static	Static		
Scenario	1	UTE	1,2,3,4	
Metric Type	Infrastructure	Maneuver	N/A	
Phase of Flight	Pre-Flight	- Event	Range Evalution	
	-Flight light			

- 2 In-Flight: Any movement from departure, enroute, approach and taxi.
- 3 Post Flight: All post flight analysis.

Document Name: National Campaign Airspace Operations, Infrastructure and Data

	Data El	ement Cai	rd			
	Title	Spatial Data Integrity V	alidation			
3	Data Element Type	Static				
	Scenario	1	UTE	1,2,3,4		
	Metric Type	Infrastructure	Maneuver	N/A		
	Phase of Flight	Pre-Flight	Event	Range Evalution	*	
	Objective			Evalution		
			Acoust			
	Weather					
			-			
	 Range Evalu 	ation: Data broken down	for site selection, ev	aluation, analysis		
	and operation		for site selection, et	diddioil, dildiysis		
		: Data derived from flight	activities on coloct	drange		
		. Data derived from fight	activities of selecte	eu lange.		
	3 Acoustics: D	ata derived from acoustic	testing objectives.			
	4 Weather: Pr	e-In-Post flight weather co	entered data.			
4	Objective					
	To obtain standard devia	tions of spatial data providers t	to UAM navigation servi	es in the vertical and horizont	al axis.	
	Compare and contract th	e fidelity of Digital Terrain Eval	uation Databases (DTED) in use for UAM flight plannin	ng of point	
	in space departure and a	nproaches	Compare and contract the fidelity of Digital Terrain Evaluation Databases (DTED) in use for UAM flight planning of in space departure and approaches.			
in space departure and approaches.						
		pprodenes.				
		produces				
		pproduces				
		pproduces.				
		on statement of the test, o	defined by the funct	onal objectives derived fr	rom the	
	Objective: Missi	on statement of the test, o	•			
	 Objective: Missi Flight Test Plan, 	on statement of the test, o Scenarios Document, Fligh	ht Test Operations D	ocument. Will include inte		
	 Objective: Missi Flight Test Plan, 	on statement of the test, o	ht Test Operations D	ocument. Will include inte		
	 Objective: Missi Flight Test Plan, 	on statement of the test, o Scenarios Document, Fligh	ht Test Operations D	ocument. Will include inte		
	 Objective: Missi Flight Test Plan, 	on statement of the test, o Scenarios Document, Fligh	ht Test Operations D	ocument. Will include inte		
	 Objective: Missi Flight Test Plan, 	on statement of the test, o Scenarios Document, Fligh	ht Test Operations D	ocument. Will include inte		
	 Objective: Missi Flight Test Plan, 	on statement of the test, o Scenarios Document, Fligh	ht Test Operations D	ocument. Will include inte		
I	Objective: Missi Flight Test Plan, deliverable(s).	on statement of the test, o Scenarios Document, Flig Defining the "why" the tes	ht Test Operations D its are being conduct	ocument. Will include inte		
6	Objective: Missi Flight Test Plan, deliverable(s).	on statement of the test, o Scenarios Document, Fligh	ht Test Operations D its are being conduct	ocument. Will include inte		
6	Objective: Missi Flight Test Plan, deliverable(s).	on statement of the test, o Scenarios Document, Flig Defining the "why" the tes	ht Test Operations D its are being conduct	ocument. Will include inte		
9	Objective: Missi Flight Test Plan, deliverable(s).	on statement of the test, o Scenarios Document, Flig Defining the "why" the tes	ht Test Operations D its are being conduct	ocument. Will include inte		
9	Objective: Missi Flight Test Plan, deliverable(s).	on statement of the test, o Scenarios Document, Flig Defining the "why" the tes	ht Test Operations D its are being conduct	ocument. Will include inte		
9	 4 Objective: Missi Flight Test Plan, deliverable(s). Configuration Configuration: Landing Apple 1 	on statement of the test, o Scenarios Document, Flig Defining the "why" the tes	ht Test Operations D its are being conduct	ocument. Will include inte	ended	
9	 4 Objective: Missi Flight Test Plan, deliverable(s). Configuration Configuration: Landing Apple 1 	on statement of the test, o Scenarios Document, Flig Defining the "why" the tes	ht Test Operations D its are being conduct	ocument. Will include inte	ended	
9	 4 Objective: Missi Flight Test Plan, deliverable(s). Configuration Configuration: Landing Apple 1 	on statement of the test, o Scenarios Document, Flig Defining the "why" the tes	ht Test Operations D its are being conduct	ocument. Will include inte	ended	
9	 4 Objective: Missi Flight Test Plan, deliverable(s). Configuration Configuration: Landing Appendix Configuration: Landing Appendix Configuration: Landing Appendix Configuration: B vehicle test. 	on statement of the test, o Scenarios Document, Flig Defining the "why" the tes	ht Test Operations D its are being conduct	ocument. Will include inte	ended	
9	 4 Objective: Missi Flight Test Plan, deliverable(s). Configuration Configuration: Landing Appendix Configuration: Landing Appendix Configuration: B vehicle test. 	on statement of the test, o Scenarios Document, Flig Defining the "why" the tes oproach configuration (gear/fl ased on vehicle, respective	ht Test Operations D its are being conduct	ocument. Will include inte	ended	
9	 4 Objective: Missi Flight Test Plan, deliverable(s). Configuration Configuration: Landing Appendix Configuration: Landing Appendix Configuration: B vehicle test. Test Conditions Light and moderate turk 	on statement of the test, o Scenarios Document, Flig Defining the "why" the tes oproach configuration (gear/fl ased on vehicle, respective pulence levels	ht Test Operations D its are being conduct aps down) to make model series	ocument. Will include intered.	ended	
9	 4 Objective: Missi Flight Test Plan, deliverable(s). Configuration Configuration: Landing Appendix Configuration: Landing Appendix Configuration: B vehicle test. 5 Configuration: B vehicle test. 5 Configuration: B vehicle test. 5 Configuration: B vehicle test. 	on statement of the test, o Scenarios Document, Flig Defining the "why" the tes oproach configuration (gear/fl ased on vehicle, respective	ht Test Operations D its are being conduct aps down) to make model series	ocument. Will include intered.	ended	

6 Test Conditions: Conditions needed to baseline date for respective research. Includes weather, vehicle, and airspace simulations.

Document Name: National Campaign Airspace Operations, Infrastructure and Data

Description

 Starting from an altitude of greater than 10 ft., maintain an essentially steady descent to a prescribed landing point. It is acceptable to arrest sink rate momentarily to make last minute corrections before touchdown.

Accomplish a gentle landing with a smooth continuous descent, with no objectionable oscillations

3. Final position shall be the position that existed at touchdown. It is not acceptable to adjust the aircraft position

and heading after all elements of the landing gear have made contact with the pad.

Description: Detailed analysis of the "how" the tests will be conducted. Should align with the functions described in Objective statement.

8 Notes

This task is to evaluate the air vehicle control response characteristics to perform a precision landing. If there are pilot selectable response types to maneuver the vehicle in this task or if the loss of sensor feedback results in a change in response type, the air vehicle shall be assessed in each control response type for this task.

8 Notes: Place holder for applicable information that is not an objective or test description that will inform other entities, partners, or evaluators on aspects within the research.

Test Course Description 1. Conduct site survey 2. Deploy weather-sensing equipment

3. Perform operations check on equipment

4. Measure and record weather data

5. Perform quality control and formatting checks

6. Distribute data

9 Test Course Description: Step by step breakdown of how the test will be performed, may site previous test matrix.

H	Reference Guidance
	FAR Part 21.17B
	FAR Part 27 (23.2135) Controllability
	FAR Part 27 (23.2145) Stability
	ADS-33 Pirouette Task
	ADS-33 Landing Task
Γ	
Г	

Reference Guidance: The "anchor and evolve" of applicable regulations, policy, criteria, standards and advisory circulars.

Document Name: National Campaign Airspace Operations, Infrastructure and Data

0	Adequate Criteria	Operational State I: - CHR 1 to 3
	Desired Criteria	Operational State II, III and moderate turbulence and crosswinds – CHR 4 to 6

Adequate Criteria: Baseline performance, conformance, conditions needed to conduct tests. A meet or exceed benchmark of safety or validation.

Desired Criteria: Focused parameters of performance targeted in the tests.

	Instrumentation Package					
1	Task	Wind speed (surface)				
. 0	Required	1 knot	3 Desired	0.1 knot		
2) 🐣	Instrumentation Package					
4	Name	RM Young Wind Monitor AQ	5 Resolution	0.1 knot, 1 Hz		
	Task	Wind direction (surface)	0			
	Required	10 degrees	Desired	0.1 degree		
	Instrumentation Package					
	Name	RM Young Wind Monitor AQ	Resolution	0.1 degree, 1Hz		
	Task	Temperature				

- 1 Task: Broken down data element individual for each test, not based on instrumentation. (Example Wind + Direction same instrument but different data.)
- Required: Baseline performance, conformance, conditions needed to conduct tests. A meet or 2 exceed benchmark of safety or validation.
- 3 Desired Criteria: Focused parameters of performance targeted in the tests.
- 4 Name of Instrument Package: Part of minimum equipment list.
- S Resolution: Fidelity of instrumentation deliverable.

	Requirements	
1	NASA POC	Kyle Pascioni
1	Alternate NASA POC	Erin Waggoner
2	FAA Policy POC	Keri Lyons
	FAA Technical POC	Wesley Major & Robert Bassey
-	FAA Technical POC	Jay Sandwell

- NASA POC: Point of contact from NASA responsible for Objectives and research.
- FAA Policy POC: Point of contact from FAA responsible for the policy mapping of data to applicable lines of business.
- 3 FAA Technical POC: Point of contact from FAA responsible for the technical mapping of data to applicable lines of business.

	Minimum Equipment List
	Microphone array
4	Weather monitoring systems
-	Aircraft tracking module
- 1	
- 1	

14 Minimum Equipment List: List of minimum equipment needed to conduct test.

4 AIRSPACE OPERATIONS

4.1 Airspace Operations Overview

The AAM NC built a physical airspace at Edwards Air Force Base to test early NC series flight events. The AAM NC UAM Helicopter testing utilized the R-2515 range which is comprised of the following sections, limits, and altitude constraints (Figure 4.1):

Forbes (East of Rosamond Boulevard): surface to 5,000 feet AGL UAS Corridor: 5,000 ft to 10,000 feet MSL UAS Work Area: surface to 10,000 feet MSL East and West PIRA: surface to 10,000 feet MSL

The following blocks of airspace were built within the R-2515 complex for National Campaign and received a Notification to Air Mission (NOTAM) status:

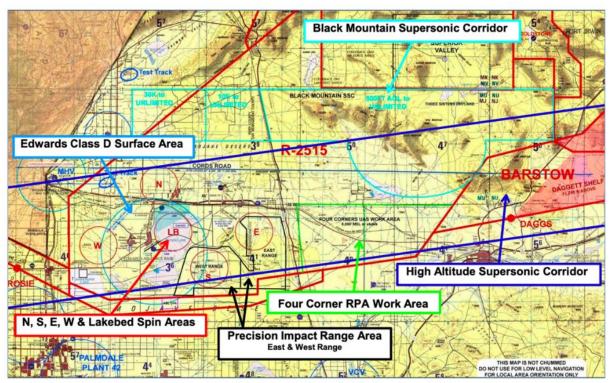
X-33 NOTAM and X-33 NOTAM Addendum: surface to 5,300 feet MSL

* X-33 NOTAM and the X-33 NOTAM Addendum are two separate areas, therefore use of each airspace block was coordinated separately.

Forbes Extension: surface to 5,000 feet AGL

Critical/All Azimuth testing was executed at the North Base Runway. The runway offers a 6,000-foot paved surface with runway markings to provide appropriate reference for the tests.




Figure 4.1. Test Site Airspace High-Level View.

R-2515 Airspace

R-2515 Restricted Airspace exemplifies a complex set of airspace volumes, reservation, airspeed, and altitude constraints that emulate an expected urban environment (Figure 4.2). The NC routes and scenarios were constructed to utilize the Edwards Air Force Base (EAFB) lakebed, avoid vertical obstructions, align with final approach paths, and avoid disruption to EAFB operations. The unique set of challenges enabled National Campaign Airspace Procedure team to exercise multiple contingency routing that did not fly over containment areas nor restricted areas.

Test Range Flight Constraints

Edwards AFB constraints

- fly-over restrictions around buildings & structures
- altitude limitations over UAS workspace
- XX33 Restricted Airspace over Mojave Lakebed R-2515

Figure 4.2. Test Range Flight Constraints.

The airspace coordinated for Build 2 is depicted in Figure 4.3 and is described as follows:

The UAS work area (teal) includes UAS Work Area Route 1 (red) and 2 (green) surface to 10,000 feet MSL. X-33 Route 1 (red) restricts to at or below 500 feet AGL when over the lakebed. X-33 Route 2 (purple) requires at or below 500 feet AGL when over the lakebed. UAS Corridor (orange box) requires at or above 5,000 feet MSL to 10,000 feet MSL. The X-33 site (pink) and Precision Impact Range Area (PIRA) bridge (teal) include surface to 5,300 feet MSL but no lower than 300 feet AGL unless on approach. Route Bravo is 500 feet AGL out and back (under the purple route to just past the lakebed). Forbes (over the vertiport) and Forbes Extension (pink) is surface to 5000 feet AGL. East and West PIRA (white) cover surface to 5,300 feet MSL but available with prior coordination to 10,000 feet MSL.

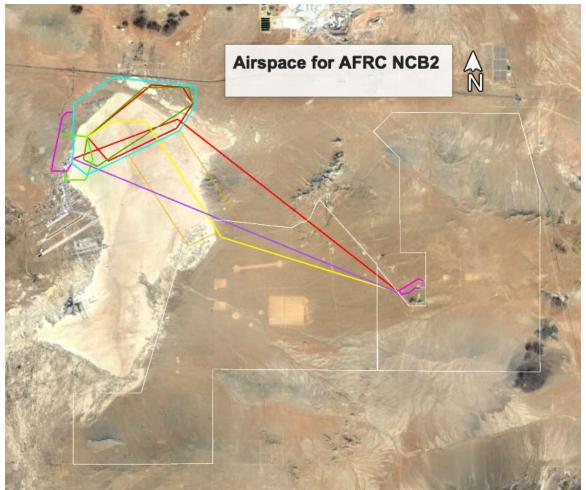


Figure 4.3. National Campaign Build 2 Airspace Routes.

The airspace was coordinated to create, using some of the natural constraints at EAFB, a simulated UAM environment where airspace is extremely limited, and aircraft must negotiate obstacles (real or restricted) to optimum approach and departure paths. Because of the described concept and the restrictions on the airspace, routes to landing zones were purposely kept tight for NC scenarios in order to test the ability of the surrogate aircraft to navigate in simulated UAM airspace.

UAM Terminal Approach Infrastructure (1 of 3)

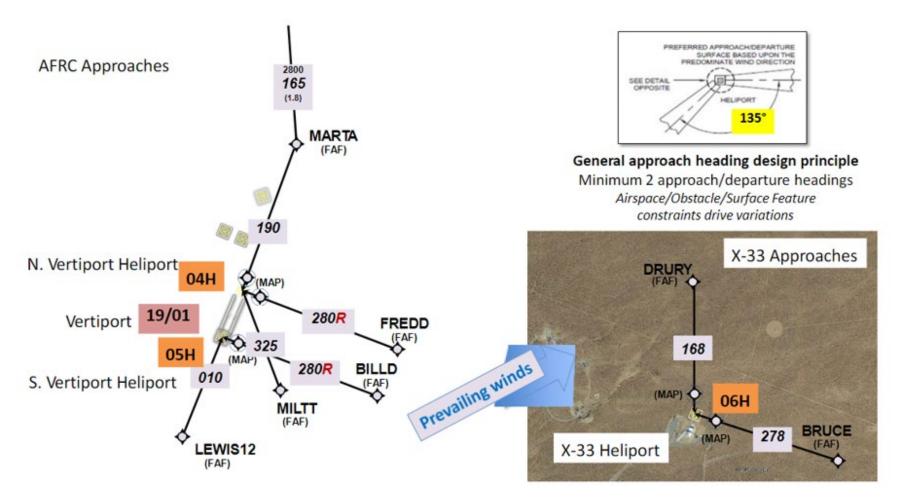


Figure 4.4. National Campaign Terminal Approach Infrastructure 1.

UAM Terminal Approach Infrastructure (2 of 3)

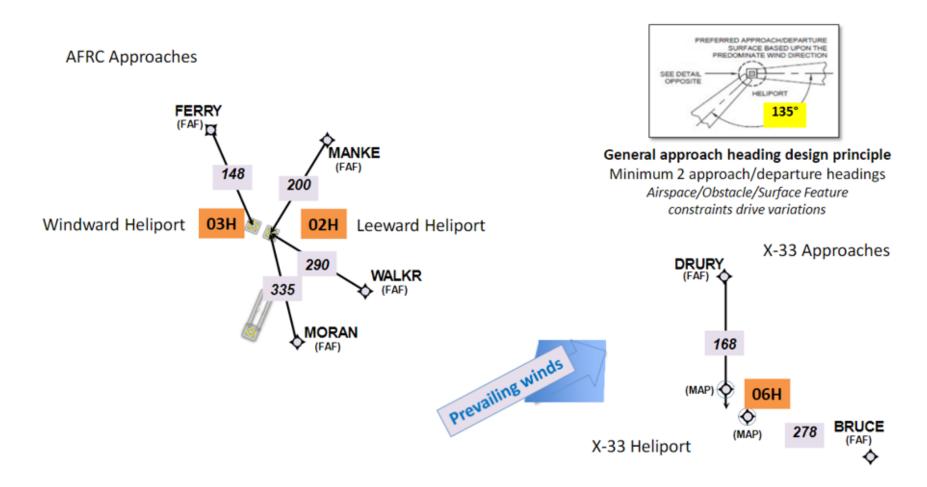


Figure 4.5. National Campaign Terminal Approach Infrastructure 2.

UAM Terminal Approach Infrastructure (3 of 3)

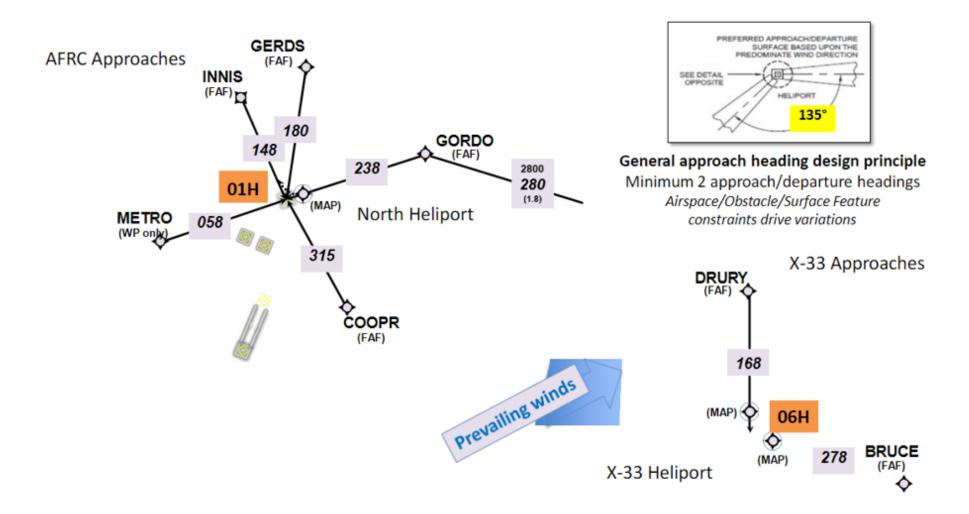


Figure 4.6. National Campaign Terminal Approach Infrastructure 3.

4.2 Terminal Procedures

Background

Using a non-flight assisted piloted surrogate aircraft, the OH-58C helicopter, the NC sought to obtain baseline data from both terminal and enroute flight scenarios to be used as a measure for emerging market aircraft looking to operate in future UAM terminal and enroute airspace. A research aim is to determine if emerging aircraft would be able to duplicate or improve upon the performance of the surrogate aircraft in these tests, whose long history of safe flight and capabilities in current flight environments is already well established when flown by an onboard pilot. The baseline surrogate data provide a comparison for future test event against a flight-assisted piloted surrogate aircraft. Eventually, NC partners will fly autonomously operating aircraft. The expectation is that future flights can improve upon the baseline performances utilizing emerging and near-future planned technologies to merit reduced separation minimums, tighter turn ratios, more aggressive approach and departure paths, reduced airspace requirements, and more automated, or reduced, air traffic control interactions for operations in future UAM environments. The NC team collaborated with the FAA Instrument Flight Procedures Group, the FAA Flight Check Group, and the FAA Aviation Technologies Group, all from Mike Moroney Aeronautical Center in Oklahoma City, toward the research concepts and execution.

The following topics are discussed in the this section: *Waypoints, Waypoint Gap Analysis, Fixed Displacement, Distance of Reaction and Roll (D_{rr}) Bias Error, UAM Minimum Enroute Altitudes (MEA)* and *Vertical Separation.*

Waypoints

Once an established departure and landing location was determined, the center point of the desired heliport/vertiport (or 'vertipoint') enables a subset of waypoints to bind the UAM route structure from one departure location to an arrival location. Waypoints are traditionally based on a point in space that has a fixed-use against a navigational aide or an airport with a single role to function as a holding point, an initial approach fix, or enroute navigation. A waypoint, sometimes known as a fix, is published in the *Radio Fix and Holding Data Record*. One of the gaps recognized was updating the form to account for the new use cases, or multiple use cases, that would be required for UAM precision path point routing. As seen in Figure 4.7, the waypoint and waypoint subset list will be used for future state AAM operations, much like company routes or helicopter routes exist today in the FAA waypoint directory. The resultant data would enable AAM operations to redefine the waypoints best suited for low level truncated routing while still providing the same level of safety and precision associated with IFR routing today.

Waypoint Gap Analysis

Waypoint Gap Analysis				
EFF 5 MAR 2015 NFDD 009 MAG COUNTRY: US COUNTRY: US LATITUDE/LONGITUDE: 424651.00N/0932135.00W TYPE: WP AIRSPACE DOCKET: FIX TYPE OF ACTION: ESTABLISH FIX USE: TITLE USE TITLE MINOR PACE DOCKET: STATE MARPORT IDENT CITY STATE MINNEAPOLIS	 Name, location, state and country: -These may not be permanent and would need to change based on location of vertipad. Fix Use would include - IF, IAF, MAP, PFAF, TA, Holding etc. 			
REQUIRED CHARTING: STAR, CONTROLLER, EN ROUTE HIGH COMPULSORY REPORTING POINT: NO RECORD REVISION NUMBER: ORIG DATE OF REVISION: 03/05/2015	 No charting possible in eNASR Departure, approach different from enroute corridor fixes. 			
DEVELOPED BY: DATE: 0/18/2014 OFFICE: AJV-353 NAME: THOMAS KIRKPATRICK APPROVED BY: DATE: OFFICE: AJV-353 NAME: GEORGE GONZALEZ Digitally signed by JACOB POWERS DISTRIBUTION: NFDC Jan 09, 2015 FPO: CEN ARTCC: ZMP ATC FACILITY: MSP APP CON / MSP ATCT OTHER:	3 Airport ID- Waypoints could be assigned vertipad, vertiport or vertistops. No nomenclature identified for future state operations.			
	Charting and compulsory reporting points need to be established for contingency operations and possible publication.			

Figure 4.7. Waypoint Gap Analysis.

Fixed Displacement

The NC team explored a way to update and advise candidate UAM waypoints for an urban operation. Use cases were considered for the waypoint subset list, which allowed the team to dissect the bias errors associated with a waypoint in the traditional navigation feature. The leg type associated with each waypoint, whether a track to fix (TF), radius to fix (RF) or direct to fix (DF), was applied with respect to criteria for a track to fix leg type as seen in Figure 4.8. The first portion of candidate AAM waypoint routing was the cross-track tolerance applicable with the associated required navigational performance (RNP) value that would determine the lateral limits of the fixed displacement area. The RNP value was pulled from the 8260 Series that defines the navigational accuracy of a phase to an advanced RNP, or a prior authorized navigational performance which would simulate a low, close to the ground final approach segment. Next, the turn radius, which determines the bank angle required at the maximum ground speed associated with the fixed displacement, remained constant and, therefore, required no changes.

Fixed Displacement Theory Overview

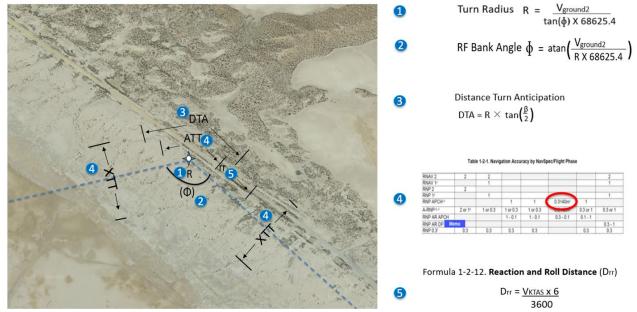
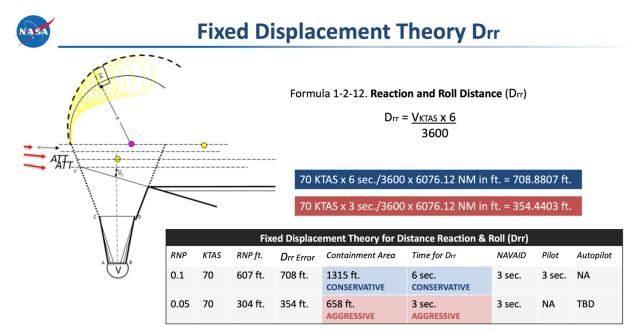



Figure 4.8. Fixed Displacement Theory Overview.

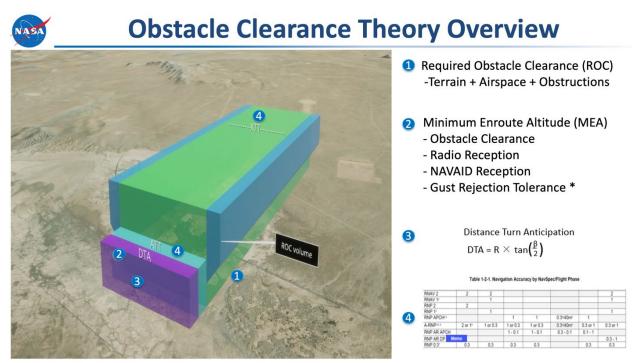
Distance of Reaction and Roll (D_{rr}) Bias Error

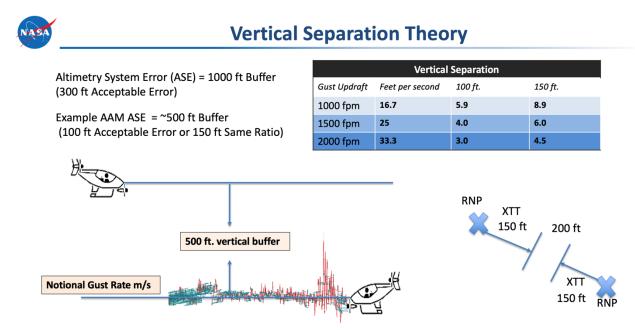
The National Campaign team applied legacy distance of reaction and roll bias errors to routes to update and account for automation with the same ratios of safety applicable to an AAM vehicle on an AAM route. The bias error associated with the reaction and roll rate is a function of time for six seconds flown at the intended air speed. Three of the six seconds are given to the Navigational Aid (NAVAID) to display the position and three seconds are allocated to the pilot to interpret the display and make the correct inputs into the flight controls, according to the conventional definition of the reaction and roll rate. Figure 4.9 is a simplified table further explaining the breakdown of the candidate UAM reaction and roll rate bias error associated with a turn at a waypoint. The variables are broken down into a Punnett Square associated with conservative and aggressive values of time allotment and conservative and aggressive values for RNP. The values will be tested to reduce the conventional containment area. In either case, the reaction and roll distance derived from the speed at the seconds value is added in feet to the end of the fixed displacement area, as defined in feet from the later end of the along-track tolerance variable. The distance caps the apex of the turn as shown in the example Figure 4.9.

AAM automation may enable reduced reaction and roll displacement allowances to condense flight paths. Figure 4.9. Fixed Displacement Theory Application.

UAM Minimum Enroute Altitiudes (MEA)

The National Campaign team addressed the altitude selections for candidate AAM routing by dissecting the conventional requirements for obstacle clearance when navigating by reference to instrumentation. Figure 4.10 explains the breakdown of required obstacle clearance that is a function of terrain airspace and vertical obstructions. Once the obstacle clearance altitude has cleared terrain and vertical obstructions, radio reception navigational aid reception is determined. The NC team introduced the idea of gust rejection tolerance as a variable to account with enroute altitude. A fixed displacement error in the vertical axis was also added when determining a distance of turn anticipation while climbing to the same azimuth.




Figure 4.10. Obstacle Clearance Theory Overview.

Vertical Separation

The gust rejection tolerance, or vertical separation theory, for NC AAM altitude deconfliction, was based on the concept of the minimum altimetry system error designed for large transport category aircraft utilizing an identical Victor Airway but on opposing paths. The altimetry system error is set at 1000 feet with an acceptable error of 300 feet. Using the same ratio of safety, the NC team reduced the 1000 feet buffer in half to 500 feet and increased the ratio of acceptable error from what would be 100 feet to a 150 feet tolerance. Using the reduced ratio, the NC team applied legacy updraft rates in feet per minute and calculated the aircraft movement in feet per second. The results reflected the amount of time an AAM vehicle would bust the theoretical containment area of 100 feet per the same ratio of the conventional altimeter system error, and at 150 feet as an increased variable to the altimetry system error. The results in Figure 4.11 were computed as seconds required for the pilot in command, air traffic controller, or other third party service, such as a PSU, to initiate some form of a contingency. Further research is required to determine the human factor element in deconfliction. The intent of the test was to determine the two-sigma vertical containment area for candidate AAM routing.

Document No. AAM-NC-069-001

Document Name: National Campaign Airspace Operations, Infrastructure and Data

Wind drafts and gusts may have a greater effect on AAM vertical separation.

Figure 4.11. Vertical Separation Theory.

Flight path conformance and bias errors, along with significant flight characteristics and terminal airspace data, were captured during Dry Run events.

XEDW 01H Procedure:

The NC team applied candidate theories to conventional approaches to build an airspace architecture representative of AAM operations. The intent was to replicate the current process while comparing and contrasting NC theories against conventional methods. The following topics are discussed in the this section: *Conservation of Airspace Theory, Radius, Conrolling Obstacle, Departure and Approach Procedures, 360-Degree Discrete Paths* and *Airspeed to Angle.*

Conservation of Airspace Theory

The conservation of airspace theory is a concept to house all operations to include approach, departure, traffic pattern, landing alignment, missed, and holding sequence entirely contained in one cylinder of airspace above a vertiport. This conservation will avoid the need for AAM operations to take large swaths of airspace in a condensed cityscape requiring adequate spacing, sequencing, and contingency actions. The cylinder of airspace will be evaluated against terrain, vertical obstructions and other time-spliced airspace constraints that could impact AAM operations in an urban environment.

Radius

Currently, the obstacle evaluation assessment (OEA) area radius is defined by the operation, size and speed of the aircraft flown in and around the airfield. Expected AAM operations will be a "compensation-for-hire" operation, so controlling the gravitational force to maintain passenger comfort will be the driving force of the radius in obstacle evaluation assessment areas. The resulting radius will be a function of airspeed to angle based on an assumption of 1.03 g-force (defined as an acceptable range for current transport category aircraft operating in an IFR environment) (see resultant force Figure 4.12 below).

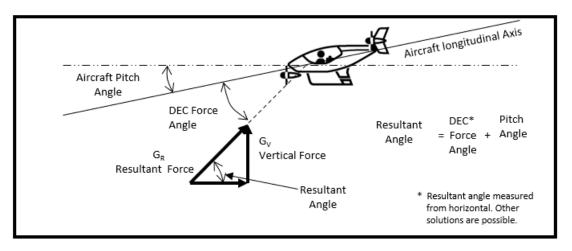


Figure 4.12. Final Approach Segment Considerations.

Controlling Obstacles

Once a radius is established, 360 degrees from the intended point of landing is evaluated to create a base, for example, a 1.5-nautical-mile diameter for a 12-degree approach. With the lateral dimensions defined, the height of the volume of airspace is determined for the operation, thereby completing the cylinder. Within the cylinder of airspace, terrain, vertical obstructions, wake vortices and other airspace constraints, such as dynamic interface (measurement of potential hazardous wind azimuths that may create mechanical turbulence on the leeward side of a surrounding structure), are evaluated. The combined variables will determine the controlling obstacle or obstacles in the OEA (see red structure and the corresponding dark blue circular area below it in Figure 4.13) to ultimately drive the height of the cylinder of the UAM operation.

Departure and Approach Procedures

Once the controlling obstacle has been determined, departure and approach procedures are constructed within the cylinder of air space (see green cone below in Fgiure 4.13). The intention is to unnecessarily avoid duplicate evaluations of the same airspace. The most conservative flight profiles are assessed as a baseline of safety and separation from terrain and controlling obstacles. As the procedure construction sequence begins, a departure climb gradient is assessed based upon the lowest performing aircraft operating within the cylinder of airspace. Since candidate AAM aircraft are neither efficient fixed-wing (requiring a 200-feet-per-nautical-mile departure path) nor efficient rotor wing, (requiring a 400-feet-per-nautical-mile departure path), the NC team assumed a mean 300-feet-per-nautical-mile AAM obstacle clearance slope. From this assumption, a 300-feet-per-nautical-mile departure climb gradient is applied in a 360-degree funnel, away from the center of the airfield or vertiport (see ygreen volume of airspace in Figure 4.13 with yellow buffer). Departure criteria have a lower rise-over-run value, so every approach will automatically be within the evaluated funnel and inherently protected to execute nominal operations. As a result, no further evaluation will need to be performed.

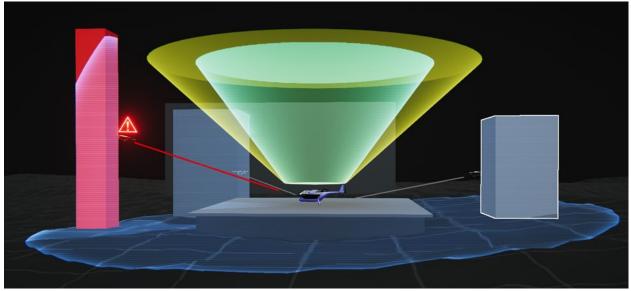


Figure 4.13. NASA National Campaign Approach/Departure Analysis Tool.

360-Degree Discrete Paths

An "IFR 360," or 360 discrete approach paths to a point in space, was the method selected for evaluation by the National Campaign team. A disturbed electric propulsion systems approach path requires an approach that is streamlined into the wind as much as possible. This condition is a safety case because lift-plus-cruise, inducted fan, or multirotor designs have sensitives to crosswind component for critical azimuths at much lower airspeeds than do traditional fixed- and rotor-wing limitations. Thus, omni-directional arrival and departures embedded in fixed waypoints will likely need to be defined to provide prescribed routing to and from the vertiport cylinder, holding along the outer edge of the cylinder and aligning rollout points to a final approach segment (wings-level on a glidepath). Since 360 unique approaches per vertiport is not reasonable, the minimum weather binning reporting of azimuth and velocity that consists of 20-degree segments was applied, which resulted in eighteen equal distant waypoints creating a "wheel" with the vertiport located at the center (see Figure 4.14).

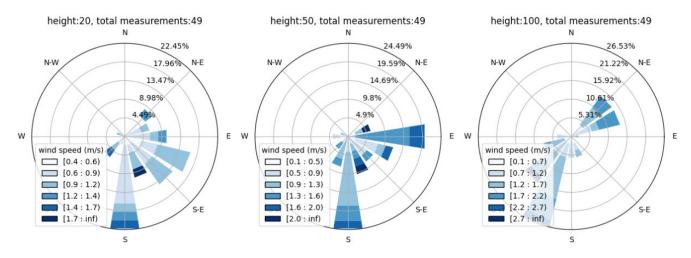


Figure 4.14. Wind Azimuth And Velocity Bins at Helipad Heights in Feet; Wind and Azimuth Coupled with Wheel Approach Points Potentially Enables Targeted Dynamic Approach Opportunities.

Airspeed to Angle

Reverse planning from the resulting wreath waypoints along the radius defines the airspeed to angle formula derived at-or-below g- force constraints (1.03 g) and are set tangentially along a 360-degree arc equal distance from the vertiport center point, creating a circle, wheel, or wreath (Figure 4.15). The importance of the fixed waypoints is not within the isolated function, navigational mechanism, or unique identifier, but rather the ability to anchor multiple waypoints splayed from one high-precision location (latitude/longitude) and elevation (ellipsoidal height). With waypoints attached to the vertiports, greater utility per waypoint (precision) is realized than what is provided by the current -2 radio/fix form. Simultaneously, vertiport waypoints. Each waypoint will become an Initial Fix (IF), Initial Approach Fix (IAF), Final Approach Fix (FAF), Final Roll-Out Point (FROP), Distance Measuring Equipment (DME) ARC, Holding Fix, or Terminating Altitude (TA) relative to the navigation and alignment required for the eighteen different departure and approach paths to be coded for each individual vertiport.

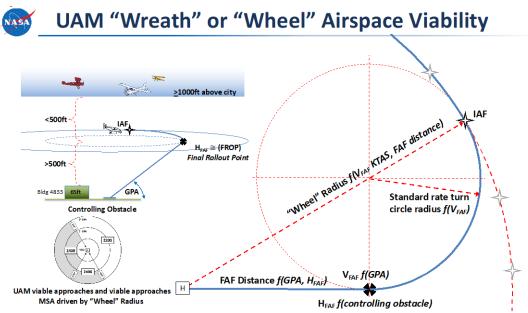


Figure 4.15. Urban Air Mobility Wheel Airspace Viability.

As illustrated in Figure 4.15, the aircraft is able to fly the wreath or wheel construct from any approach azimuth or on any GPA. In a sterile environment with no terrain or vertical obstructions, the glide path angle could be utilized down to a traditional or conventional 3-degree approach and still provide omnidirectional departure and arrival capabilities. The gravitational force applied to the airframe, as well as passengers, will be the mitigating factor for the airspeed to angle limitation and forthcoming NC research into the standardization of vertically-guided precision descent procedures.

XEDW 01H GORDO Procedure:

Three airports and six landing locations were constructed as part of the AFRC flight test. Each landing location had several approach procedures that were surveyed, constructed, evaluated, and flown. In order to avoid confusion on closely spaced procedures, or highly similar procedures at a different locations, only one procedure will be discussed in detail, and the remaining procedures that were flown as part of a flight plan or scenario are located in Annex 6.3 for reference. The XEDW 01H GORDO procedure and airspace evaluation will be the representative example of the airspace analysis, procedure build, coding, simulation, and evaluation of the AAM candidate procedure architecture conducted at AFRC. The first example at XEDW 01H GORDO will be the overlay airspace required for a conventional approach compared to the NC candidate airspace model, procedure file, and final approach segment for UAM operations.

The following topics are discussed in the this section: Conservation Of Airspace Test Outcome, Conventional Lpv Approach, Conventional Approach Procedure XEDW, Conventional Versus Candidate Airspace Architecture, Airspace Conservation at XEDW 01H, Constraints, XEDW 01H Airspace Sectors, Flying The Wheel, Approaches Design and ARINC 424 Coding.

Conservation of Airspace Test Outcome

Given airspace constraints at AFRC, the National Campaign team compared and contrasted conventional RNAV approach procedures overlaid on a candidate AAM approach procedure. The purpose of the test was to analyze the lateral airspace (area), not including the vertical axis (volume) in which a single approach procedure would take. Figure 4.16 outlines the total footprint (area) of a conventional approach procedure, given one azimuth with two standard RNAV initial approach fixes, one LPV final approach segment, one missed approach procedure and a transition that terminates in holding (standard). The radius of the airspace was 28.31 nautical miles as outlined in the blue circle. The NC team used standard leg lengths, secondary areas, and initial climb areas to include a Section 1 of the missed approach. The overall area was considerably higher compared to the candidate approach procedures outlined in Figure 4.16.

Document No. AAM-NC-069-001

Document Name: National Campaign Airspace Operations, Infrastructure and Data

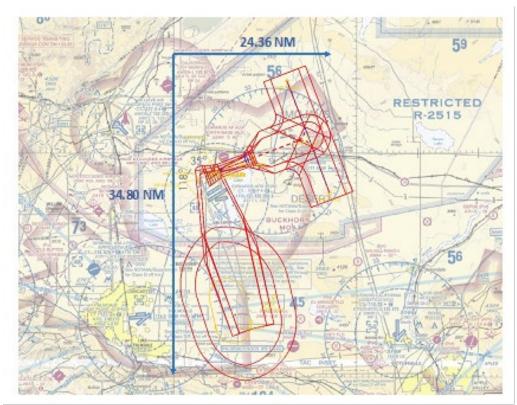


Figure 4.16. Conventional Approach Procedure on VFR Sectional at XEDW.

Conventional LPV Approach

Although the conventional LPV approach was not flown, the total impact over the airspace was evaluated with current standards, criteria, policies, and regulations. Evaluation included each segment of evaluation areas as well as containment areas allotted for an instrument approach procedure terminating with a performance based navigation (PBN) approach with vertical guidance (LPV). Given the Advanced Air Mobility use case to take off, navigate and land in multiple locations in an urban environment, the current set of instrument procedures and associated criteria or regulations that allow prescribed routing for closely spaced operations, in lieu of human eyeballs with dynamic deconfliction trajectories, would not be feasible or arguably possible.

Conservation of Airspace Model XEDW

Total Footprint: 2,463.76 NM² Segmented Area: 356.5 NM² One LPV approach (two IAF's) IAF to FAF: 8 NM (Standard leg lengths) FAF to MAP: 5NM (Standard leg length) ICA: 2 NM (Standard) Missed Transition: 7 NM Holding : 169.56 NM² *segments overlap *Includes secondary areas

Figure 4.17. Conventional Approach Procedure at XEDW.

Given the current spacing required for traditional performance-based navigation operations and associated required navigational performance, Advanced Air Mobility procedures resulting in the same level of safety will have to individually address the components of an approach procedure from the Initial Approach Fix all the way through the Missed Approach and Holding sequence. The figure below was built in TARGETS, as part of the FAA instrument procedures group (AJV). Utilizing TARGETS software, the conventional RNAV build was constructed over the FAA digital terrain database and evaluated over several archived maps. Since the VFR sectional chart is most commonly used, the conventional procedure is displayed highlighting the size and proximity of airspace (Figure 4.18).

Document Name: National Campaign Airspace Operations, Infrastructure and Data

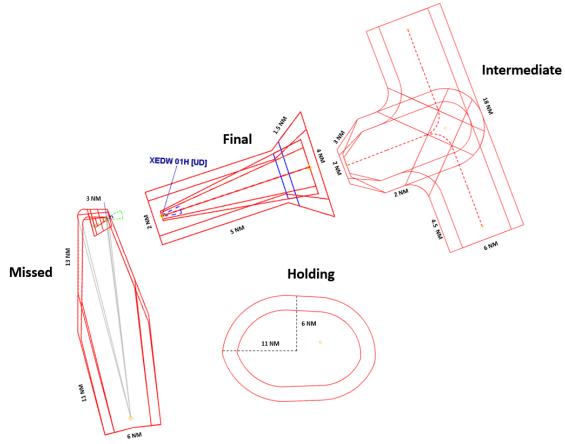


Figure 4.18. Conventional Approach Procedure Segmented Breakdown at XEDW.

In an effort to replicate every aspect of the current procedure evaluation, construction, and certification, the NC team created the 8260 Procedure Build (Figure 4.19) for 01H in an effort to identify gaps associated with the implementation of urban air mobility. Although many instrument approach procedure plates were built for every approach path, only one approach was filed per the FAA AJV requirements. Further evaluation will be required to dissect the applicable portions of the form that will need to be updated to account for future non-traditional entrants and operations seeking standardized precision routines in the National Airspace System.

XEDW 01H (1 of 4)

PROCEDURE NFORMATION	AIRPORT NA							•			GO			_					
		ME: APT01	Airport	AIRPOR PT01		CITY: EDWARDS	STATE CA	ELEV	PORT ATION: 241	TDZE:	2241	MAGVA 12E	R: EPC	CH YEAR:	FACILITY:	RNAV	CON	TROL TOWER	: NO
(FROM)	COORDINA	TES	SEGMENT FIX TYPE		E			LEG TYPE	FO/FB	RN	IP	RADIU Direction/	ic (True) rse or JS/Turn RF Center bint	DISTANCE	START ALTITUDE/\		END TUDE/VAA	SPEED RESTRICTION	PRECIPITOUS EVAL/AMT
WP07	345443.950N/1173	432.831W	IAF	WP03	3502	13.382N/117380	00.286W	TF	FB	1.0	00	327.21 (3	39.21° T)	8.00	4500		4200		YES/0
	350942.706N/1174		IAF	WP03		13.382N/117380		TF	FB	1.0			59.15° T)	8.00	4500		4200		YES/0
	350213.382N/1173		IF	PFAF		22.154N/117470		TF	FB	1.0			249.18° T)	8.00	4200	_	3900		YES/0
	345922.154N/1174 345732.981N/1175		FAF MAP	2700 MS		32.981N/117525	53.032W	TF CA	FO	0.3			2 <mark>49.09° T)</mark> 249.09° T)	5.08	3900	_	2700		YES YES/0
2700 MSL	345732.98111/1175	255.05244	WAF	WP408	_	27.803N/117472	25.596W	DF	FO	1.0		237.08 (2	49.09 1)				6000		
PBN REQUIREMENTS NOTE: RNP APCH - GPS RNP RADIUS TURN CNF COORDINATES									YES/0										
HIL																			
ARRIVAL HOLDING																			
	WP408 343727.803N/11747	25.596W	WP RAD/CRS/E 335.25		D NW, RT, INBOUND	MIN/MAX ALTITUDE 6000/600	E: DA	MIN/MAX		DME: 5		D OF MIN ERN: 200							
CIH CLEARANCE LIMIT OCS ALT (FT): 548					9.35 C	LEARANCE		ALT (FT): 6489	9.35	MI	SSED H		ITUDE: 600	0.00		CIH RE	QUIRED: NO	
PROFILE	LINE 2: PROFIL AT WP	E STARTS	FAC: 237.09	FAF: PFAF	_	E FAF TO MAP: 5.08	DISTANCE P		,		MIN AL			IAT DIST: NA	34:1 IS C	LEAR 20	1 IS CLEAR		WP524 7800
		13				5.08		.08		WPU3	4200, Pr	FAF 3900,					1		
ADDL	CIRCLING 20:1 RESTRICTIONS: NO	AUT	WAYS NOT THORIZED: NONE			TEMP:		INAL OFFSET ANGLE: 0.00 LEFT		TO DISTANCE TO FAC FERCEPT (FT): 0			DP: 0.63 N VP524	мто È (FC	NAV/LP ONL FAF to RW24 R ST-IN ALIO IAPS W/O PA MINIMUN	4 3.00/40 GNED NPA OR APV			
FLIGHT DATA/ HEL	LICOPTER VISIBILI RESTRICTION: NO	TY	DESCENT A	NOTE: VGSI NGLES NOT (VGSI ANGLI CH {FEET}).		D CIRCLING CAT/DIRECTIO RESTRICTIONS: NO						S OF MIN			NW, RT, INBOUND				
	СНА	RT FAS OB	ST	7	7:1 AT PF. 7:1 AT PFA	AF: NOT TAKE F: NOT TAKEN	N (LP) (LNAV)												
ALTERNA																			
M	CATEGORY (CIRCLING RADII)		CAT A (0)		CAT B (0)			С	AT C (0	0)			CAT D (0)		CAT E ((0)	
I N	FINAL TYPE	DA/MDA	VIS	HAT/HAA	DA/MD/	A VIS	HAT/HAA	DA/N	/IDA	VIS	HAT	'/HAA I	DA/MDA	VIS	HAT/HAA	DA/MD	A VIS	HAT/HAA	HMAS
ï	LP MDA	2620	1	379		NA				NA				NA					2391
M	LNAV MDA	2660	1	419		NA				NA				NA					2391
U M																			
S																			
(PRIMARY) APT01 [UD]																			

Figure 4.19 XEDW.

XEDW 01H (2 of 4)

NOTE: ALL H	TE: ALL HEADINGS ARE MAGNETIC UNLESS IDENTIFIED AS							(ED)	W 01I	H (GF	PS)	RWY :	24 G	ORE	00		С	HECK CUR	RENT A	IRPOR	T/FACILITY	NOTAM	S
VISIBILITY	N	LIGHTS: IONE	P	PHYSICAL LENGTH	L RWY 1: 154	SUR VG	RVEY TYPE: (ANALPV)	A	RWY SUF Asphalt/Co		M/ NON	RWY ARKINGS: IPRECISION	RWY E Ligh NOI	TS:	TD/I	RVR: MID/RO O/NO/NO		TDZE AND C/L: No	displa	extend aced rui shold:	nway r	t least on unway ha lights:	s edge
DATA		ST CAT: A		GPA: I	NA	т	°CH: 40.0		THRE: 2	2241.0	MAF	STANCE P TO THLD (FT): 0	34:1 CLE 20:1 CLE	AR IS									
L		AMI				34:1					20:1					١	/GS		WHEN A SURFACE IS PENETRATED ONLY ONE OBSTACLE WILL BE			RATED	
NP	PA VISUAL	AREA				ASC					ASC	:				NA HIGHEST F TARGEST F				LAYED BE THE HEST P IETS FO	IN THIS TA OBSTACLI ENETRATIO	BLE, TH E WITH T ON VALU ONAL OB	AT WILL HE E. SEE
PRECISION	APPROAC	H (PA)	IL:	s	PAR		GLS	N	MMLS														
APPROACH GUIDA	WITH VER ANCE (APV	TICAL	LP	∾∨	LNAV/VN	AV	RNP	LD. GLID	A WITH														
NON PRECIS	SION APPF (NPA)	ROACH	LF	P	LNAV	L	OCALIZER	LC	OC BC	LD	A	VOR		NDB	3	ASF	2	TACAN	CIRCL	ING			
FAS DAT PROCED	FAS DATA: LPV /LP or GLS PROCEDURE TYPES ONLY PT01 LT75253.0320						N/ E	LLIPSO	IDAL HEIC	GHT (M):		P COORDIN 345701.0410 1175434.249	DN/	*TC 0004	CH: *C 40.0 0	GPA: 03.00	COURSE	WIDTH AT TH 106.75	HLD:	LENG	TH OFFSET: 2704	HAL: 40.0	VAL: 0.0
Raw data w Raw data w	ith the ten ith the ten	thousandti thousandti	h's digi h's digi	its of 1 th its of 5 th	rough 4 ar rough 9 ar	e rounde e rounde	ed to 0. ed to 5.		*F	OR VDA R	EMOV	AL - CHANG	E THRE	SHOLD	CROSSIN	NG HEIO	ант (тсн)	FO 00000.0 AI	ND GLID	EPATH	(GPA) TO 00.	00	
MSA FROM (RADIUS 2		SECTOR:	360-36	60 (M)		2349	WINDMILL 911) W1181424.28	•	BEAR	ING (M): 2	99	DISTANCE	: 23.2	ELEV	MSL: 676	67 H	ORZ: 250	VERT: 50	AC: 41	DR	ROC: 1000	MIN AL	T: 7800
`	ŕ																						
				TYPE			WX SE	RVICE	VICE WX LOCATIO			HRS OPERATIO		ION	ALTIN	METER	SOURCE	DISTAN	CE	E WMSCR		ADJUSTMENTS	
WX/ALT SOU		PR	IMARY	ALTIME	TER - LOC	AL										0			0			()
WX REMARK	ks																						
GLIDESLO	OPE ANG	LE ELI	EV RV	VY THRE	SHOLD		TCH	I		ELE	EV GS	ANTENNA	1	DIS	STANCE	FROM	RWY	VGS	SI ANGL	E		TCH	
																			3.00			50 (50.0)	
FINAL APPE	ROACH C	OURSE A	IMING	;											_								
RUNWAY TH			x			MTHRE		_	DIS	PLACED T	HRESH	HOLD DIST	NCE 0										
ON CENTERL	LINE		X		FT FRC	M CENT	ERLINE																
CRITICAL TEMPS CRITICAL LOW: CRITICAL HIGH:							IIGH:		ACT:		APT	ISA:	DE	SCENT F	RATE (F	PM): STAN	DARD TEMP		DESCEN	NT RATE (FP	M): HIGH '	ГЕМР	
REMARKS	REMARKS PRECIPITOUS TERRAIN EVALUATION COMPLETED: YES VDP PUBLISHED: YES					ES	VE	GETATIO	T	AIRSPACE	FIN 5.	AL: 3900 .08 NM	0 HI FII	IIGH TEI INAL: 23	RRAIN IN 12 (2300)	FINAL C (TRUE):	FINAL COURSE (TRUE): 249.09 2		INTERMEDIA 49.18T 1200/3	TE SEGM 300 3113 (ENT 3100)		
											R			ARP:	ARP: COORDINATES: N345732.98			AR COORDI N3457 W11752	INATES: PFAFC 732.98 W		N345	COORDINATES: N345922.15 V1174706.34	
																		GPA:	NA		TCH: 40.0	THRE	: 2241.0

XEDW 01H (3 of 4)

NOTE: ALL HEADINGS ARE MAGNETIC UNLESS IDENTIFIED AS TRUE

XEDW 01H (GPS) RWY 24 GORDO

CHECK CURRENT AIRPORT/FACILITY NOTAMS

					CONTROLLING OBS	TACLE	S										
SEGMENT	ADJ AREA	START POINT	END POINT	OBSTACLE TYPE	COORDINATES	HT AMSL	(H/V) AC	APPL'D AC	ADJ EFF HT AMSL	мт	PRI ROC/ SLOPE	RA	XL	ADJ SA	ADJ PRI EQUIV HT AMSL	PR	ADJ MIN OBS ALT AMSL
Initial from WP07	Secondary	WP07	WP03	TOWER (06-020637)	345453.94N/1173128.37W	3363	(+500/+125) 5E	0	3363		1000			-711	2652	0	3700
Initial from WP09		WP09	WP03	ASC													
Intermediate from WP03		WP03	PFAF	ASC													
Final LP		PFAF	APT01:RW24	ASC													
Final LNAV		PFAF	APT01:RW24	ASC													
Missed LP CG/HAT/CGTA	Primary			TOWER (06-002133)	345643.00N/1175452.00W	2680	(+250/+50) 4D	50	2730		168				2730		3700
Missed LNAV CG/HAT/CGTA	Primary			TOWER (06-002133)	345643.00N/1175452.00W	2680	(+250/+50) 4D	50	2730		155				2730		3700
Missed Level Surface	Secondary			TOWER (06-152054)	343624.63N/1174933.33W	2801	(+20/+3) 1A	0	2797		1000			-4	2797	0	3800
MSA	MSA			WINDMILL (06-234911)	351239.25N/1181424.28W	6767	(+250/+50) 4D	0	6767		1000					NA	7800
Holding WP408 (200KTS)	T6:Primary	WP408	WP408	TOWER (06-152054)	343624.63N/1174933.33W	2801	(+20/+3) 1A	0	2801		1000				2801	0	3900

		AIRSPAC	E ALTITUDES			
SEGMENT	START POINT	END POINT	COORDINATES	ELEVATION	AIRSPACE FLOOR/BUFFER	MIN AIRSPACE
Initial from WP07	WP07	WP03	345521.00N/1173439.00W	3106 (3100)	AS1500 1200/300	4600
Initial from WP09	WP09	WP03	350333.00N/1173727.00W	3113 (3100)	AS1500 1200/300	4600
Intermediate from WP03	WP03	PFAF	350333.00N/1173727.00W	3113 (3100)	AS1500 1200/300	4600
Final	PFAF	APT01:RW24:AER	345839.00N/1174718.00W	2312 (2300)		
Missed	Missed	WP408	344039.00N/1174751.00W	3559 (3600)	AS1500 1200/300	5100
Holding	WP408		344039.00N/1174751.00W	3559 (3600)	AS1500 1200/300	5100

TF SEGMENT	ALT	KIAS	KTAS	HAA	VKTW	TR	ВА	DTA	COURSE CHG	DVEB	VEB OCS	RF CENTER/DISTANCE
PFAF	3900	90	97.88	1659.19	30.00 (DEFAULT)	0.00	0.00	0.00	0.00			
WP07	7901	150	173.52	5660.32	62.64 (DEFAULT)	0.00	0.00	0.00	0.00			
WP07 (90° ATC VECTOR)	7901	150	173.52	5660.32	62.64 (DEFAULT)	1.70	25.49	1.70	90.00			
WP09	7901	150	173.52	5660.32	62.64 (DEFAULT)	0.00	0.00	0.00	0.00			
WP09 (90° ATC VECTOR)	7901	150	173.52	5660.32	62.64 (DEFAULT)	1.70	25.49	1.70	90.00			
WP03	5900	150	168.21	3659.66	58.68 (DEFAULT)	1.57	25.49	1.57	90.00			
WP03 (90° ATC VECTOR)	5900	150	168.21	3659.66	58.68 (DEFAULT)	1.57	25.49	1.57	90.00			

Note: If alt - aptelev <= 2000, VKTW = 30

XEDW 01H (4 of 4)

NOTE: ALL HEADINGS	ARE MAGNETIC UNLESS	S IDENTIFIED AS TRUE	XEDW 01	H (GPS) RW	Y 24 G	ORDO
	OTHE	ER RUNWAYS AT AIRI	PORT			
RWY #	SURVEY	SURFACE	LIGHTING	VGSI		VG
06	ANALPV		NONE	YES		NVG
24R	(NO SURVEY)		NONE	YES		
06L	(NO SURVEY)		NONE	YES		
24S	(NO SURVEY)		NONE	YES		
06S	(NO SURVEY)		NONE	YES		

DRDO	CHECK CURRENT AIRPORT/FACILITY NOTAMS										
VG/NVG SURVEY EQUIVALENTS											
VG	ANAPC/LPV, PIR										
NVG	(NO SURVEY), D, AV, BV, ANP, C, SUPLC, ADAMS										

Conventional Versus Candidate Airspace Architecture

The main purpose of the conventional versus candidate evaluation is the actual conservation of airspace that could result in maintaining the same functionality while reducing the volume required to operate. Figure 4.20 below contains both the concept architecture as well as conventional architecture overlaid in the 01H build. As the figure illustrates, the 6-degree wheel ended up taking 1.9 percent of the same airspace that only allotted one approach path inbound and out bound. The 12-degree wheel resulted in 0.56 percent of the same airspace. The important takeaway in the comparison is that the wheel or wreath model supports an omni-directional ingress and egress of the same point in space operation, while impacting only a fraction of the airspace. Follow-on research will be required to provide further data to support the Conservation of Airspace Theory.

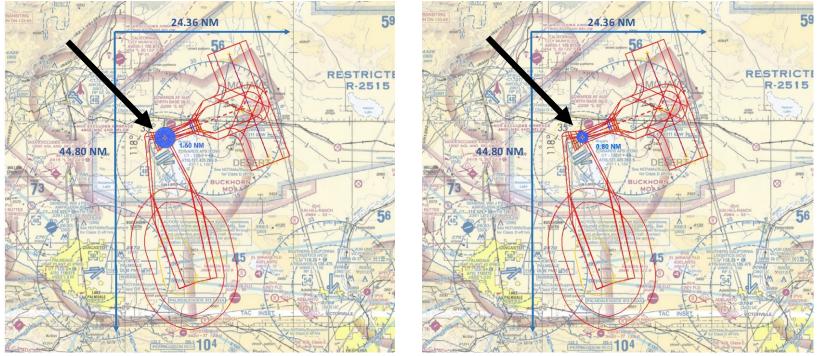


Figure 4.20. 6-Degree GPA with 3nm Diameter at XEDW 01H (left) and 12-Degree GPA with 1.6nm Diameter at XEDW 01H (right).

Airspace Conservation at XEDW 01H

XEDW 01H landing site was constructed for the NC Conservation of Airspace Model. Two rings were constructed, flown, and evaluated around 01H: a 6-degree and a 12-degree glidepath angle that resulted in two OEAs and flight paths. The 6-degree wheel began at a height of 600 feet with a controlling obstacle of 65 feet, derived by the OEA. The radius was just below a 0.5 nautical mile and had a total area of seven square nautical miles which includes the final approach segment, initial approach fix, final rollout point, missed approach point, initial climb area, traffic pattern, and holding pattern. The 12-degree wheel had the same height of 65 feet due to the same controlling obstacle. The total area impacted was just over 2 square nautical miles and also allowed all of the same operations as the 6-degree ring with no perceived discomfort reported by the air crew.

Conservation of Airspace Model XEDW 01H

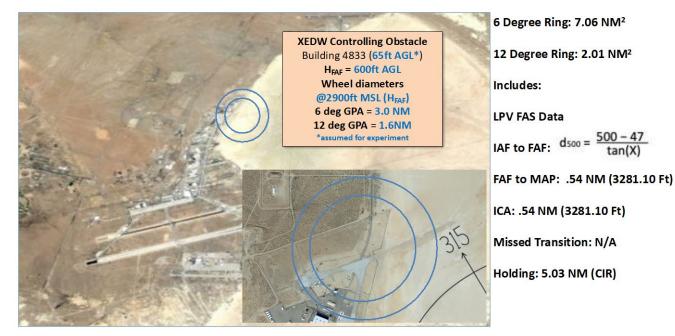


Figure 4.21. Conservation of Airspace XEDW 01H.

Constraints

As the urban environment poses many constraints to vehicle operation ingress and egress routing, the NC test series attempted to emulate the variables in obstructions, noise abatement and airspace restrictions. As depicted in Figure 4.22, the cylinder of airspace required for omnidirectional departure and approach procedures has sectors based on a controlling obstacle that was defined in the survey. The controlling obstacle of the cylinder of airspace will drive the holding, maneuvering, and traffic pattern altitude above the vertiport. Secondary controlling obstacles will be identified per each section, however, that will drive the climb and descent criteria based on a 20-degree splay on either side of the controller. This variation will allow shallower approach paths in and out of the vertiport, depending on their proximity to any identified hazard, physical or not.

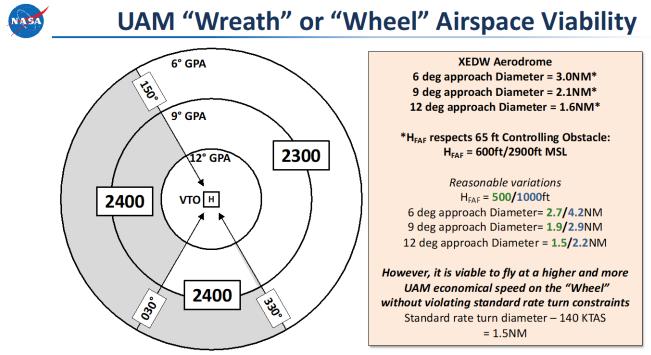


Figure 4.22. Wheel Airspace Viability.

XEDW 01H Airspace Sectors

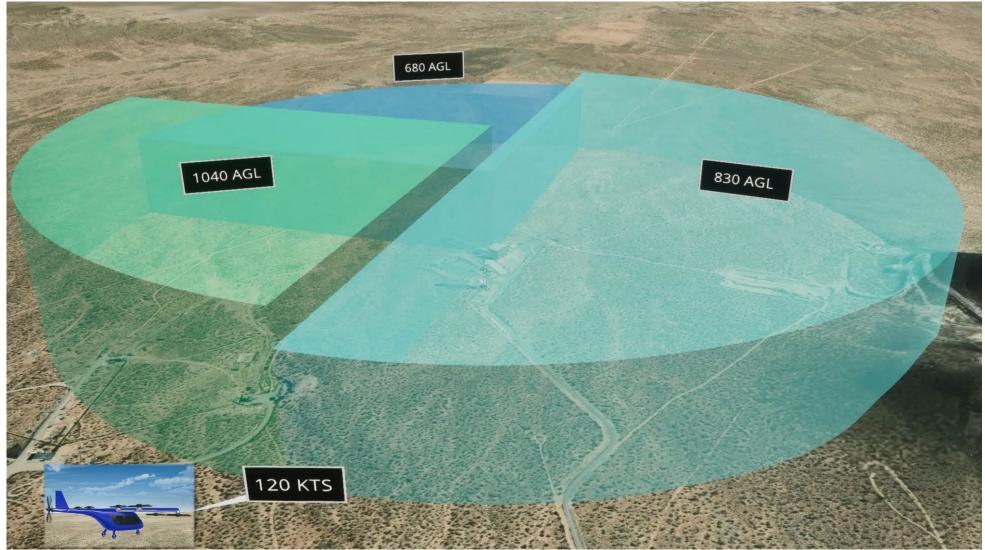


Figure 4.23. Airspace Slice.

Flying the Wheel

As the wheel model is constructed, the term "wreath" becomes prevalent because the "wheel" is actually not a solid line in the sky but rather a collection of waypoints fixed along a radius with the purpose of precision navigation to a final rollout course on an approach path that provides optimal wind alignment. For continuity, the final approach fix of GORDO will be used to showcase the maneuverability of the ring method, the predictability of path point recording, bank angle, and wings-level position in order to provide a safe, stabilized aircraft proceeding into the final approach segment. As depicted in Figure 4.24, the terminal navigation point of the aircraft will be at the circle intercept, associated with a speed restriction for entry into the wheel in order to maintain spacing with other traffic that may be utilizing the same altitude for approach or departure sequencing. If no other traffic is impeding the highlighted aircraft, then a final rollout point will be established, based upon the current wind condition, and a final rollout point will be backwards-planned from that approach course - shown where the black final approach segment meets the blue arrow, making a turn off of holding pattern of the wheel. While initiating the turn to final, the aircraft is authorized to begin deceleration to the intended approach speed, since the aircraft will be out of the wheel spacing pattern. The intent is for the aircraft to have a standardized sequence of maneuvers to ensure the vehicle is wings-level and on final course at the designed airspeed and altitude to initiate the descent sequence into the vertiport.

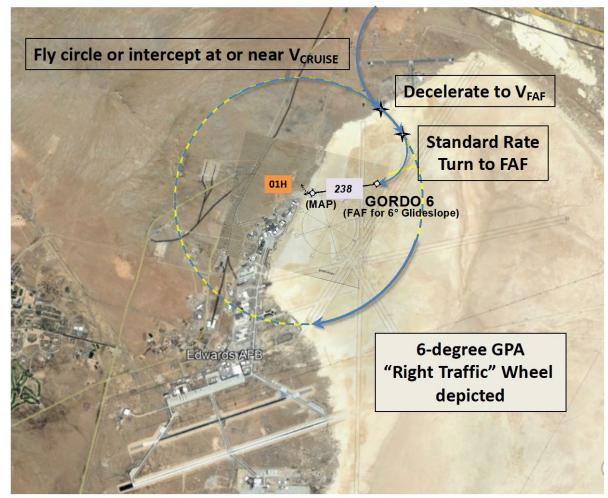


Figure 4.24. 6-Degree Wheel.

Approach Design

Approach is defined as the final approach segment (FAS data block) in which the aircraft is wings-levelaligned with the final approach course and begins a descent into the landing surface. Traditionally, aircraft maintain a specified airspeed, which is bucketed in approach categories based on 1.3 times the stall speed of the aircraft. For this test, the NC team developed a "quad zero" approach, which is defined as zero ceiling, zero visibility, zero airspeed and zero altitude termination to a point in space (PinS). In order to test this theory, the NC team started with the assumption that the vehicle would begin the Final Approach segment at a Precision Final Approach Fix (PFAF). Given the altitude and airspeed initiated at the PFAF, the aircraft would begin two types of descents and decelerations into the landing surface. The first descent and deceleration would be constant-rate, in which the aircraft would dissipate its airspeed equal distant along the glide path to the final touchdown point. The second descent would be a constant speed descent followed by a rapid deceleration specified at a point along the glidepath. As part of the test, the NC team developed speed gateways to monitor the aircraft conformance to the descending deceleration. First, Barrow glide path distance is calculated, which is a change-in-altitude distance that subtracts the radius of the earth (Napier's Constant) to determine the exact linear distance travelled between two points across the ground. Instead of utilizing the conventional "one" missed approach point, the NC team explored the idea of having multiple missed approach points which are defined by height above missed approach surface (HMAS).

An approach procedure is comprised of two products that result from the terminal procedure designer's build. The first is the instrument approach plate that is designed for human consumption. As depicted in Figure 4.25, GORDO 01H instrument approach plate (right) is comprised of a header, communication, overhead section, airport diagram and profile view. The second product produced from the terminal procedure designer is the coding of the approach designed for machine consumption. The coding is intended for a Flight Management System to identify the safe altitudes, airspeeds and alignments that are required to orient the aircraft in space and away from the ground and all obstacles, as defined by the terminal procedure designer.

XEDW 01H GORDO

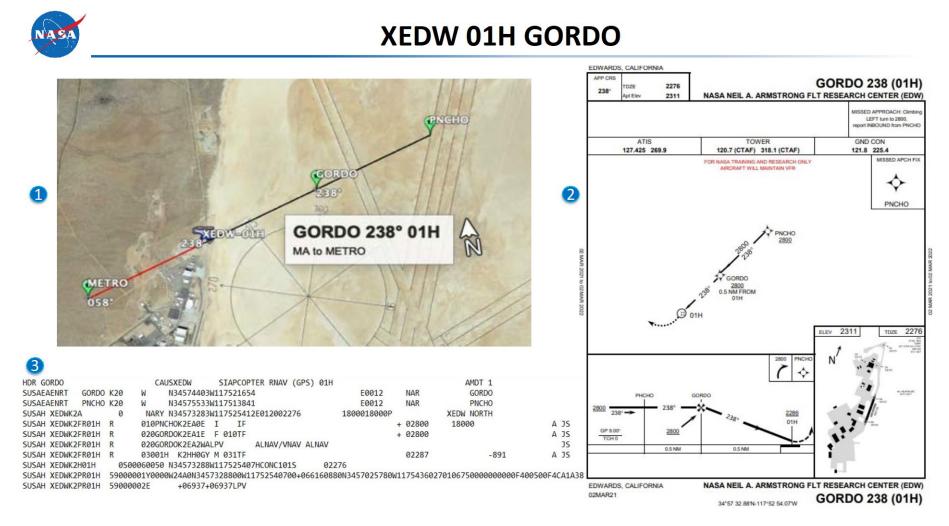


Figure 4.25. Gordo: (1) Satellite View; (2) Experimental Approach Plate; and (3) Experimental ARINC 424 Coding.

ARINC 424 Coding

As part of the AFRC test, the NC team worked with FAA Air Traffic Control Services (AJV-A) for experimental ARINC 424 coding. Although unable to ingest the coding of the procedure in the helicopter, the NC team produced unique experimental coding for the following purposes: standardization of different constraints, ground check for flight inspection evaluation, and spatial data integrity. One of the results of this test resulted in identification that current FAA software does not have the allocation to evaluate a low level flight with truncated routing and reduced leg lengths.

NASA			XEDW	V 01H (GORDO			
	01H R 01H R 01H R 01H R 01H 05000 01H 5900000	W N345755 NARY N345732 010PNCHOK2EA0 020GORDOK2EA1 020GORDOK2EA2 03001H K2HH0 060050 N345732 01Y0000W24A0N3	E F 010TF WALPV 6 ALNAV GY M 031TF 88W117525407HCONC	02276 /VNAV ALNAV 1015 03	3 E0012 E0012 1800018000P	+ 02800 + 02800 02287	AMDT 1 GORDO PNCHO XEDW NORTH 18000 -891 7010675000000000064	A JS A JS JS A JS 400500F4CA1A38
0	An experir	mental helipor	t was used and file	ed under th	e California da	tabase.		
2	Special use	e tailored data	was made for the	e FAS data b	ock with uniq	ue waypoi	nt subset list	
3	Standard r	magnetic varia	tion was used for	each appro	ach bearing			
4	WGS-84 D	atum (ITRF 20	14) was used for a	all reference	S			
5	Overlying	airspace was a	assumed at Flight I	Level 18,000	MSL due to in	ntended lo	w level flight opera	tions
6	Procedure	built for prec	sion RNAV approa	ach as Locali	zer Performan	ice with Ve	rtical Guidance (LP	V)

Figure 4.26. Gordo Experimental ARINC 424 Coding.

Follow-on tests will be needed to exercise the standardization of the experimental coding and addition of waypoint restrictions associated with AAM routing. Figure 4.27 illustrates the breakdown of the coding used and identifies the areas that will be needed to define AAM routing, as well as establish a waypoint subset list. Fix names and locations will need to change as addressed earlier in the 8260-2 form. Additional research will be required for adequate leg type usage intended for AAM operations that will define the mechanism for navigation within a corridor and routing limitations.

XEDW 01H GORDO Coding

...Continued coding for enroute structure.

Figure 4.27. Gordo Experimental ARINC 424 Coding Breakdown.

Simulation XEDW 01H:

In partnership with the RVLT program, the NC team provided approach procedures that were constructed in the RVLT fixed-base simulator and vertical motion simulator (VMS). The RVLT high-fidelity aircraft modeling was used in the construction of the build as well as landscape, infrastructure, and atmospheric data. Two of the RVLT vehicles were selected by the group to fly the NC procedures in simulation at the AFRC test site as well as apply two test pilots for handling qualities through the different inceptor designs that map to the unique control surfaces for the multirotor or fixed-wing aircraft configurations: *Lift-Plus-Cruise* and *Turboelectric Quadrotor*.

Lift-Plus-Cruise

The RVLT LPC model was flown as part of an interagency test utilizing multiple pilots flying the same XEDW 01H GORDO approach procedure. The test pilots ranged from fixed-wing and rotary-wing backgrounds and were from civilian, military and government (the FAA or NASA) organizations. Many iterations of the GORDO approach were flown from a wings-level, set airspeed and altitude in which the test pilots started inbounding in the winged configuration and utilized the experimental inceptors to transition to vertical flight and execute a landing within the flight envelope and parameters of the LPC vehicle. The pilots were allowed to initiate a deceleration sequence based on information provided by the PFD regarding which flight mode the model was transitioning to as the vehicle speed decayed on the approach.

	Descriptive Data	Specification
	Passengers + Crew	5+1
Weight		
	Number of Lifting rotors	8
	Disk loading (lb/ft2)	9.6 - 10.26
	Design Gross Weight (lb)	6013
	- Payload	1200
	- Weight Empty	5269
	- Operating Weight	5279
Dimensions		
	Wingspan	47.72ft
	Wing Area	183=1.3ft ²
Effectors		
	Ailerons	+/- 20 deg
	Elevator	+/- 30 deg
	Rudder	+/- 20 deg
	Propeller Blade Pitch	-20 – 8.3* deg
Lifting Rotors	s	
	Number of blades	2
	Rotor radius (ft)	5
	Hover tip-speed (ft/s)	550
	Rotational speed (rad/s)	110.0
	Flapping frequency (/rev)	1.25
	Number of motors	9 + gen
	Hover Torque	450 ft-lbs
	Hover Rotor RPM	1089[114 rad/sec)
la n	Rotor Torque	0-900 ft-lbs
	Max Rotor RPM	1528
	Thrust/Weight Ratio =	1.45

RVLT turboelectric Lift-Plus-Cruise (LPC) concept model was designed and developed using NASA Design and Analysis of Rotorcraft (NDARC) tool. The ART LPC (Gen-1) model was integrated into FlightDeckZ with the addition of actuator models, gear/ground models, and modifications to incorporate nonlinear terms. See Figures 4.29-4.30.

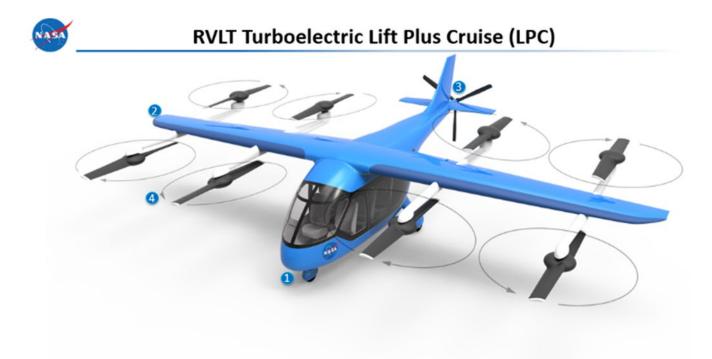


Figure 4.29. The RVLT Turboelectric Lift-Plus-Cruise Model.

- HQTE Performance Data, Distance, Battery, and Flight Time
- 2 Turn and Slip Indicator
- **3** Lift and/or Control Modes (pitch, heading, roll command etc.)
- Ground Speed as a function of time for ETA and RTA
- 5 Altitude reporting in Mean Sea Level (barometric) and Above Ground Level (radar)
- 6 Reference Aircraft: Turboelectric LPC
- Inertial Flight Path Indicator (not standard for more information contact RVLT team)
- 8 Horizontal Situation Indicator with ground track reference

XEDW 01H GORDO Lift-Plus-Cruise Approach

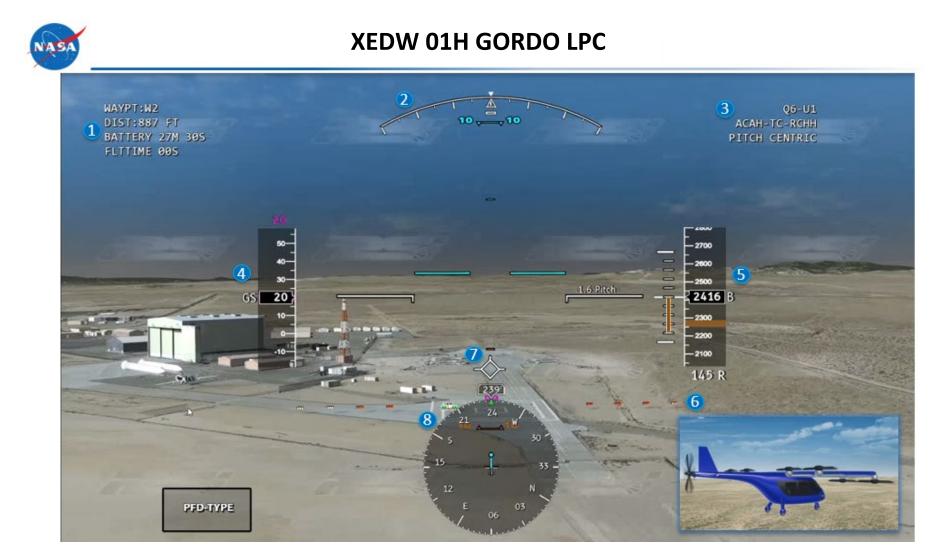


Figure 4.30. XEDW 01H GORDO RVLT Turboelectric Lift-Plus-Cruise Approach.

Turboelectric Quadrotor

The RVLT Quadcopter model was flown as part of an interagency test utilizing multiple pilots flying the same XEDW 01H GORDO approach procedure. The test pilots ranged from fixed-wing and rotary-wing backgrounds and were from civilian, military and government (the FAA or NASA) organizations. The quadrotor model was flown wings-level at a specified airspeed and altitude for each test pilot that initiated the approach. The final approach segment was evaluated in the simulation study, which required the pilot to initiate a descent and deceleration in order to negotiate a safe and secure landing. Utilizing the inceptors provided by the RVLT team, the pilots were asked to gauge the glide path conformance via the PLASI light located at the base of 01H. The pilots were given the freedom to decide where and when they would initiate the deceleration while on glidepath while also managing the descent and rate of closure of the vehicle.

Table 4.31. The RVLT Turboelectric Quadcopter Parameters.

	Parameter	Value
Size		
	Crew + Passengers	1 + 5
	Rotor radius (ft)	13.1
	Outside Airframe diameter (D) (estimated)	72ft
Weight		
	Number of rotors	4
	Disk loading (lb/ft2)	3.0
	Design Gross Weight (lb)	6,480
	- Payload	1,200
	- Weight Empty	5,269
	- Operating Weight	5,279

The NASA RVLT Quadrotor is a six-place electric propulsion VTOL aircraft with four lifting rotors mounted on arms above the aircraft with controllable pitch rotors. The quadrotor for the study is utilizes Unified Control System concept with envelope protection and no reversionary modes.

- 1 HQTE Performance Data, Distance, Battery, and Flight Time
- 2 Turn and Slip Indicator
- 3 Lift and/or Control Modes (pitch, heading, roll command etc.)
- Ground Speed as a function of time for ETA and RTA
- 5 Altitude reporting in Mean Sea Level (barometric) and Above Ground Level (radar)
- 6 Reference Aircraft: Quadcopter
- Inertial Flight Path Indicator (not standard for more information contact RVLT team)
- 8 Horizontal Situation Indicator with ground track reference

Figure 4.32. The RVLT Turboelectric Quadcopter

XEDW 01H GORDO Turboelectric Quadrotor Approach

Figure 4.33. XEDW 01H GORDO RVLT Turboelectric Quadcopter Approach.

Document No. AAM-NC-069-001

Document Name: National Campaign Airspace Operations, Infrastructure and Data

Expected Messages for Approach

As part of the Build 2, the NC team attempted to calculate the theoretical message sets based on baro glidepath total distance of FAS and the calculated deceleration rate along that distance to determine the times the aircraft would transit between each speed gateway fixed along the glide path. Figure 4.34 below highlights the theoretical message sets between two speed gateways in a constant deceleration along the glide path. The theoretical message sets are based on ADS-B transceiver update rates at 750 milliseconds, which in the example would be spread across 21.32 seconds to produce 28 ADS-B message exchanges in the FAS, given equal distance speed gateways. The results of these data are found below. As the aircraft transited lower altitudes, ADS-B coverage, and signal quality deteriorated, given the specific EAFB range. Conversely, on the constant rate approach and descent, as the aircraft slowed down rapidly, the lower and slower the aircraft was in proximity to the ground, the more message sets were available, thus making final approach flight-following data of higher quality. More tests will be needed to determine specific variables in message sets based on time, airspeed, altitude, descent rate, battery dissipation, battery temperature, and other contributing factors that would be applicable to the safety of the flight.

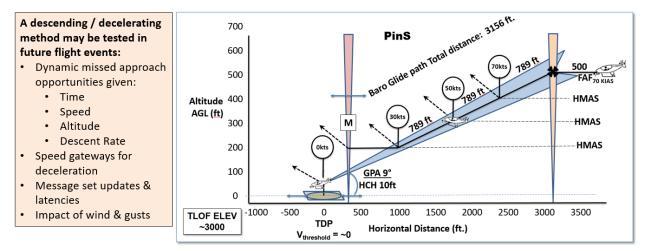


Figure 4.34. National Campaign Point-in-Space (PinS) Approach.

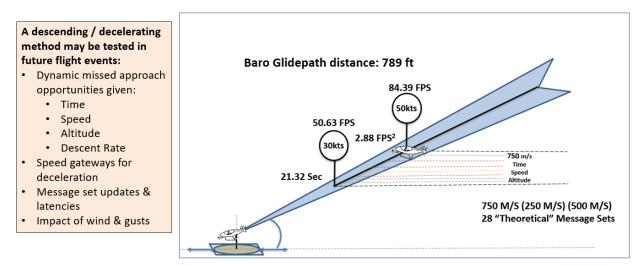
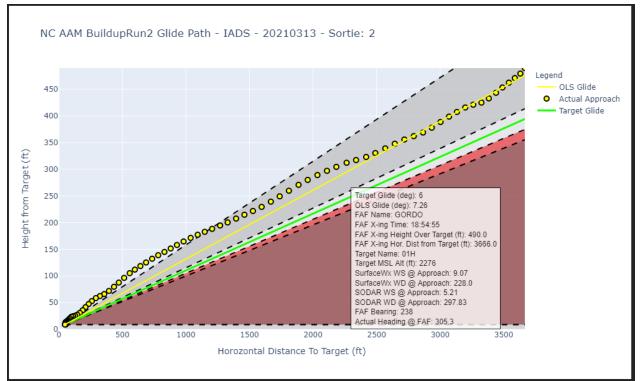



Figure 4.35. National Campaign segment of Point-in-Space (PinS) Approach.

Approach Glide Path Angle Results

The NC vertipads (01H, 02H, 03H, 04H, 05H, and 06H) and vertiport (RWY 01/19) and approaches were accessed for Scenario Tests. The target approach angle for each scenario was 9 degrees. Approaches were also tested at 6 degrees and 12 degrees to provide baselines to measure future tested aircraft which either cannot yet meet 9 degrees or have already exceeded it up to 12 degrees.

Each of the approaches depicted to follow Figures 4.36 - 4.41 represent the best and worst of the 6degree, 9-degree, and 12-degree approaches. The Lewis 12-degree approach could not be flown during AFRC Build 2 Flight Test because there were airspace constraints near the main EAFB runway and the limitations on overflight of the Center prevented Lewis 12-degree approach attempts during this test event. Positive traffic and airspace deconfliction from the tower, on a "by request" basis, as well as special permission to overfly the Center, will be needed to test approaches to the vertipad runway 01 and LZ 05H during future test events.

6-Degree Glidepath Angles

Figure 4.36. Best 6-Degree Glidepath Angle via IADS: Gordo 03.13.21 18:54:55.

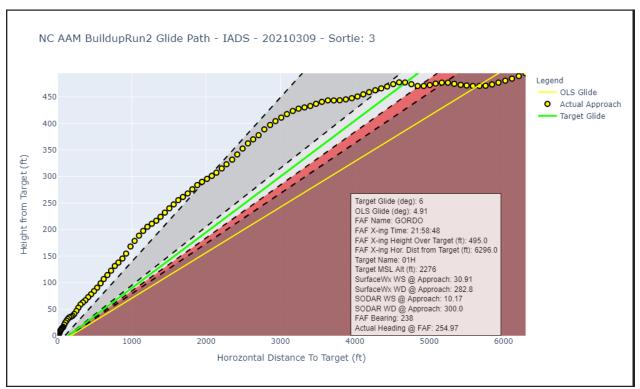
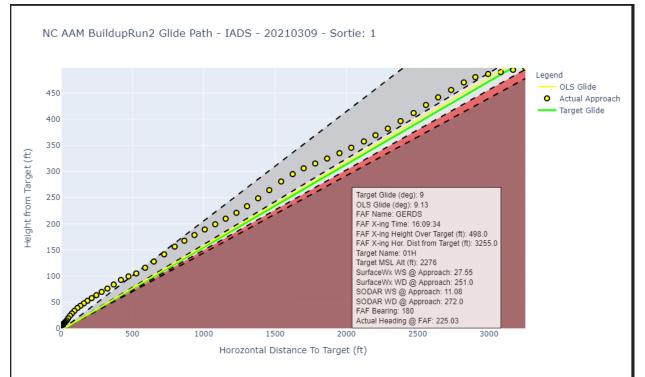



Figure 4.37. Worst 6-Degree Glidepath Angle via IADS: Gordo 03.09.21 21:58:48.

9-Degree Glidepath Angles

Figure 4.38. Best 9-Degree Glide Path Angle via IADS: Gerds 03.09.21 16:09:34.

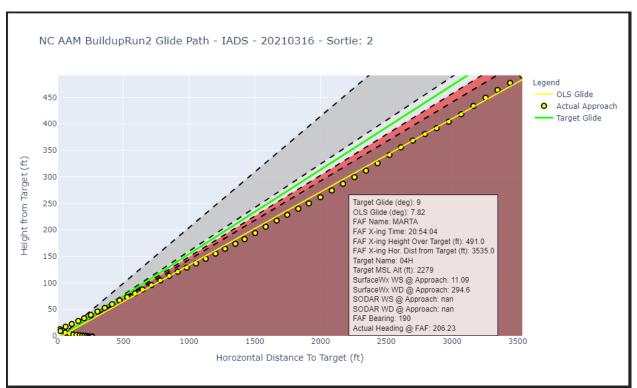



Figure 4.39. Worst 9-Degree Glidepath Angle via IADS: Marta 03.16.21 20:54:04.

12-Degree Glidepath Angles

Figure 4.40. Best 12-Degree Glidepath Angle via IADS: Gordo 03.12.21 18:42:53.

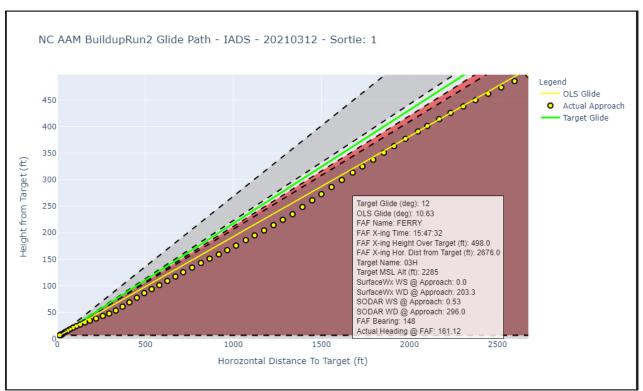


Figure 4.41. Worst 12-Degree Glidepath Angle via IADS: Ferry 03.12.21 15:47:32.

4.3 Routes And Scenarios

NC applied the designed Scenarios concepts to the flight tests as depicted in Figure 4.42 below:

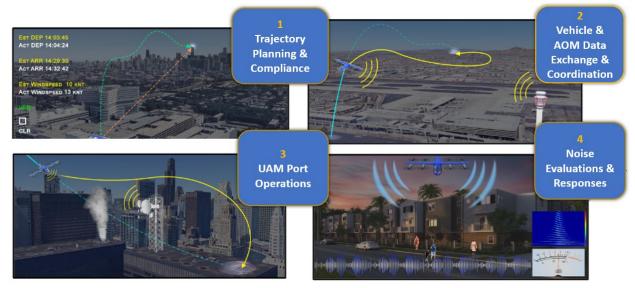


Figure 4.42. NASA-FAA National Campaign Working Group Overview.

Scenario 1: Trajectory Planning and Compliance

The first scenario tested operational and flight planning capabilities for nominal operations, and interoperability of the vehicle and the airspace service provider. The vehicle flew an intended flight plan "filed" with the [for Build 2, NASA PSU] airspace service, and executed the fight as planned after receiving approval from [for Build 2, NASA Mission Controller] the provider. The airspace provider [for

Document Name: National Campaign Airspace Operations, Infrastructure and Data

Build 2, the NASA Mission Control Team] monitored the flight for conformance to the approved plan. There were no contingencies planned or required for Scenario 1.

Scenario 2: Vehicle and AOM Data Exchange and Coordination

The second scenario tested in-flight re-planning, negotiation, and execution that accommodated the [for Build 2, simulated] airspace system and vehicle constraints and responded to [for Build 2, pre-planned] real-world uncertainties. The airspace system communicated a new constraint [for Build 2, via preplanned routes] that required the vehicle to execute a re-route while airborne. Note that the contingency in scenario 2 was a simple re-route due to an airspace restriction imposed after takeoff.

Scenario 3: UAM Port Operations

The third scenario tested scalable UAM Port designs and procedures, exploring factors such as turnaround times, ground operations, airspace scheduling impacts around UAM ports, localized weather information, and impacts of balked landings or go-arounds. There are three sub-scenarios within scenario 3, progressively more time sensitive situation requiring [for Build 2, pre-planned, simulated] goaround or balked landing, loiter, and re-route to a landing site.

Scenario 4: Noise Evaluation and Responses

The fourth scenario tested the RVLT acoustics array and performed acoustic evaluation with the Joby Aviation, Inc. AAM vehicle during the Developmental Testing Flight test. The test also evaluated energy supply for flight phases and a subset of vehicle characterization objectives.

Introduction to Scenario Applications for NC Dry Run Tests

Scenarios were tested for the National Campaign Dry-Run and routes were selected to test them. The NC team began with scenario 1, to test nominal flight planning and operations, and then progressed through Scenarios 2 and 3 which progressively increased the complexity of the scenarios "to exercise advanced technologies and verify readiness for operational use by standardized testing in partnership with the FAA." (UAM Helicopter Flight Test Plan, Appendix A, page 105) The flight planning portions of scenario 1 were repeated for Scenarios 2, 3A-C.

The following routes were created to facilitate the scenarios: Route Discovery, Apollo, Galileo, Mercury 1 and 2, Orion 1, 2, 3, and 4, Endeavor, Sophia, Atlantis, Enterprise, Gemini 1 and 2, Magellan, Ulysses 1 and 2, Artemis, and Lewis. The names of the routes were taken from the names of legacy NASA programs. The routes were constructed using waypoints named after NC team members; the final approach fix waypoints were named for deceased NASA test pilots.

Scenario performance and conformance utilizes the FAA ADS-B via SBSM. The ADS-B is passively monitored through the FAA system. Portions of the TSPI data are parsed through a converter software to KMZ and shared with National Campaign. The track is overlaid on the routes to identify adherence to the scenarios as they apply to the airspace design for the flight event range. The SBSM ADS-B is chosen as the truth source for scenario route conformance as a baseline study for early integration of new entrants into the NAS with existing FAA technologies and methods. See Annex 6 for coded routes.

Scenario 1: Nominal Routes

"The purpose of [Scenario 1] is to exercise the planning and execution of nominal operations supported by a NASA Provider of Services for UAM (NPSU) within the bounds of vehicle constraints and to assess the precision of the vehicle trajectory's spatial and temporal conformance to the flight plan across a range of density altitudes [and to] evaluate the format for exchange of trajectory information between vehicle and PSU system." UAM Helicopter Flight Test Plan, Appendix A Page 105). To facilitate this

Document No. AAM-NC-069-001

Document Name: National Campaign Airspace Operations, Infrastructure and Data

purpose, the flight check team will, "Perform nominal vehicle and airspace operations, to include preflight planning and basic airspace/vehicle information exchanges. Takeoff utilizing a NASA defined heliport/vertiport departure, fly approximately 15 nautical miles using nominal operations and procedures while maintaining contact with the airspace provider at all times, land using nominal heliport/vertiport approaches as defined by NASA. [These] operations will take place in simulated Class G airspace. All Scenario 1 flights will occur in VMC conditions during daylight hours. Routes can transit from one site to another or begin and end at the same site. (UAM Helicopter Flight Test Plan, Appendix A, page 105).

For the NC Dry-Run, the preflight planning and basic airspace and vehicle information exchanges were conducted using a simulated flight plan construct consisting of a modification of current flight plan theory methods, as shown below in Figure 4.43, but adjusted to a waypoint-by-waypoint plan which could be easily disseminated to the flight crew and data teams. This flight planning and airspace to vehicle information method was used for all tested scenarios 1, 2, 3A-C.

TYPE FLT PLAN	TRUE AIRSPEED	POINT OF DEPARTURE	PROPOSED DEPARTURE TIME (Z)	ALTITUDE	ROUTE OF FLIGHT	то	ETE
1	245	KHBG	1200	160	LBY1.LBY LBY.RYTHM4 TINEE	KNBG	0+34
1	243	KNBG	1400	50	HRV SLIDD V20 CLERY KHSA		0+11
					® KHSA D0+15 KBIX		

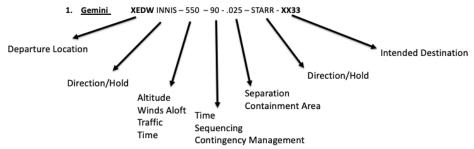


Figure 4.43. National Campaign Flight Plan Theory.

Scenario 1 Routes- DISCOVERY, APOLLO, GALILEO, MERCURY & ORION

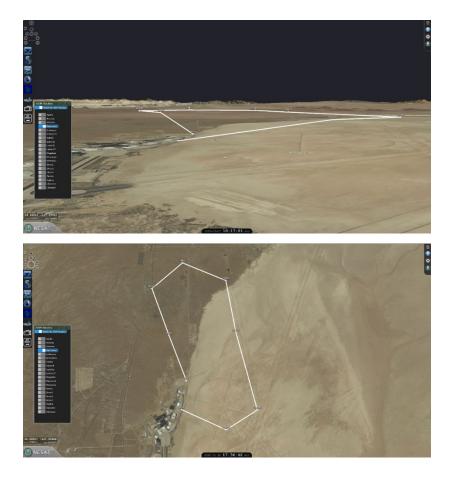
Five test routes were created for scenario 1: Discovery, Apollo, Galileo, Mercury 1, and Orion 1. Of these routes, two, Discovery and Mercury 1, were selected for Dry Run flight test. Routes Discovery, Apollo and Galileo were all contained with the UAS work area; routes Mercury and Orion 1 were routes between the vertiport at EAFB and XX-33. Scenario routes between the vertiport and XX33 were preferred by the flight crew over those wholly within the UAS work area. As such, the routes in the UAS work area were only evaluated when the routes to XX33 were not available. Therfore, only UAS Work Area route Discovery v1 Figure 4.45, was evaluated while the rest of the scenario was flown using Route Mercury 1.

'Deproach' Theory

As routes were constructed, the NC team attempted to backwards-plan from a validation process in use today via FAA FIAPA Flight Check. The current software in use today for Flight Check could not ingest the low level routes, and, therefore, the NC team constructed 'Deproach'. A 'deproach' is the departure location coded as an IF, which initiates the route from the aircraft point of departure. The resulting lines of code included the departure - enroute - approach sections which totaled 14 nautical miles from end to end (Figure 4.44). A conventional approach totals 14 nautical miles not including the additional enroute and departure portions of flight.

Experimental UAM Routing from Takeoff (IF) to Landing (MAP)

ROUTE APOLLO


Experimental "DEPROACH"

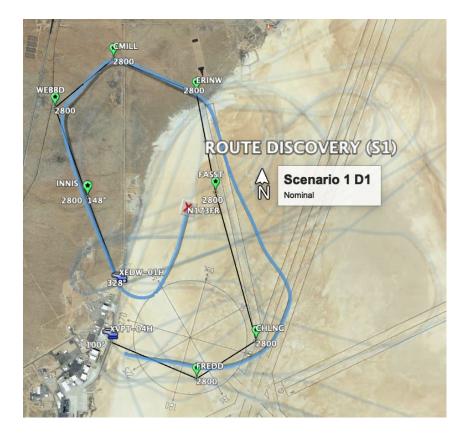

SUSAD	XVPTK6GRW19	0010	611902	N3457136	41117	25772	+02171022	79000056100I									106521804
	XVPTK6GRW01			N3457038				76000056100I									106521804
	XEDWK6A	0010				525412E012002		1800018000P			M V	COL	Nort	h			100102013
	XVPTK6A	0				525772E012002		1800018000P					Nort				100202013
	XX33K6A	8				3784885812882		1800018000P				X33	nore				100202013
	XEDWK6H01H					525425HCONC10						~>>					200102013
	XEDWK6H02H					525772HCONC10											200202013
	ХЕДЫК6Н03Н					538312HCONC18											200202013
	XVPTK6H04H					525808HCONC10											200302013
	XVPTK6H05H					525808HCONC10											200402013
	XX33K6H06H					378488HCONC10											200502013
					/#11/:		029	/81				1000	0			20	
	XVPTK6FR01	AEDW	010EDW			IF		24000000		05000		1800	90			JS	300102013
	XVPTK6FR01	AEDW		РНҮКБЕАӨЕ	R	TF		24880080		05000		1000				35	300202013
	XVPTK6FR01	R		РНҮК6ЕАӨЕ	-	IF		35000005		05000		1800	96			35	300302013
	XVPTK6FR01	R		STK6EA0E	R	TF		35890005		84888						JS	300402013
	XVPTK6FR01	R		BDK6EA8E	R	TF		01120005		03000						35	300502013
	XVPTK6FR01	R	-	NWK6EA0E	R	TF		01120005		03000						JS	300602013
	XVPTK6FR01	R		NDK6EA0E	R	TF		01120005	-	03000						35	300702013
	XVPTK6FR01	R		NGK6EA8E	IR	TF		13360008		03000						JS	300802013
	XVPTK6FR01	R		LDK6EA0E	_	TF		21070002	+	03000				12111121		35	300902013
	XVPTK6FR01	R		1 K6PG0G	YM	TF		35600014		01339				-900		JS	301002013
	XEDWK6FR01H	AEDW	010EDW			IF						1800	96			35	301102013
	XEDWK6FR01H	AEDW		LDK6EA0E	R	TF		24880080		05000						JS	301202013
SUSAH	XEDWK6FR01H	R	010BIL	LDK6EA0E		IF				05000		1800	96			35	301302013
SUSAH	XEDWK6FR01H	R	020CHL	NGK6EAØE	R	TF		35890005	+	84866					A	JS	301402013
SUSAH	XEDWK6FR01H	R	030GRA	NDK6EA0E	R	TF		01120005	+	03000					A	35	301502013
SUSAH	XEDWK6FR01H	R	040ERI	NWK6EA0E	R	TF		01120005	+	03000					A	35	301602013
SUSAH	XEDWK6FR01H	R	050WEB	BDK6EA0E	R	TF		01120005	+	03000					A	JS	301702013
SUSAH	XEDWK6FR01H	R	060ROB	STK6EA0E	IR	TF		13360008	+	03000					A	35	301802013
SUSAH	XEDWK6FR01H	R	070MRP	РНҮК6ЕАӨЕ	FL	TF		21070002	٠	03000					A	JS	301902013
SUSAH	XEDWK6FR01H	R	08001H	K6HH0G	Y M	TF		35600014		01339				-900	A	JS	302002013

Figure 4.44. National Campaign Urban Air Mobility APOLLO Route.

DISCOVERY Version 1

The simulated flight plan for DISCOVERY Version 1 is as follows: XVPT (04H)—FREDD—CHLNG—FASST—ERINW—CMILL—WEBBD—INNIS—XEDW (01H)

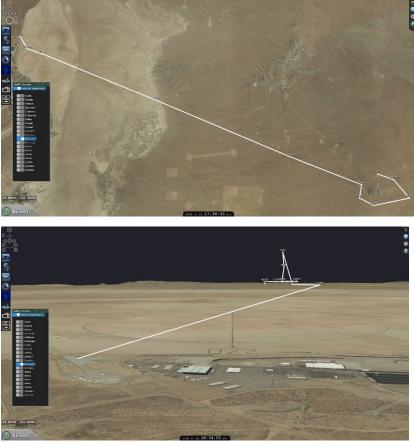
Figure 4.45. fVersion 1 In SBSM (left); and as Flown ADS-B Track in Google Earth (right).

DISCOVERY Version 1 Outcome

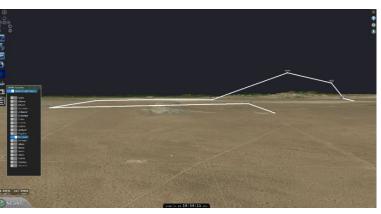
DISCOVERY Version 1 Scenario route was flown with the track shown in blue within Figure 4.45 (above). The aircraft was intended to depart 04H on a 100-degree heading to FREDD while climbing to the planned altitude of 2,800 feet MSL and then proceeding along the course using the waypoints to the FAF at INNIS to begin a 9-degree approach. The aircraft struggled slightly with the tight turns from the outset of the scenario but was able to recover in time to begin the approach at the FAF. Despite this, the aircrew requested a longer route which resulted in a redesign of the route. The redesign of the scenario route was never flown, however, because the XX33 routes were available for most of the following test flight events. Finally, the redesign of the DISCOVERY Route 1 also led to the same lengthened redesign for all other non-XX33 routes.

DISCOVERY Version 2

The simulated flight plan for DISCOVERY Version 2 is as follows: XVPT (RWY01)—FASST—ANCHR—SIMPLO—JAFFE—SHRMA—FALCN—CAPPS—COOPER—XEDW (01H)


Figure 4.46. Discovery Version 2.

DISCOVERY Version 2 Outcome


Route DISCOVERY Version 2 was adjusted to this longer version to accommodate the entire UAS work area; however, it was not flown because the XX33 route, MERCURY 1, became available to complete Scenario 1 flights.


MERCURY 1 Version 1

The simulated flight plan for MERCURY 1 Version 1 is as follows: XEDW (01H)—COOPR—CAPPS—OLIVZ—SIDBR—STARR—FURRY—POTTR—FLOKI—BRUCE—XX33 (06H)

Figure 4.47. MERCURY 1 Version 1 In SBSM (left and top right); and as flown ADS-B track in Google Earth (bottom Rrght).

MERCURY 1 Version 1 Outcome

An initial attempt for BRUCE route arrival approach was made when flying into XX33 from the Southeast. The simulated obstacles on this scenario being the mountain in the center, the higher elevation to the South and simulated UAM environment to the Northeast. The aircraft struggled with the tight turn at the IAF, however, and was never able to fully recover for the approach to begin properly at the FAF, BRUCE as seen in Figure 4.48.

MERCURY 1 Version 1.5 Outcome

Figure 4.48. MERCURY 1 Version 1.5.

A second attempt at the BRUCE arrival into XX33 was made. On the second iteration, the aircraft was able to swing wide of the IAF to properly set up for the PFAF at waypoint BRUCE. The track in Figure 4.48 indicates the necessity for a small adjustment to the arrival, moving FLOKI to the apex of the left turn to final, allowing the aircraft to begin the approach as planned at BRUCE. After discussion with the aircrew, safety, and airspace teams, it was decided that, for passenger comfort, this turn might not be acceptable. As such, a redesign was implemented on this arrival, as shown in to follow in Figure 4.49, with which the aircraft was able to maintain a tight track without such aggressive turns required. The conversation about this arrival led to discussions about passenger comfort and the effect on future route planning for both test and live flight events.

MERCURY 1 Version 2

The simulated flight plan for MERCURY 1 V 1 is as follows: XEDW (01H)—COOPR—CAPPS—OLIVZ—SIDBR—FURRY—POTTR—FLOKI—BRUCE—XX33 (06H)

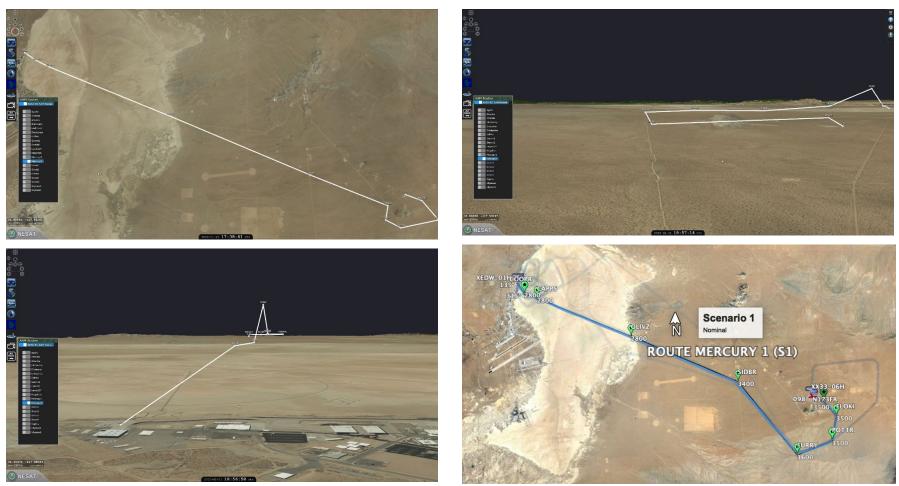


Figure 4.49. MERCURY 1 Version 2 In Sbsm (left and top right); and as flown ADS-B Track in Google Earth (bottom right).

MERCURY 1 Version 2 Outcome

As a result of the surrogate aircraft unable to make the greater than standard rate turn at FLOKI, attempting to simulate a constrained UAM environment, MERCURY 1 Version 2 was created and flown with the aircraft departing XEDW-01H enroute to XX33-06H. The aircraft was able to maintain a tight track to the planned route including the new arrival path into XX33 as shown above in Figure 4.49.

Scenario 2: In-Flight Re-Route

The purpose of scenario 2 is the "In-flight re-planning, negotiation and execution that accommodates PSU system and vehicle constraints and responds to real-world uncertainties. Exercise exchange of trajectory information, PSU system and vehicle constraints, and user preferences between vehicle and airspace management systems." UAM Helicopter Flight Test, Appendix A, page 111.

The NC team performed nominal vehicle operations and executed airspace negotiations, including preflight planning and basic airspace and vehicle information exchanges in order to facilitate the purpose of scenatio 2. Takeoffs and landings will have occurred in simulated Class D airspace, separated by a section of simulated Class G airspace. Takeoffs and landings were executed using heliport/vertiport approaches and departures as defined by NASA. Namely, take off, fly approximately 15 miles using nominal operations and procedures while maintaining contact with the airspace provider at all times to allow for airspace negotiation, which occurred during the cruise phase of the flight. After takeoff, while the vehicle is still in simulated Class D airspace, a UVR (UAM Volume Restriction) was issued that indicates a conflict with the current operation which required the vehicle to update its route and the ATI system updated the conflict and the vehicle selected and begin flying the alternate route on the cockpit navigation aid. The alternate route rejoined the original route and included flight through a portion of simulated Class G airspace. To conclude the flight, the vehicle re-entered simulated Class D airspace and landed. Up to 50 virtual UAM tilt-rotor aircraft with no planned interference will be utilized as background traffic. All Scenario 2 flights occurred in VMC conditions during daylight hours.

Scenario Routes ORION 3 and ENDEAVOR

Scenario 2 consisted of two routes; ORION 3 to and from XX33 and Endeavor contained within the UAS work area. Only ORION 3 was tested during this flight check since the XX33 route was available for all flights.

ORION 3

The simulated flight plan for ORION 3 is as follows:

XEDW (01H)—GORDO—PNCHO—ANCHR—EVOLV—FALCN—MOHAG—OLIVZ—HOMLA—EGGMS—FURRY—POTTR—FLOKI—BRUCE—XX33 (06H) RE-ROUTE@ FALCN—WGGNR—DEEZR—HOMLA—OC

Figure 4.50. ORION 3 In SBSM (left); and as flown ADS-B Track In Google Earth (right).

ORION 3 Outcome

In the scenario 2, a re-route was sent to the aircraft via simulated air traffic control, or in the future, an automated system, and the aircraft adjusted to the new course enroute. The surrogate piloted aircraft was easily able to adjust to the change in course and followed a tight track from departure at XEDW-01H all the way to landing at XX33-06H. The scenario route also made use of the adjustment to the BRUCE arrival first made for MERCURY 1.

Scenario 3: UAM Ports and Missed Approaches

The purpose of Scenario 3 was to develop scalable UAM Port design and procedures and explore influencing factors such as turn-around times, ground operations, airspace scheduling impacts around UAM ports, localized weather information, and impacts of balked landings or go-arounds. To facilitate this purpose, Scenario 3 focuses on terminal area operations. Vehicle takeoff can occur from any of the NC Dry Run Helipads or Vertiports. All takeoff procedures and "planned" landing profiles will be defined by NASA personnel. The vehicle may remain close to the heliport/vertiport to allow the participant to execute several Scenario 3 profiles within one day. All Scenario 3 profiles are entirely within simulated Class-D airspace. In Scenario 3b, the participant will execute a go-around, loiter, and land at the originally intended site. In Scenario 3b, the participant will execute a balked landing resulting in a diversion to an alternate heliport/vertiport. In Scenario 3c, the participant will execute a balked landing resulting in a diversion to an active vertiport runway, where the vehicle will have to get worked into the existing pattern traffic. There will be simulated background traffic consisting of up to 50 virtual UAM tiltrotor aircraft. The virtual traffic will "fly" predefined routes on a static schedule with consistent spacing to emulate UML2-type operations. All Scenario 3 flights will occur in VMC conditions during daylight hours.

Scenario 3A: Missed Approach to Holding; Routes ATLANTIS and SOPHIA

Scenario 3A consisted of two routes: ATLANTIS, the XX33 route, and SOPHIA, the UAS work area route. Since the XX33 route was available for this scenario, only Route ATLANTIS was flown for this scenario. The purpose of Scenario 3A is to show the ability of the piloted, non-assisted, surrogate aircraft to respond to a missed approach with holding instruction and to establish track tolerances along the route, the missed approach path, and the holding pattern.

ATLANTIS Version 1

The simulated flight plan for ATLANTIS is as follows:

XX33(06H)—DRURY—LGTHA—RGNAR—BJORN—POTTR—FURRY--STARR—EGGMS—HOMLA—OLIVZ—MOHAG—FALCN—SPEDE—CHIPP--BILLD—[MAP@XVPT]—MARTA—FASST—ANCHR—SPEDE—CHIPP—FASST—OR—BILLD—XVPT (05H)

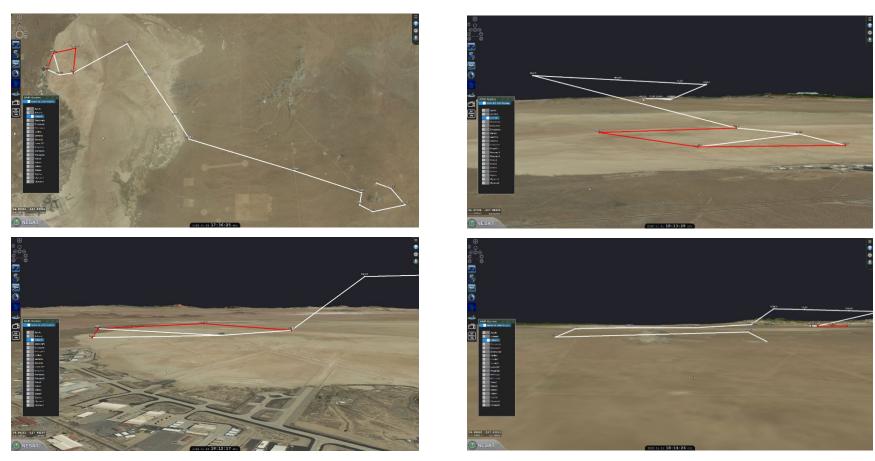


Figure 4.51. ATLANTIS Version 1 in SBSM.

Document Name: National Campaign Airspace Operations, Infrastructure and Data

ATLANTIS Version 1 Outcome

Figure 4.52. ATLANTIS Version 1 as flown ADS-B Track in Google Earth.

The departure portion for route Atlantis initially began with a tight departure track out of XX33 to the north followed by right turns around the mountain to the south and then on course. This departure pattern was necessary because of the gap between coordinated airspace to the northwest which was both actual and complementary to the scenarios associated with restricted airspace in the UAM environment. However, the aggressive turns on the departure and around the mountain to the south required the NC team to further address passenger comfort and to identify a way to soften the extreme angle of the departure turns. The result was the new DRURY departure and arrival track shown in Figure 4.53.

Document Name: National Campaign Airspace Operations, Infrastructure and Data

ATLANTIS Version 1.5 Outcome

Figure 4.53. ATLANTIS Version 1.5 as Flown ADS-B Track in Google Earth.

Initially, Route ATLANTIS for Scenario 3A was to depart XX33 and follow a course up through the UAS corridor (which has a floor of 5,000 feet MSL), make a left turn at FALCN followed by an aggressive descent to the missed approach point and then to the holding track before landing. However, the left turn into, and the immediate steep descent on the route after FALCN, caused the aircraft overshoot the turn and struggle to get down to altitude in time for the missed approach maneuver. This was another approach where a discussion in after-action review turned toward passenger comfort. Consequentially, the route was adjusted.

ATLANTIS Version 2

The simulated flight plan for ATLANTIS Version 2 is as follows: XX33 (06H)—DRURY—LGTHA—RGNAR— BJORN—POTTR—FURRY—STARR—HACKN—BLOOM—SHRMA—SPEDE—CHIPP--BILLD—[MAP@XVPT]— MARTA—FASST—ANCHR—SPEDE—CHIPP—FASST—OR—BILLD—XVPT (05H)

Figure 4.54. ATLANTIS Version 2 as flown ADS-B Track in Google Earth.

ATLANTIS Version 2 Outcome

A modified north departure and arrival course was applied for XX33 routes once additional airspace was approved to the North. The new departure created much larger turns and airspace and conceptually requires going around obstacles and restricted airspace rather than cutting in front of them. Using the adjusted course, the aircraft was able to maintain a tight track on the route. However, there was much debate as to whether the new North departure and arrival course is at odds with passenger comfort over battery performance characteristics of future UAM vehicle (which seek to minimize large patterns to maximize battery life). Once again, the route adjustment leads to the need to closely study passenger

Document Name: National Campaign Airspace Operations, Infrastructure and Data

comfort for data reflecting how turn radius and course may be planned for future UAM aircraft to strike the proper balance between comfort and efficiency.

Figure 4.55. ATLANTIS Version 2 North as Flown ADS-B Track in Google Earth.

In the adjusted Atlantis route scenario 3A, the inbound track from XX33 was moved north taking it out of the UAS corridor and thus keeping the aircraft to a manageable altitude prior to the new turn at SHRMA, which was also moved further north to assist with the descent into the FAF at BILLD. The new course allowed the aircraft to maintain a tight track with the route and complete the scenario, including the missed approach back to the loiter pattern followed by a 9-degree approach into XVPT-05H.

Scenario 3B: Missed Approach/Balked Landing to Alternate; Routes ENTERPRISE and GEMINI 1

Scenario 3B consisted of two routes: GEMINI 1, the XX33 route, and ENTERPRISE, the UAS work area route. In this scenario, the NC team was able to fly both the XX33 route and the UAS work area route. The purpose of Scenario 3B is to show the ability of the piloted, non-assisted, surrogate aircraft to perform a balked landing with a missed approach to an alternate landing site.

GEMINI 1

The simulated flight plan for GEMINI 1 is as follows:

XX33 (06H)—DRURY—LGTHA—RGNAR—BJORN--POTTR—FURRY—STARR—HACKN—BLOOM—SHRMA—GOCKL—ERINW—CMILL—WEBBD—INNIS—[MAP@XEDW]—TERPS—GOCKL—ERINW—MARTA—XVPT (RWY 19)

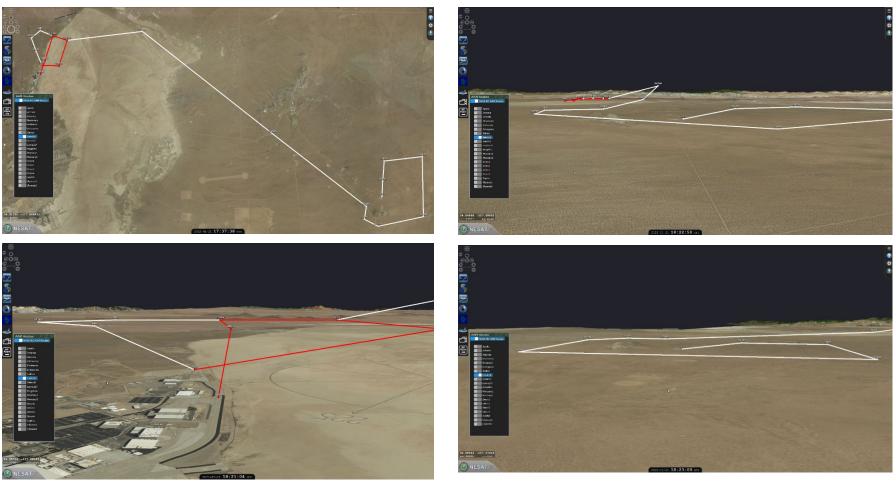


Figure 4.56. GEMINI 1 in SBSM.

Document Name: National Campaign Airspace Operations, Infrastructure and Data

GEMINI 1 Outcome

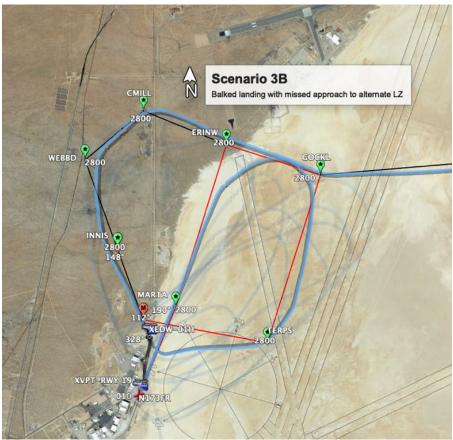


Figure 4.57. GEMINI 1 as flown ADS-B Track in Google Earth.

Route GEMINI for Scenario 3B was flown and the arrival evaluated as shown above in Figure 4.56-4.57. Route GEMINI departs XX33 to the North, then circles the mountain to the South and picks up the north corridor. The route then intercepts with the arrival portion of the scenario at GOCKL. The aircraft then follows the route to the FAF at INNIS for a 148-degree heading into XEDW-01H, where a simulated obstacle obstructs the landing surface causing a missed approach to an alternate landing zone. The missed approach procedure for route Gemini requires the aircraft to proceed to TERPS and then to reintercept the arrival course at GOCKL, only this time the aircraft will turn at ERINW for the MARTA 190degree heading into the vertiport runway 19. As is shown in Figure 4.57, the aircraft struggled a little making the turn from the IAF at WEBBD to get a good intercept of the PFAF at INNIS. However, it was able to maintain a close enough track to complete this portion of the scenario. After the balked landing, the aircraft was able to execute the missed approach to TERPS, but again it struggled with tight turns between GOCKL and ERINW. The tight turns wound up looking more like a continuous turn on the track. Regardless, the aircraft was able to establish itself on the approach at MARTA to complete the scenario. While the tight confines of this route were a challenge, the surrogate aircraft was able to negotiate the airspace successfully.

ENTERPRISE

The simulated flight plan for ENTERPRISE is as follows:

XVPT (04H)—FREDD—CHLNG—FASST—ERINW—CMILL—WEBBD—INNIS—[MAP@XEDW]—TERPS—CHIPP—BILLD—XVPT (05H)

Figure 4.58. ENTERPRISE Balked Landing In SBSM (left); and as flown ADS-B track in Google Earth (right).

ENTERPRISE Outcome

While scenario 3A was successfully completed using route Gemini above, the aircrew was also able to fly the UAS work area version of this scenario, Route ENTERPRISE. The aircraft departs XVPT-04H for FREDD and then follows the route to the FAF at INNIS to begin its approach into XEDW-01H. At 01H there is a simulated obstacle blocking the LZ causing the aircraft begin a balked landing with a missed approach and back to land at the alternate LZ, provided by simulated Air Traffic Control (ATC), at XVPT-05H. The surrogate aircraft was able to maintain a close track up until the balked landing portion of the scenario, but it struggled to make close fly-bys of all the planned missed approach waypoints. Still, the aircraft was able to establish itself at the FAF, BILLD, for a successful 9-degree approach and landing at 05H and completing the UAS work area version of this scenario. However, the brevity of this route made it difficult for the aircrew to get themselves fully established into the scenario before it began, much the same challenge as with the initial version of route Discovery mentioned above. Because of these challenges, all the UAS work area routes were adjusted to use up the entire UAS work area. But since the scenarios were getting completed mostly with XX33 routes, these new larger UAS work area routes were left for future flight test events to be flown.

Scenario 3C: Emergency Divert; Routes ULYSSES and MAGELLAN

Scenario 3C consisted of two routes: one near the vertiport and one between the vertiport and XX33. The purpose of Scenario 3C was to show the ability of the piloted, non-assisted, surrogate aircraft to perform an emergency divert maneuver to the vertiport runway and to establish track tolerances along the missed approach path to the emergency divert runway.

ULYSSES 1

The simulated flight plan for ULYSSES 1 is as follows:

XX33 (06H)--DRURY-LGTHA-RGNAR-BJORN--POTTR-FURRY-SIDBR-OLIVZ-CAPPS-FIAPA--MILTT-[MAP@XVPT]-TERPS-GOCKL-ERINW-MARTA-XVPT (RWY19)

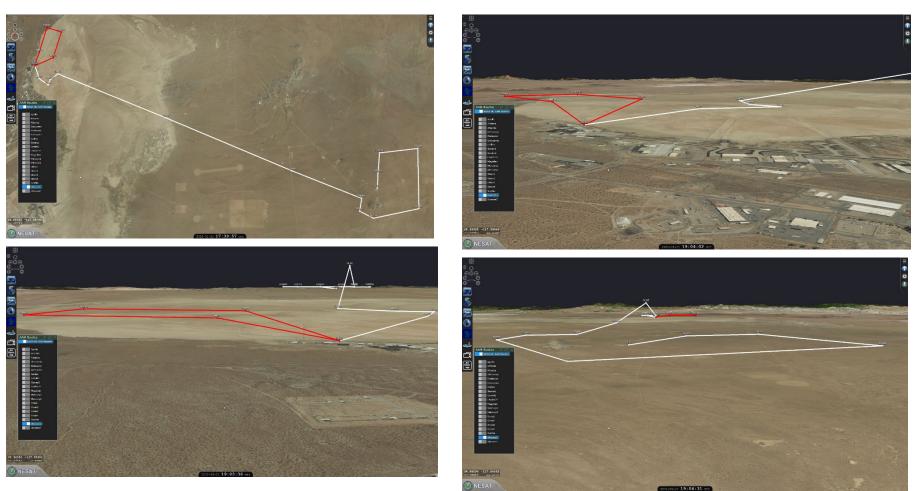


Figure 4.59. ULYSSES 1 in SBSM.

Document Name: National Campaign Airspace Operations, Infrastructure and Data

ULYSSES 1 Outcome

Figure 4.60. ULYSSES 1 as Flown ADS-B track in Google Earth.

For Scenario 3C, an Emergency divert to the vertiport runway Route ULYSSES required the aircraft to depart XX33 to the north, follow the DRURY departure around the mountain to the South and track inbound on the south arrival beginning at CAPPS. The tight turns at CAPPS to FIAPA were necessitated by the route restrictions in this area making it the first possible point to turn south. This prevented a milder turn just past the tower fly-by line. Despite the challenge, the aircraft was able to negotiate the turns to set up for a 9-degree approach beginning at the PFAF, MILTT. The aircraft was able to execute the approach and maintain a tight track with the planned missed approach route back to land at the vertiport runway 19 to successfully complete Scenario 3C.

Scenario 4: Acoustics Test

National Campaign ran an acoustics test with an industry partner to evaluate the acoustic array and testing infrastructure for a UAM prototype vehicle as part of the NC Developmental Testing series.

4.3 Airspace Operations Surveillance

Airspace datum plays an important role in precision procedures and operations for UAM. NC partnered with various FAA specialists to evaluate the flight events with current state data systems.

Surveillance Broadcast Services Monitor:

The following topics are discussed in the this section: FAA Surveillance Broadcast Services Monitor, FAA NAS Engineering ASR-8, ASR-11, BI-5, BI-6, CTD, PRM, SBSM, WAM Engineering and Mike Monroney Aeronautical Center, OKC.

National Campaign partnered with FAA Surveillance Broadcast Services AJW-145 team from the Mike Monroney Aeronautical Center (Oklahoma City, Oklahoma) to utilize the SBSM via NAS Engineering. The tool, NAS-Impact Enhanced Strategic Awareness Toolbox (NESAT), is a 3D Web browser based surveillance analysis tool that visualizes national live and historic ADS-B based surveillance data. The NESAT visualizes U.S. airspace 3D flight data on a virtual globe similar to Google Earth, and was developed by the FAA from a virtual globe software development kit (SDK) known as NASA WorldWind.

The NESAT provides output similar to a 3D flight simulator where each aircraft can be clicked to display information about that flight and aircraft, and the data are updated live once per second. NASA National Campaign Evtol flight tests conducted at Edwards Air Force Base were monitored through SBSM. Several fight playbook scenarios were ahead for the Evotl surrogate aircraft, which were provided for programming into NESAT. This allowed the playbook routes to be visualized live in 3D, along with a 3D version of the Evotl surrogate aircraft, so that each Evtol aircraft equipped with an onboard ADS-B transponder flying the test flights could be compared live (or historically) to the exact 3D predetermined routes to monitor conformance to the course.

Figure 4.61. NESAT ADS-B Flight Tracking in 3D.

Post-analysis within NESAT enables deviation measurements in four dimensions (x, y, z, and time), altitude drops, wind effects, climb rates, et cetera along with a variety of other flight ADS-B data fields such as flight integrity and accuracy fields such as Navigational Integrity Category (NIC); Navigational Accuracy Category (NAC); Surveillance Integrity Level (SIL); System Design Assurance value (SDA); and a multitude of other flight parameters. The SBSM receives one-second updates from each aircraft, and

each one second update contains a spectrum of data field parameters such as altitude, latitude, longitude, speed, heading, and time among others.

The NESAT code is written primarily in JavaScript with WebGL to render the full 3D environment. In addition to flight data, NESAT provides Airway Obstructions, 3D airspaces such as the Class D airspace at Edwards and its surrounding Military Operation Areas (MOAs), and any current Temporary Flight Restriction (TFR) areas. Live weather, radar and ADS-B ground station coverage patterns, and many other features can also be toggled on as needed or desired during the live flights or for post-flight analysis. The GPS satellite constellation is also tracked and monitored in NESAT for reliability of the ADS-B positions at any given point on the globe.

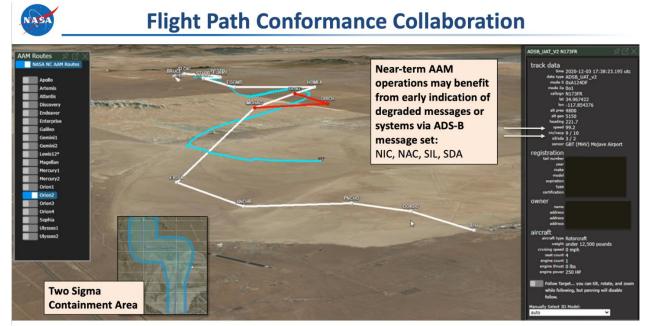


Figure 4.62. NESAT ADS-B Flight Track Conformance against Flight Plan Route.

4.4 Reduced Separation Theory

For enroute corridor construction, obstacle evaluation and authorization through ROC altitude are required to be established. Current criteria mandate that all passenger-carrying aircraft in the IFR structure must have a minimum of 1000 feet of obstacle clearance in non-mountainous terrain and 2000 feet of clearance in mountainous terrain. Given the history of reduced lateral separation requirements provided by signal validation, refresh rates, and redundancies, it can be assumed that vertical separation may also be adjusted with the same levels of assurance. Air Route Surveillance Radar (ARSR) or Long Range radar provided a 10- to 15-second refresh rate and a conservative 5 miles of separation which is mitigated down to 3 miles of separation with Airport Surveillance Radar (ASR) using a 6-second refresh rate and further mitigated down to 1.5 mile separation utilizing ADS-B Out (GPS) with a 1-second refresh rate. This same logic can be applied to adjusting the vertical ROC, or separation from the ground.

02/16/2018

Order 8260.3D Chapter 2

Chapter 2. General Criteria

Section 2-1. Common Information

2-1-2. Required Obstacle Clearance (ROC). This order specifies the minimum measure of obstacle clearance considered by the FAA to supply a satisfactory level of vertical protection. The validity of the protection is dependent, in part, on assumed aircraft performance. In the case of TERPS, it is assumed that aircraft will perform within certification requirements.

a. These criteria are predicated on normal aircraft operations for considering obstacle clearance requirements. Normal aircraft operation means all aircraft systems are functioning normally, all required navigation systems are performing within flight inspection parameters, and the pilot is conducting instrument operations utilizing IFPs based on the TERPS standard to provide ROC.

b. While the application of TERPS criteria indirectly addresses issues of flyability and efficient use of navigation systems, the major safety contribution is the provision of obstacle clearance standards. This facet of TERPS allows aeronautical navigation in instrument meteorological conditions (IMC) without fear of collision with unseen obstacles. ROC is provided through application of level and sloping obstacle clearance surface (OCS).

Figure 4.63. Order 8260.3d Chapter 2 ROC.

From the definition within 8260.3D - that is subsequently based on repeatable vehicle performance - data will need to be collected for calculation of the horizontal and vertical axis of the containment areas. Graphical representation of tracks will include the vertical and horizontal tolerances of autonomous instrumentation flying the aircraft. An initial 1000 feet. The ROC can be established as a conservative "yardstick" of measurement that can be reduced based on navigation, signal, and vehicle performance to 500 feet and 250 feet, as applicable.

Reduced separation criteria are predicated upon the assumption that AAM vehicle navigation tolerances will be maintained within the desired and required standards. Operating under the constraints of ADS-B parameters and ARINC interface specifications, ROC during enroute operations can be evaluated to determine realistic safety assurance. Primary flight path traps can be constructed around the "desired" performance and secondary areas can be built on "required" standards in the MTEs to establish a safety baseline.

Figure 4.64 is a snapshot of an ADS-B Out system accuracy, integrity, and sourcing from the SBSM program. All vehicle avionic and navigation packages should have Complaint Architecture (TSO-C166b) that meets or exceeds the Integrity Metric Latency Analysis to ensure position source, fault, and transmission delays. If the SDA (which measures the likelihood of bad data being sent), and SIL (which measures the probability of not being within the containment radius) can be monitored by the vehicle and the ground station, then a trend analysis can be performed to alert a third party of any unintended altitude or azimuth deviations, resulting in reduced minimums given a repeatable flight path or track.

SBSM	Figure 8. Source Integrity Level Supplement Table							
Surveillance and Broadcast Services Monitor Oversight, Analysis, Monitoring	SIL Supplement		Basis for SIL Probability					
👻 flight data	1		Probability	of exceeding NIC containm	nent			
			radiu	s is based on per sample				
data type ADSB_1090_v2 mode S 0xACCA19	0)	Probability	of exceeding NIC containment				
mode 3a 0o2117			radius is based on per hour					
callsign JBU523			-					
lat 34,413750			Figure 9.	System Design Assurance Tal	ble			
				Duchability of Failung				
lon -116.484175	SDA	Sum	oorted Failure	Probability of Failure causing transmission of	So			
alt pres 28800	Value	Յաթր Շո	ndition Note 2	False or Misleading	De			
alt geo 29675	, and	00	nunuon	Information Note 3,4				
heading 245.7	3]	Hazardous	≤ 1x10 ⁻⁷ Per Hour				
speed 449.8	2		Major	≤ 1x10 ⁻⁵ Per Hour				
nic/nacp 8/9	1		Minor	$\leq 1 \times 10^{-3}$ Per Hour				
sil/sda 3/2	0	Unkn	own/ No safety	> 1x10 ⁻³ Per Hour or				
sensor APV			effect	Unknown				

Figure 4.64. ADS-B Out, SIL and SDA with SBSM Example Flight Output.

Navigation Integrity Category

The Navigation Integrity Category (NIC) specifies a position integrity containment radius. The NIC is reported so that surveillance applications, such as ATC or in this case other UAM aircraft, may determine whether the reported geometric position has an acceptable level of integrity for the intended use of airspace. The NIC parameter is closely associated with the SIL. While the NIC specifies the integrity containment radius, the SIL specifies the probability of the actual position lying outside that containment radius without indication. A minimum NIC value of seven must be transmitted to operate in airspace defined in 14 CFR § 91.225. A similar rule can be established for UAM airspace.

Software & Hardware Design Assurance Level Note 1.3 B C D N/A

		-
Co	ding	Meaning = 95% Horizontal Accuracy Bounds (EPU)
(Binary)	(Decimal)	Meaning - 55 % Horizontal Accuracy Bounds (Er C)
0000	0	$EPU \ge 18.52 \text{ km} (10 \text{ NM})$ - Unknown accuracy
0001	1	EPU < 18.52 km (10 NM) - RNP-10 accuracy
0010	2	EPU < 7.408 km (4 NM) - RNP-4 accuracy
0011	3	EPU < 3.704 km (2 NM) - RNP-2 accuracy
0100	4	EPU < 1852 m (1NM) - RNP-1 accuracy
0101	5	EPU < 926 m (0.5 NM) - RNP-0.5 accuracy
0110	6	EPU < 555.6 m (0.3 NM) - RNP-0.3 accuracy
0111	7	EPU < 185.2 m (0.1 NM) - RNP-0.1 accuracy
1000	8	EPU < 92.6 m (0.05 NM) - e.g., GPS (with SA)
1001	9	EPU < 30 m - e.g., GPS (SA off)
1010	10	EPU < 10 m - e.g., WAAS
1011	11	$EPU \leq 3 m - e.g., LAAS$
1100 -	12 -	Personned
1111	15	Reserved

 Table 4.65. ADS-B Out with NACp Estimated Position Uncertainty (EPU).

 Table A-13: Encoding of Navigation Accuracy Category for Position (NACp)

Navigation Accuracy Category for Position

The Navigation Accuracy Category for Position (NACp) specifies the accuracy of the horizontal position information (latitude and longitude) of the aircraft as transmitted from the aircraft avionics. The ADS-B equipment derives an NACP value from the accuracy of the position source output. The NACP specifies with 95-percent probability that the reported information is correct within an associated allowance. A minimum NACP value of eight must be transmitted to operate in airspace defined in 14 CFR § 91.225. Likewise, a similar rule can be implemented for UAM operations.

4.5 Flight Inspection Airborne Processing Application

Flight Inspection Airborne Processor Application (FIAPA)

National Campaign Exploratory Candidate Flight Inspection Software FAA Flight Program Operations | Aviation Technology Group Mike Monroney Aeronautical Center (Oklahoma City, Oklahoma)

Overview

The FIAPA is the primary tool for Coding Preflight Validation (CPV) and flight inspection for all types of RNAV(GPS) and RNAV(RNP) instrument approaches. The FAA Flight Program Operations team collaborated with National Campaign team to develop a branch of the FIAPA software, which accomplishes the normal inspection function and measures deviation from coded path. This branch was specifically designed for AAM vehicles or surrogate vehicles during NC flight events. The FIAPA software processes data utilizing a high-grade GNSS receiver with an antenna affixed to the AAM vehicle. Following each flight test, FIAPA data were uploaded to software residing on FAA Flight Program computers and securely transferred from the FAA to the NC repositories. Output from the FIAPA includes an array of files:

FIAPA Files for National Camp	aign	Folder	File
FIAPA GPS Daily Log	Raw GNSS data without aircraft datum correction	Monitor	.CSV
FIAPA GPS Event Log	Record of GPS anomalies	Monitor	.CSV
FIAPA KML File	Raw GNSS position for visualization in Google Earth	Inspection	.kml
FIAPA Deviation File	Record of lateral and vertical deviations	Inspection	.CSV
FIAPA Aircraft Vertical Angle	Record of angle and distance to landing threshold point	Inspection	.CSV
FIAPA GPS Height MSL	Record of GPS Height (MSL)	Inspection	.CSV
FIAPA GPS Latitude	Record of Latitude (WGS-84)	Inspection	.CSV
FIAPA GPS Longitude	Record of Longitude (WGS-84)	Inspection	.CSV
Additional Files	Files to rerun a flight in FIAPA simulation AFIS FirpsSummary JSON LOGX	Inspection	varies
Text Documents	Files for FIAPA software engineer debugging cni engineering fiapa sdc	Application	.txt

Table 4.66. FIAPA Files for Candidate Software Development.

FIAPA Configurations

The FIAPA software is currently integrated into FAA fixed-wing aircraft assigned to the Flight Inspection mission. The branch of the FIAPA software used for this test was based on development of a portable Flight Inspection Software (FIS) configuration intended for flight inspection of helicopter procedures.

Fixed-Wing Aircraft

- Ingests FAA AIRNAV data
- Ingests ARINC 424 for RNAV procedures
- Performs data quality checks
- Collects detailed data over runway threshold and runway end (e.g., Camera Image, Rad Alt, Inertial Reference Unit (IRU), air data, GNSS)
- Estimates the North, East, Up errors of the spatial data used for the procedure
- Logs all data for replay and/or analysis

Helicopter

- Ingests FAA AIRNAV data
- Ingests ARINC 424 for helicopter RNAV procedures
- Performs data quality checks
- Provides lateral and vertical deviation in a typical PFD format
- Estimates the North, East, Up errors of the helipad spatial data used for the procedure
- Logs all data for replay and/or analysis

FIAPA GUI for RNAV Procedures

The FIAPA software GUI for RNAV procedures displays current vertical and lateral deviation from the intended path by comparing current GNSS/ Satellite Based Augmentation System (SBAS) position to the selected procedure (ARINC 424 coding). The branch of the FIAPA software developed for NC Build 2 flight test activities is capable of logging these deviations for post-flight analysis.

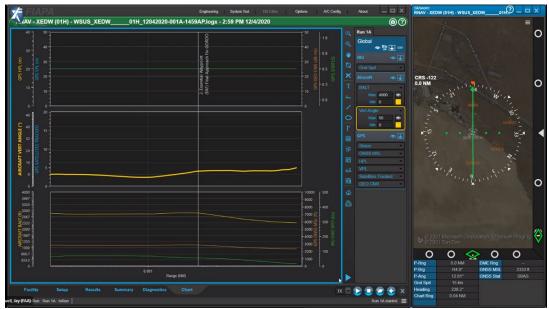


Figure 4.67. FIAPA Software Interface for Helicopter RNAV Procedures.

FIAPA AAM Adaptation New Data Files

The partnership with NC enabled development of the FIAPA portable configuration toward future AAM procedure inspections. The FIAPA candidate system iterated with Developmental Test flight events. The FIAPA software was first synchronized in Build 1 flight events and second during Build 2 flight events. New additional output was requested and developed for Build 2. The additional files enable comparison between the various data sources applied for flight events and greater insight into flight test campaigns:

- Distance from Landing Touch Point
- FIAPA Internal Timing Metric
- Glide Path Angle
- Precision Latitude and Longitude

Build 2 Development for GPS Daily Log Files

A GPS error was indicated in the GPS Daily Log anytime a GPS/WAAS position was not being provided by the GNSS receiver. The GPS/WAAS receivers take several minutes to receive the full WAAS message set to begin providing a GPS/WAAS position; therefore, the GPS Daily Logs showed errors for the first several minutes of each file. An update to the FIAPA software was made to withhold these errors until seven minutes after power-on.

Build 2 Survey Validation Method

The FIAPA portable configuration uses a YUMA-7 tablet with an EM-100 GNSS receiver for sub-meter accuracy. Since the GNSS receiver reports position of the antenna, it is necessary to correct the reported position based on offset from the vehicle's reference point. The reference point for the vehicle is an arbitrary point at skid level, which the pilot can attempt to place on the vertipad center point. The antenna offset for this test was 4'4" vertical, forward 2'8" and right 2'8" from the reference point. Following each landing, the crew inputs the current heading and estimated position error of the reference point relative to the vertipad center (e.g., heading 250°, back 2', right 1'). FIAPA then provides the estimated East, North, and Up error of the coded vertipad location.

Build 2 Position Reference in Motion Consideration

Since the GNSS sensor is unable to provide current aircraft heading, FIAPA only provides correction to the aircraft reference point for the static survey validation. It is important to consider that GPS Log Files, KML files, lateral deviation, and vertical deviations are all referenced to the GNSS location. It is recommended to mount the portable GNSS antenna as close as possible to the aircraft centerline.

Build 2 GNSS Receiver Compatibility

FIAPA is an object oriented software application that can be adapted to any receiver type. The portable FIAPA configuration was initially configured and test using the Trimble R-1 receiver. The receiver used for Build 2 was the Trimble EM-100 which had not been fully tested for compatibility. The EM-100 receiver has the advantage of using Trimble RTX, which provides sub-meter accuracy. During Build 2 flight test, a discrepancy was discovered where the position would randomly drop out. Although it was thought that the dropouts were caused by the RTX service, it was discovered to be compatible with the EM-100 receiver. This issue was corrected and tested after Build 2.

Data Integrity and Datums

Spatial data requirements for AAM application will require high integrity and accuracy to support automation in the AAM ecosystem. One example of aeronautical data inaccuracy exists due to

difference between the NAD83 and WGS84 datums. Figure 4.62 demonstrates the horizontal (red) and vertical (green) difference in feet between the two datums. Nearly all RNAV approaches in the US are affected because aircraft GNSS receivers reference the WGS84 vertical datum while FAA aeronautical data reference a vertical datum based on NAD83. This results in a Path Definition Error (PDE) up to 5.5 ft. in Southeast Florida. Use of consistent geospatial datums will be a critical point of safety for zero-zero operations. Build 2 survey data utilized the WGS84 horizontal reference datum and Height-above-Ellipsoid (HaE). This should be a continued for NC activities with respect to procedure design, aircraft avionics, and airspace services.

NAD83/NAVD88

Differences between NAD83/NAVD88 and WGS-84 result in the following errors:

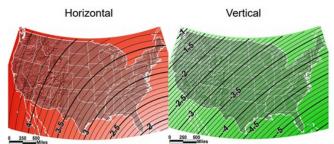


Figure 4.68. Datum Impact on Path Definition Error

GNSS Interference Considerations

Build 2 testing occurred in an environment free from obstructions and reflections that may exist in an urban environment. FIAPA has a limited capability to log data which could discern these affects, but other systems will be required to troubleshoot multipath rich environments and locating GNSS interference sources.

Build 2 Geospatial Data Quality Control

Maintaining quality control of geospatial data in the Build 2 airspace was a challenge. The confined airspace and operational restrictions at Edwards AFB required dynamic changes in airspace design. While the location of the vertipads never changed, the survey data used changed from December 2020 to March 2021. Whereas an intended function of FIAPA is to validate survey data used in aeronautical data, the survey validation results clearly showed the variations in the geospatial data used for procedure revisions. Measurement uncertainty of East and North errors in the FIAPA survey validation is affected by GNSS sensor uncertainty and uncertainty in estimation of the distance between aircraft reference point and vertipad reference point (center). Measurement uncertainty of the Up Error is affected by GNSS sensor uncertainty only. Representative results using March 2021 data are shown in Table 4.69.

	LOCATION	-		SURVEY	1	ERRORS			
AIRPORT	HELIPAD	APPROACH	MEASURED LATITUDE	MEASURED LONGITUDE	MEASURED ELLIPSOID HEIGHT (FT)	NORTH ERROR	EAST ERROR	UP ERROR	
XX33	06H	BRUCE2	N34 52 33.13	W117 37 04.21	2877.8	4.3	10.5	-2.7	
XVPT	04H	MARTA1	N34 57 13.20	W117 52 58.08	2172.8	-0.2	-0.4	-1.4	
XEDW	01H	GORDO1	N34 57 32.72	W117 52 54.28	2174.7	1.3	2.3	-4.2	

Table 4.6.9 FIAPA Survey Validation Results

Document Name: National Campaign Airspace Operations, Infrastructure and Data

XEDW	01H	GORDO2	N34 57 32.69	W117 52 54.31	2174.0	4.4	4.8	-3.4
XEDW	01H	GORDO3	N34 57 32.68	W117 52 54.33	2173.4	5.1	6.5	-2.8
XEDW	01H	GORDO4	N34 57 32.70	W117 52 54.27	2170.3	4.0	1.5	0.3
XEDW	01H	GORDO5	N34 57 32.70	W117 52 54.25	2172.5	3.1	-0.2	-1.9
XEDW	01H	INNIS6	N34 57 32.70	W117 52 54.22	2167.8	3.3	-3	2.7
XEDW	01H	INNIS7	N34 57 32.72	W117 52 54.23	2168.7	1.2	-1.7	1.9

Multiple Approaches to Same Pad

ARINC 424 can be applied to multiple approaches with different inbound courses to the same runway/helipad, but careful management of the data is required. Multiple approaches to the same surface introduce potential confusion when attempting to ingest, use, or validate the ARINC 424 code, which defines those approaches. There were times when an approach was loaded in FIAPA which were to the correct pad but were coded with a different inbound course. These led to erroneous lateral deviation, vertical deviation, and distance to touchdown. It is recommended to carefully manage the flight validation plan so that the loaded procedure matches what the aircraft is attempting to fly.

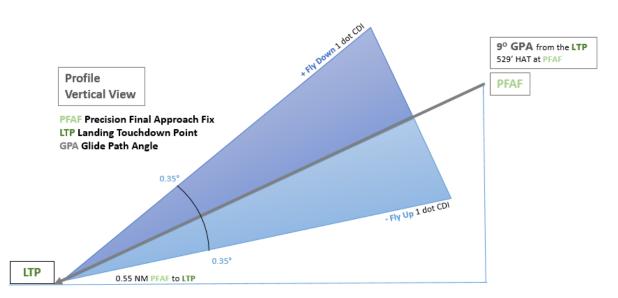


Figure 4.70. Vertical Profile and Path Definition for LPV

Document Name: National Campaign Airspace Operations, Infrastructure and Data

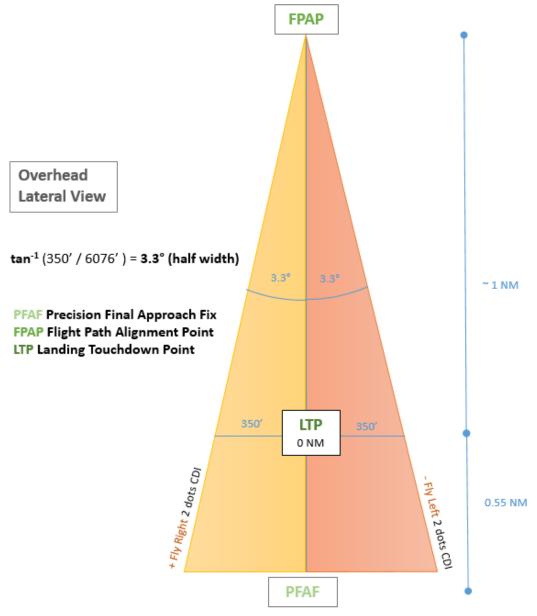


Figure 4.71. Lateral Profile and Path Definition for LPV

Flight Technical Error Without Automation

FIAPA computes the current difference between aircraft position and coded path (FTE) so that it can display deviations for the pilot. Due to test plan design, short legs, and lack of automation in the OH-58, it was not possible for the pilots to follow the designed paths within a reasonable tolerance. It is recommended that future flight testing be accomplished with full automation and sufficient intermediate legs for alignment.

Lateral Deviations

Lateral deviation (FTE) from PFAF to LTP were analyzed and charted using several different methods to experiment with data analysis techniques.

Method 1: Mean and Standard Deviation per Approach

Mean and standard deviation of lateral FTE was computed per approach. Table 4.71 below shows mean and standard deviation for representative approach runs. Negative lateral deviations are right of coded path; positive deviations are left of coded path. Mean value for all runs was -0.02 degrees from coded path with a standard deviation of 0.26 degrees.

	LOCATION		LATERAL DEVIATIONS (degrees)			
AIRPORT	HELIPAD	APPROACH	MEAN	STANDARD DEVIATION		
XVPT	04H	MARTA1	-0.534713	0.072107		
XEDW	01H	GORDO1	-0.036125	0.065698		
XEDW	01H	GORDO2	0.017595	0.081818		
XEDW	01H	GORDO3	0.210436	0.052452		
XEDW	01H	GORDO4	0.171673	0.049536		
XEDW	01H	GORDO5	0.089472	0.059800		

 Table 4.72. Lateral Deviation Means and Standard Deviations by Approach.

Method 2: Graphical Results

The statistical data provided by the FTE were plotted conventionally in various formats. One unique method for visualizing these data was the violin plot, as shown in Figure 4.73.

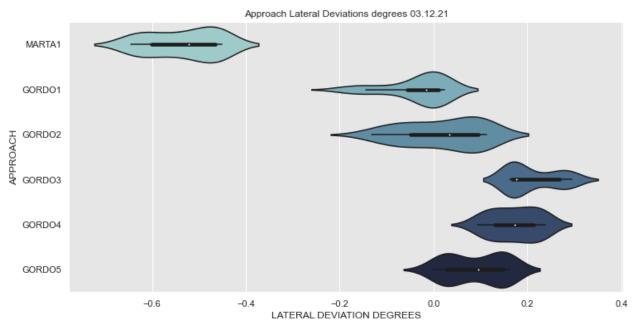


Figure 4.73. Lateral Deviation Violin Plot (December 03,2021).

Vertical Deviations

Lateral deviation (FTE) from PFAF to LTP were analyzed and charted using several different methods to experiment with data analysis techniques.

Method 1: Mean and Standard Deviation per Approach

Mean and standard deviation of Vertical Fligh Technical Error (FTE) was computed per approach. Table 4.74 shows mean and standard deviation for representative approach runs. Negative lateral deviations are to the right of the coded path; positive deviations are to the left of the coded path. The mean value for all runs was 0.27 degrees from the coded path with a standard deviation of 1.43 degrees.

	LOCATION		VERTICAL DEVIATIONS (degrees)		
AIRPORT	HELIPAD	APPROACH	MEAN	STANDARD DEVIATION	
XVPT	04H	MARTA1	-0.853045	0.327639	
XEDW	01H	GORDO1	-0.209500	0.197452	
XEDW	01H	GORDO2	1.060277	0.975741	
XEDW	01H	GORDO3	1.630205	0.932069	
XEDW	01H	GORDO4	-1.822333	0.235498	
XEDW	01H	GORDO5	1.349052	1.080589	

Table 4.74. Vertical Deviation Means and Standard Deviations by Approach.

Method 2: Graphical Results

The statistical data provided by the FTE were plotted conventionally in various formats. One unique method for visualizing these data was the violin plot, as shown in Figure 4.75.

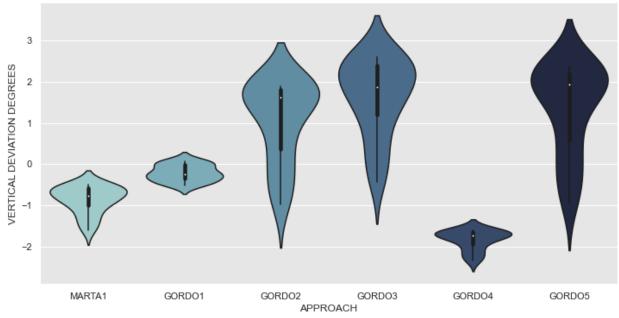


Figure 4.75. Vertical Deviation Violin Plot (December 03, 2021).

Document Name: National Campaign Airspace Operations, Infrastructure and Data

Method 3: Flight Technical Error versus Coded GPA

Approaches were coded and flown at steep angles up to 11 degrees. Table 4.76 shows the mean GPA for approaches from 8 degrees to 11 degrees. Path angle tracking is consistent with short alignment legs, prohibition against using flight path guidance, and lack of automation in the OH-58C helicopter.

	LOCATION		GLIDEPATH ANGLES (degrees)			
AIRPORT	HELIPAD	APPROACH	CODED GLIDE PATH ANGLE	MEAN GPA		
XVPT	04H	MARTA1	9	07.96		
XEDW	01H	GORDO1	9	08.74		
XEDW	01H	GORDO2	10	10.01		
XEDW	01H	GORDO3	11	10.58		
XEDW	01H	GORDO4	8	07.13		
XEDW	01H	GORDO5	11	10.30		

Table 4.76. Coded and Mean GPA by Approach.

4.6 Related Work: Flight Level Engineering

The Flight Level Engineering team evaluated the in-flight performance of the predicted urban air mobility instrument approach paths for the NC team. Two pilot training levels were compared. Two locations were selected for tests: Spanish Fork, Utah (KSPK) and West Desert Airpark, Fairfield, Utah (KUT9).

<u>SVO1</u>: The flight activity tested the ability of a fixed-wing-trained pilot to fly a simplified vehicle operation (SVO) with vertical capability and a decelerating descending approach to a vertical landing.

<u>SVO2</u>: The flight activity tested a non-pilot's ability to fly SVO with vertical capability and a decelerating descending approach to a vertical landing.

The NC team collaborated with AJV-A for encoded novel approach and encoded return to approach procedures. The FAA ARI File at KUT9 was flown on November 22, 2021; the full approach at KPSK and KUT9 were all flown successfully by the test pilot. The candidate FLE and FAA files were both flown and produced statistically similar results. The accuracy of the data was a validation that a vehicle with a customizable flight management system (FMS) can be flown with standardized ARINC 424 procedures coding as well as a customizable flight path management coding.

As part of follow-on work in procedure coding and flight evaluation, the NC team contracted a Flight Performance Evaluation of Predicted Urban Air Mobility Instrument Approach Paths utilizing a Flight Level Engineering Navion (Ryan Aeronautical Company, San Diego, CA), a fixed-wing aircraft outfitted with a custom programmable FMS, autopilot, and SVO1 controls. Testing began on the fixed-wing pilot's ability to fly SVO1 to an approach with decelerating descending approach to a vertical landing that was waved-off due to the status of the fixed-wing aircraft. Two locations were selected for tests: Spanish Fork, Utah (KSPK); and West Desert Airpark (KUT9) as pictured in the figures below.

Document Name: National Campaign Airspace Operations, Infrastructure and Data

Figure 4.77. Flight Level Engineering Airspace Test, Spanish Fork, Utah

Figure 4.78. Flight Level Engineering Airspace Test, West Desert Airpark, Fairfield, Utah.

As part of the NASA/FAA collaboration, the NC team solicited help from the FAA AJV-A branch, which manages the quality control of standardized ARINC 424 coding of procedures. Two individuals were dispatched from AJV-A to help develop and define the novel approach and return-to-approach procedures executed during the two flight tests. The FAA/NASA/FLE team developed was a figure-8 type of traffic pattern designed to maximize the turn to final and approach segments requiring a descending and decelerating turn. As shown in Figure 4.79, the unique traffic pattern was deconflicted against local airfield manager and local traffic.

Document Name: National Campaign Airspace Operations, Infrastructure and Data

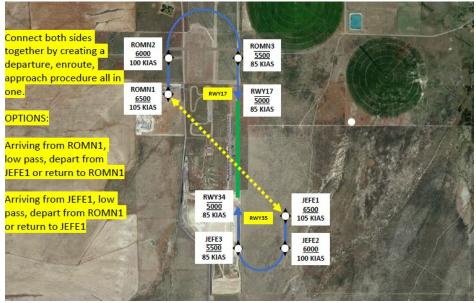


Figure 4.79. The Figure-8 Pattern.

The FLE test was comprised of two unique coded flight procedures: one from FLE and the other from the FAA. The FLE flew the full FAA ARI file or approach at KSPK and KUT9 successfully on November 22, 2021, with the resulting data and tolerances tweaked from 120-feet boundaries to 60-feet boundaries.

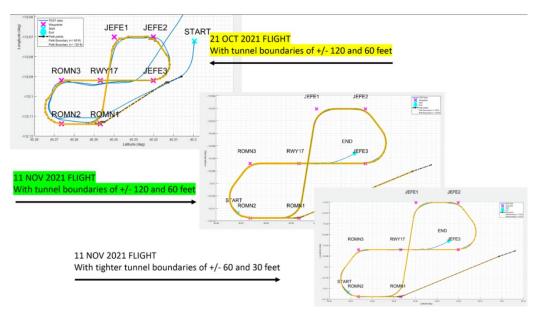
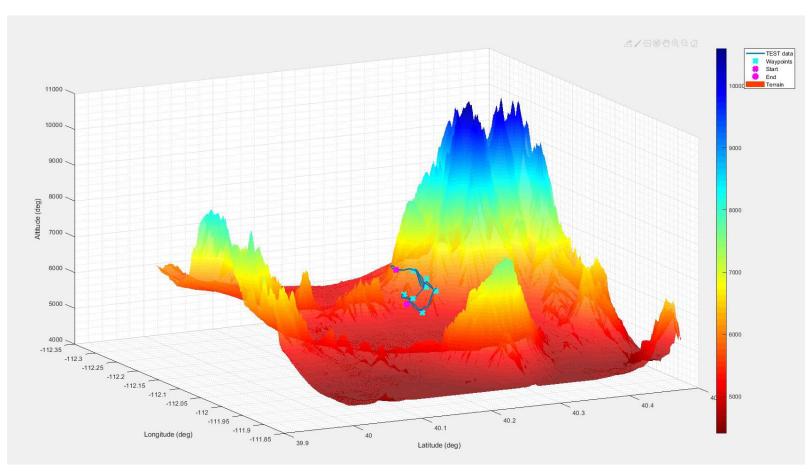



Figure 4.80 Flight Track Results on the Figure-8 Pattern.

The tolerances were reduced as the aircraft remained within the allotted sigma containment area. The boundary tolerances were reduced from the 120-feet secondary area and 60-feet primary area to a 60-feet secondary area and a 30-feet primary area. It was noted that the tolerances were so tight that a traditional pilot with exceptional skill would have a difficult time maintaining the allotted containment area; thus the recommendation derived from the test was to provide and extend the autopilot for any such authorization in low altitude and closely-spaced UAM operations.

Urban Canyon Simulation

The landscape in the Spanish Fork, Utah area provided excellent mimic of an urban environment given the physical terrain towering above the intended flight paths. The precipitous terrain, rapidly rising on each side of the approach courses, was much like what would be experienced while flying through an Urban Canyon corridor (see Figure 4.81). The UAM operations being modeled will potentially be flown utilizing some of the same software that was on board the test aircraft.

Figure 4.81. Track Against Mountainous Train Mimicking an Urban Canyon.

FLE Procedure Test

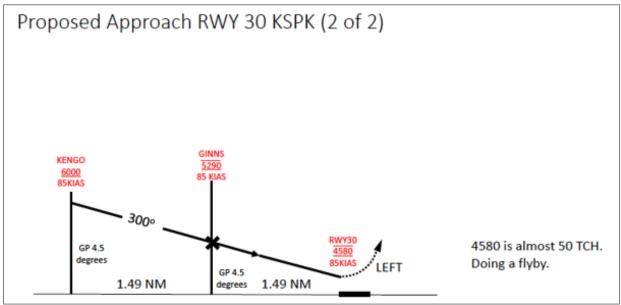
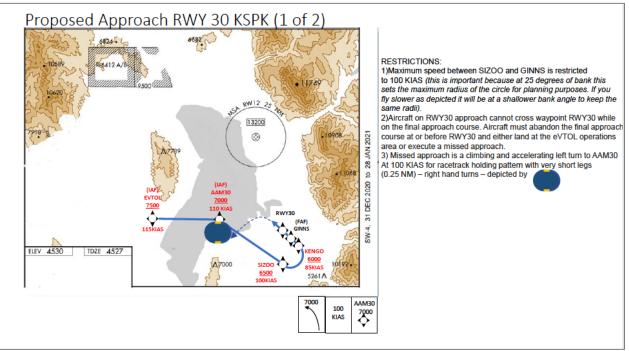
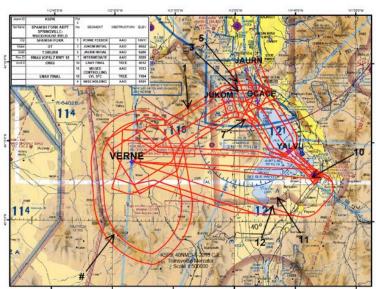


Figure 4.82. Profile View for Final Approach Segment.




Figure 4.83. Overhead view of KSPK with Test Flight Path.

The product of the outputs of the FAA process of the procedure, presenting the airspeed airspace requirements and showing November and December for one of the instrument approaches at Spanish Fork with a missed approach is shown below in Figure 4.84. The figure describes the current state of the art of what is currently being produced in the National Airspace System. Of note are the following:

Assumption for manual control of the flight path is allowed and is within the FAA aircrew pilot certification requirements - an important point that the NC team wanted to stress and the differences of which are shown.

Assumption that the autopilot and FMS are allowed to fly this approach procedure, but are not required to do so because the approach procedure falls within the certification requirements for a aircrew pilot certification.

Airspace at Spanish Fork, Utah

LET'S PUT THINGS INTO PERSPECTIVE

This is the airspace requirements for the current NOV 2021 instrument approach procedure at KSPK with a missed approach procedure

This is the current state of the art

NOTES:


- Assumes that manual control of the flight path is allowed and within FAA airmen pilot certification requirements
- 2) Autopilot / FMS is also allowed but not required.

Figure 4.84. Conventional Procedure Build, Spanish Fork, Utah.

Airspace at Spanish Fork, Utah with Dimensions

To put overall airspace requirements into perspective, the distance reference was added to Figure 4.85 in order to show the dimensions of the airspace. The total airspace consumed is betweem the green arrow with 45 nautical miles horizontally and 38 nautical miles north to south. The purple oval represents what was done at KUT9 and is an attempt to represent the overall area entirely. Clearly, there is a huge contrast in airspace requirements between what the NC team completed in the purple shape at KUT9 and the conventional procedure at KSPK outlined in red below in Figure 4.85.

This validates the type of operations occurring within the terminal area in current national airspace of what the FAA is doing now.

LET'S PUT THINGS INTO PERSPECTIVE

This purple dot is what we are doing at UT9

Figure 4.85. Convential procedure build versus candidate procedure build, Spanish Fork, Utah.

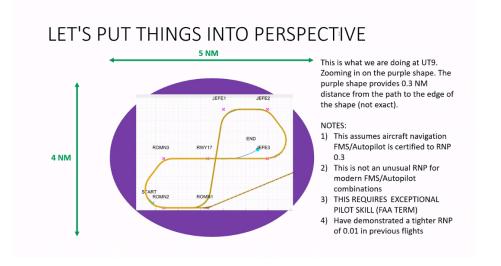


Figure 4.86. Candidate procedure build traffic pattern, Spanish Fork, Utah.

Zooming into the purple area which is five nautical miles by four nautical miles and the approach and return-to-approach tested at KUT9. The purple essentially provides the form, and the edge of any side is an estimated 0.3 nautical miles in distance. This assumption is least conservative in terms of the FMS autopilot combinations that are certified to an RNP of 0.3. Tighter volumes and tolerances require exceptional pilot skill and thus a greater need for automation; regulations require that an aircraft cannot require exceptional pilot skill for normal operations. Thus, this approach procedure, manually flown, would require exceptional pilot skill and would not be certifiable.

5 LESSONS LEARNED

The following topics are discussed in the this section: *Flight Test Infrastructure Integration Summary, Data Elements, Airspace Operations Summary* and *Next Steps.*

5.1 Flight Test Infrastructure Integration Summary

Developmental iterations of the Flight Test Infrastructure from a data integration perspective yielded several key pathways for the NC ecosystem of systems and associated processes. At onset, data were collected and delays ensued to provide data validation to end users. To ensure key data points were captured, a process of quick looks and verification checkpoints was created through a validation process to alleviate the problem. Additionally, data products took time to develop post-flight, which created a lag for reporting results. A new, streamlined process developed to record data, ingest into the data pipeline, and then ETL the data for storage, governance and consumption created a system of systems for data to culminate in a Knowledge Graph System, Aerograph. The graphing database enabled metrics, products, documents, and raw data to be retrieved as needed through complex coding, calls, and relationships inherent through fully enabled metadata. The creation of an event marker provided not only the opportunity to properly store and retrieve data, but the ability for researchers and analysts to access key portions of the data collection all the way down to the granularity of a maneuver or a timestamp, which was not possible before.

Additionally, a standardized approach to NC data was achieved in two ways. Data security and governance was strictly designed and enforced to ensure approved access to all information and data relevant to the campaign. This process was shared with industry partners and evidenced by their ability to entrust proprietary or sensitive information with the project, where necessary. Issues that abounded with disparate data instrumentation yielding data in different units and rates proved problematic to synchronize. Again, a new process to verify the data proved vital to NC data. To avoid problems of reporting out differently on a like attribute or metric, a standardized approach was also applied to an integrated data product, which provisions meaningful transformations across like data regardless of activity type or partner, such that analysts and stakeholders across agencies and partnerships can understand data in the same way and without disclosing proprietary information or attributes from vehicles or airspace technologies. This also was confirmed useful by NC stakeholders.

Data products continue to develop to summarize and measure data aligned to key metrics and Measures of Performance (MOPs) for flight plan objectives. The analysis framework of the NC continued to evolve throughout the Dry Run series and beyond, generating automated products that enabled crews and teams to validate data in a timely manner and for analysts to focus attention toward new, more complex questions or off-nominal occurrences within the data. Data products include the ability to check data source outputs for calibration and accuracy. Flight test visualization continues to develop through the Grafana open-source application and iUTM to enable greater systematic insight into all aspects of flights. All of the developments have been critical toward the campaign endeavor to provide useful data for research initiatives and stakeholders, to include the FAA.

5.2 Flight Test Data Summary

Data are a key asset of the NC. The output is critical to forward progress for research, iterations and identifying current gaps to Advanced Air Mobility. Early NC work to derive a Data Elements portfolio which captured elemental data, tracked the data and metrics across related subprojects and identify relationships among data proved useful. Similar data that will be used across simulation and flight test or across subprojects is tracked for continuity. A method in data organization to 'test/evaluate all metrics planned' and verify the 'conformance to the plan' has proven to be another success of the data approach applied by the NC team. This method is also being applied toward future flight test plans and

will iterate in complexity as originally intended. Data Element cards proved a viable method to divert tasks to key stakeholders across both NASA and the FAA for collaboration and expert input through a standardized method.

Data instrumentation and attributes have so far substantiated desired assumptions, insight, and metrics for the NC Dry Run series. While success has been achieved with the current battery of instrumentation and early metrics, the NC team continues to look forward for new sources of additional data in microweather and forecasting.

5.3 Flight Inspection Airborne Processor Application (FIAPA)

Next steps for development of Flight Inspection for management of aeronautical data for AAM include the following:

Flight Validation Requirement: Numerous geospatial data discrepancies were observeding during DT. Due to geospatial data errors latent in existing helicopter IFR approaches and the difficulties dealing with data in DT, it is essential that some form of flight validation be accomplished is extended to on AAM flight procedures.

Preparation of aeronautical and procedure data: In some cases, data were being changed dynamically on the fly which made version control and validation difficult. Due to the potential for error and complexity in the aeronautical data chain, it is recommended to complete survey data and procedure coding at least several weeks in advance of planned flight validations.

Standardize to WGS-84: While this is an existing requirement, it is not currently being implemented consistently by the FAA and there are many opportunities for error. Management of aeronautical data with respect to the WGS-84 horizontal and vertical datum is essential for integrated AAM operations in the NAS to maintain the desired aircraft, terrain, and obstacle clearances. Whereas ambiguities in the horizontal datum are not severe, handling of the vertical datum can be misapplied in several different ways. Standardized use of feet (versus meters) should be considered, even though the FAA currently uses meters in LPV approach data and the X4 simulations has defined meters as the elevation reference unit. In addition, extreme caution needs to be exercised to differentiate between WGS84 Height above Ellipsoid (HaE) and orthometric altitudes based on WGS-84 HaE. Yet another lack of standardization exists in the tables used by various GNSS receivers. There is no standard for the tables used by GNSS receivers to derive orthometric altitude from WGS-84 HaE. Finally, the NAD83 errors in current US IFR approach procedures should not be propagated into the AAM data architecture.

Future NC Flight Test Configurations

Next confiugrations of testing may include the following:

Flight test procedure design: For approaches where accurate path tracking is desired, the pilots need to be allowed access to the FIAPA CDI in their primary field of view and should be allowed to set up and stabilize on at least 5-nautical-mile finals. With a couple practice runs, fixed-wing flight inspection pilots have demonstrated the ability to remain within a few hundredths of a degree. Note that this test procedure setup is beneficial for aircraft performance evaluations but is not representative of Flight Technical Error (FTE) for the average pilot hand flying such a procedure. For flight test objectives where actual system FTE characterization is desired, the procedure should be flown as designed.

<u>Portable FIS Configuration</u>: Since other tablets are being planned in NC test activities, consideration should be given to using that tablet and finding a Trimble GNSS receiver compatible

with that tablet. This will minimize variations in equipment and make test design more efficient. The FIAPA software can run on most Microsoft Windows (Microsoft Corporation, Redmond, Washington) -based tablets.

FIAPA Improvements

The following topics cover areas of improvement towards UAM Flight Check:

Standardize and improve FIAPA FTE logging and scaling: Depending on the path being followed and type of procedures, FTE can be reported as a distance or angular. FTE can also be reported as how a specific aircraft avionics configuration reports distance or angular deviation in dots of CDI deflection. The FIAPA software is configured to display CDI deflections based on typical aircraft avionics; however, logging of FTE should be standardized to raw deviations only: angular deviation for LP/LPV type approaches and distance deviation for all other procedures. This improvement will make the FIAPA software more useful as a tool to collect empirical data for validating reduced RNP seen as necessary for enablement of AAM ecosystem.

<u>Add FIAPA capability to track any procedural segments</u>: Currently the FIAPA software can provide flight guidance and record FTE for final approach segments of approaches. More capability will benefit collection of empirical data for validation of reduced RNP, including enroute segments.

<u>Added sensor options</u>: The FIAPA software would provide increased capability for NC evaluation with the addition of IMU acceleration data. Low rate XYZ acceleration data would be beneficial in making evaluations of passenger ride quality during maneuvering required for AAM turning, climbing, descending, acceleration, and deceleration segments. This would increase complexity of a portable configuration because it would require consideration to IMU mounting orientation. Furthermore, the addition of a heading input would be helpful for slow speed and hover conditions.

5.4 Airspace Operations Summary

The National Campaign Dry-Run and Follow-on Flight Tests produced airspace data that positively reinforced the conservation of airspace model. The model is based on gravitational force defining an approach as a function of airspeed to angle. The resulting radius from the approach path inbound was validated as an acceptable means to construct a UAM obstacle OEA as detailed within the infrastructure section and known as the wheel method. The overall reduction of flight volume in the conservation of airspace for a single IFR procedure with missed and holding was 98 percent (356 square nautical miles) compared to the 6-degree wheel model (7.06 square nautical miles). Additionally, NC Developmental Test series were able to confirm the previously calculated Phi, or projected passenger comfort, while maneuvering within the wheel as reported from the aircrew during flight tests at AFRC. While flight testing at Spanish Fork, Utah with FLE and fixed-wing Navion, the turn to final initially constructed was not suitable for passenger carry operations. The turn required the aircraft to use a 30-degree maximum bank angle to achieve the designed flight path. A shallower FROP radius was calculated and used on the second iteration. Since most UAM vehicles designs will have some form of fixed-wing. this was a pertinent rework in developing future airspace procedures. During route coding and final approach segments, it was discovered that UAM route conformance can extend beyond altitude, leg type and lateral positioning to a point in space. It can also include hard coding: airspeed constraints, battery temperatures, energy remaining, required times of arrival, and phase of flight tracking. The resulting options opened a new world of possibilities in automation for reimagining the flight plan as a derivative of performance planning characteristics based on vehicle weight, altitude, temperature, and required navigation performance. Finally, the NC team learned that ADS-B coverage under 400 feet AGL will be a safety critical feature for flight following and message setting. After Dry Run analyses, the FAA and NASA ADS-B data sources confirmed that the lower and slower the vehicle arrived in proximity to the ground, the more message sets were available for position and system reporting. This theoretical messaging

setting, based on 750 m/s, can be applied for reduced separation criteria through the ground but may not be available off airport at lower latitudes and especially at 400 feet AGL and below.

5.5 Next Steps

Based on insights derived from the surrogate flight test, additional research is required to test an integrated flight environment for novel approach and departure procedures interfacing with a PSU and multiple pilots. The intersection of flight planning and conformance will be a critical function distributed through the pilot, controller, and dispatch operator. Further engagement with the FAA in the areas of sequencing, spacing, flight validation, human factors, accident/incident reporting, and wake categorization will help define the NC test series for real-world modeling of vehicle, air traffic management, and airspace architecture design.

Since the NC team developed coded procedures and routes, further flight testing will be required to not only fly the departure and approach segments as one, but validate the spatial data using the FAA vertical profile flight check inspection software (FIAPA). With the information obtained from this report, the NC desires to answer research questions in future testing that help further evolve the roles and responsibilities of the future airspace automation, validate the conservation of airspace model and introduce 3 axis COTS autopilot into the coding validation.

The future test design is expected to incorporate a:

- 1. Representative UAM airspace architecture/procedures of a constrained urban environment
- 2. Representative airspace automation (e.g. PSU) that will filter the layers of message latency, connectivity, flight following, contingency management, weather, phase of flight monitoring and flight planning
- 3. Representative vehicle with autopilot to test pilot workload, safety, and passenger comfort levels.

These UAM representative entities will be utilized for end-to-end UAM operations that will reflect realworld scenarios based on distance, terrain, vertical obstructions, noise abatements, residential/commercial/agricultural zoning, routing and simulated or emulated traffic. The tests will require a number of pilots with varying skill sets and experience. While pilots will not be measuring handling qualities or flight characteristics, pilots will be gauging safety, workload, and feasibility of low altitude truncated and prescribed routing while on the controls. The NC team will cross-monitor autopilot conformance to waypoint restrictions when a pilot is not on the controls.

Range site selection will be based upon real-world community partner locations to showcase either the feasibility or potential disruption to current day operations. With maximum input from airfield managers, controllers and city officials, the flight test will produce the most realistic results to be presented for industry, government, and academia consideration.

Flight test cards will be a combination of procedure approach plates and coding. An experimental UAM approach plate (for human use) with departure, route, approach, and missed instructions will be hand flown with the anticipation of a pilot utilizing maximum reference to flight instrumentation. Experimental UAM coding (for mechanical use) for the FMS to fly "DEPROACH" procedures with waypoint restrictions will be furthered from the FLE testing that took place under Dry Run. The NC test also plans to assimilate a rating scale, similar to Cooper-Harper for the pilot and the FTE, to respond according to workload for automation, NSPU interaction, safety, comfort, and other aspects of the workload.

6 ANNEX

6.1 References

[1] U.S Department of Transportation, FAA (2020). United States Standard for Terminal Instrument Procedures (TERPS) 8260.3 <u>https://www.faa.gov/documentlibrary/media/order/nd/8260_3.pdf</u>

[2] U.S Department of Transportation, FAA (2022). *United States Standard for Performance Based Navigation (PBN) Instrument Procedure Design (PBN) 8260.58.* https://www.faa.gov/documentlibrary/media/order/nd/8260_58.pdf

[3] U.S Department of Transportation, FAA (2005). United States Standard for Required Navigation Performance (RNP) Approach Procedures with Special Aircraft and Aircrew Authorization Required (SAAAR) 8260.52. <u>https://www.faa.gov/documentlibrary/media/order/nd/8260_52.pdf</u>

[4] Clarke, S., Redifer, M., Papathakis, K., Samuel, A. & Foster, T. (2017, May 02). *NASA Conference Paper, X-57 Power and Command System Design.* Document ID: 20170005797. Source: NTRS <u>https://ntrs.nasa.gov/citations/20170005797</u>

[5] NASA-STD-3001, Volume2, Revision C, NASA Space Flight Human-System Standard Volume 2: Human Factors, Habitability, And Environmental Health

[6] Pascioni, K.A., Watts, M.E., Houston, M.L., Lind, A.H., Stephenson, J.H., & Bain, J.J. (2022, May 2). *NASA Conference Paper, Acoustic Flight Test of the Joby Aviation Advanced Air Mobility Prototype Vehicle* Document ID: 20220006729. Source: NTRS <u>https://ntrs.nasa.gov/citations/20220006729</u>

[7] Zahn, D. & Sharma, S. (2020). NASA Conference Paper, Microplex: Integrated UAM Operations in a Multimodal Transportation System PID 6535875. Source: AIAA

[8] Swenson, H.N., Hamlin, J.R., & Wilson, G.W. (1983, February 1) *NASA-FAA Helicopter Microwave Landing System Curved Path Flight Test*. Document ID 19840015549. Source: NTRS <u>https://ntrs.nasa.gov/citations/19840015549</u>

[9] Evaluation of Wide Area Augmentation System Helicopter Operations including Localizer Performance with Vertical Guidance (LPV) to a Point in Space (PinS) Approach, FAA, 2011

[10] U.S Department of Transportation, FAA (2016). *Order 8200.1D - US Standard Flight Inspection Manual (USSFIM) with CHG 1* <u>Order 8200.1D - US Standard Flight Inspection Manual (USSFIM) with CHG 1</u> <u>(faa.gov)</u>

Document Name: National Campaign Airspace Operations, Infrastructure and Data

6.2 Abbreviations

This section details the abbreviations that are used throughout this document.

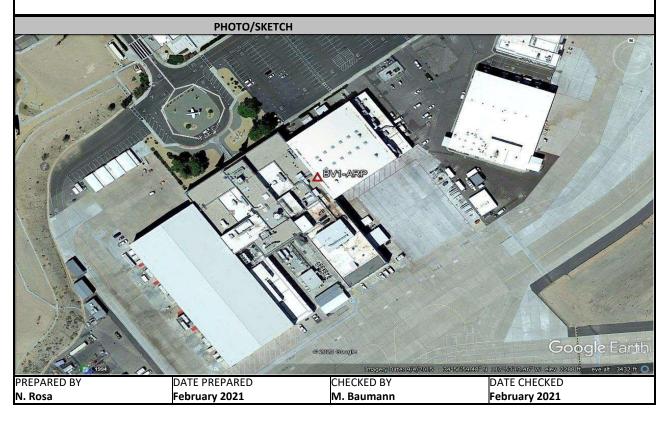
Description
Advanced Air Mobility
Automatic Dependent Surveillance-Broadcast
Air Force Base
Armstrong Flight Research Center
Air Force Research Laboratory
Airworthiness Flight Safety Review Board
Above Ground Level
FAA Database for Airport, Lighting, Runway & Spatial Data
FAA Air Traffic Control Services
Airspace Operations Lab
Airspace Operations Management
Ames Research Center
Aeronautical Radio Incorporated
Aeronautics Research Mission Directorate
Airport Surveillance Radar
Air Traffic Control
Airspace Testing and Integration
Course Deviation Indicator
Communication, Navigation, and Surveillance
Certification of Authorization
Concept of Operations
Crew Resource Management
Direct to Fix waypoint
Differential Global Positioning System
Data Management Plan
Dry Run Primary Objective
Edwards Air Force Base
Eurpoean Union Aviation Safety Agency
Electromagnetic Modeling
Estimated Position Uncertainty
Extract, Transform and Load
electric Vertical Take-Off and Landing
Federal Aviation Administration
Final Approach Fix
Final Approach and Take-Off
Flight Inspection Airborne Processor Application
Flight Information Management System
Flight Inspection Software
Flight Level Engineering
Flight Management System
Follow-on Flight Test
Final Precision Approach Point
Flight Research Inc (Mojave, California)
Flight Readiness Review
Flight Test Engineer
Flight Test Infrastructure
Flight Test System
Ground Control Station

Document Name: National Campaign Airspace Operations, Infrastructure and Data

GNSS	Global Navigation Satellite Systems
GPA	Glidepath Angle
GPS	Global Positioning System
GUI	Graphical User Interface
HaE	Height-above-Ellipsoid
IADS	Interactive Authoring and Display Software
IAF	Initial Approach Fix
ICAO	International Civil Aviation Organization
IDP	Integrated Data Product
IF	Initial Fix
IMC	Instrument Meteorological Conditions
IMU	Inertial Measurement Unit
IRIG	Inter-Range Instrumentation Group
KML	Keyhole Markup Language
LiDAR	Light Detection and Ranging
LMR	Land Mobile Radio
LPV	Localizer Performance with Vertical Guidance
LRU	Line Replaceable Units
LVC	Live, Virtual, Constructive
LZ	Landing Zone
MC	Mission Controller
MCC	Mission Control Center
MEA	Minimum Enroute Altitudes
MOA	Military Operations Area
MOF	Mobile Operations Facility
MSL	Mean Sea Level
NACV	Navigational Accuracy Category for Velocity Value
NACp	Navigational Accuracy Category for Position value
NACP	NASA Asset Management System
NAS	National Airspace System
NASA	National Aeronautics and Space Administration
NC	National Campaign
NC-DT	National Campaign - Developmental Testing
NESAT	NAS-Impact Enhanced Strategic Awareness Toolbox
NIC	Navigational Integrity Category NASA Provider of Services for UAM
NPSU	Network Time Protocol
NTP	
OEA	Obstacle Evaluation Assessment
PCM	Pulse Control Modulation
PDE	Path Definition Error
PFAF	Precision Final Approach Fix
PFD	Pilot Flight Display
PIRA	Precision Impact Range Area
PLASI	Pulse Light Approach Slope Indicator
POC	Point of Contact
PSU	Provider of Services for UAM
RCC	Range Commanders Council
RF	Radius to Fix waypoint
RNAV	Area Navigation
RNP	Required Navigational Performance
ROC	Required Obstacle Clearance

Document Name: National Campaign Airspace Operations, Infrastructure and Data

RSO	Range Safety Officer
RTK	Real-Time Kinematic Positioning
RVLT	Revolutionary Vertical Lift Technology
SA	Safety Area
SBSM	Surveillance Broadcast Services Monitor
SDA	System Design Assurance value
SDK	Software Development Kit
SIL	Surveillance Integrity Level
SME	Subject Matter Expert
SODAR	Sonic Detection And Ranging
STOL	Short Take-Off and Landing
sUAS	Small Unmanned Aircraft System
SURFER	Simple UDP Receiver Filter Extractor Router
SVO	Simplified Vehicle Operation
TCL	Technical Capability Level
TECCS	Test & Evaluation Command and Control System
TF	Track to Fix waypoint
TFR	Temporary Flight Restriction
TLOF	Touch-down and Lift-off
ТРМ	Technical Performance Measure
UAM	Urban Air Mobility
UAS	Unmanned Aircraft System
UDC	Universal Data Collector
UDP	User Datagram Protocol
UHF	Ultra-High Frequency
UML	AAM/UAM Maturity Level
USS	UAM Service Supplier Provider
UTC	Coordinated Universal Time
UTE	UAM Task Element
UTM	Unmanned Traffic Management
V&V	Verification & Validation
VHF	Very-High Frequency
VMC	Visual Meteorological Conditions
VP	Virtual Presence
VPN	Virtual Private Network
VTOL	Vertical Take-Off and Landing
WAAS	Wide Area Augmentation System
xTM	Experimental Traffic Management; Identifies the xTM Client Application


6.3 Geodetic Sites

	GEODETIC S	ITE INFORMATION			
OCATION (INSTAL	LATION / CITY, STATE / COU	JNTRY)	DATUM		
Edwards AFB, CA/USA		WG	WGS 84		
			ELLIPSOID	HEIGHT OF	ELLIPSOID
	POINT (deg min sec)		HEIGHT OF	POINT ABOVE	HEIGHT AT
POINT		LONGITUDE (deg min sec)	POINT (meters)	GROUND (meters)	GROUND (meters)
BV1-ARP	N 34 57 00.14445	W 117 53 13.82413	678.224	N/A	N/A
BV1-PC	N 34 57 00.14445	W 117 53 13.82413	678.346	N/A	N/A
	DES	CRIPTION			

BV1-ARP and BV1-PC are located in the NASA Neil A. Armstrong Flight Research Center on Edwards AFB, California.

To reach the station from the intersection of Rosamond Boulevard and North BaseRoad proceed south on Rosamond Boulevard for 2.4 miles to a stop sign at LillyAvenue. Turn left onto Lilly Avenue and go 0.5 mile east then northeast to Walker Road on the right. Turn right, southeast, and go 0.2 mile entering the NASA secure area to Building 4800 and the station on the roof. You will need aNASA badge to proceed into the secure area.

The station is mounted on the center portion of the roof of Building 4800. It isan Ashtech GPS-700718B-NONE antenna. The points of survey are the antenna reference point (ARP) and antenna phase center (PC).

Document Name: National Campaign Airspace Operations, Infrastructure and Data

GEODETIC SITE INFORMATION							
LOCATION (INS	TALLATION / CITY, STA	TE / COUNTRY)	DATUM				
Edwards AFB, CA/USA				WGS	84		
POINT	LATITUDE LONGITUDE OEDONIT ABOVE				ELLIPSOIDHEIGHT ATGROUND (meters)		
BV1-ARP	N 34 57 00.14445	W 117 53 13.82413	678.224	N/A	N/A		
BV1-PC	N 34 57 00.14445	W 117 53 13.82413	678.346	N/A	N/A		
	DESCRIPTION						

BV1-ARP and BV1-PC are located in the NASA Neil A. Armstrong Flight Research Center on Edwards AFB, California.

To reach the station from the intersection of Rosamond Boulevard and North BaseRoad proceed south on Rosamond Boulevard for 2.4 miles to a stop sign at LillyAvenue. Turn left onto Lilly Avenue and go 0.5 mile east then northeast to Walker Road on the right. Turn right, southeast, and go 0.2 mile entering theNASA secure area to Building 4800 and the station on the roof. You will need aNASA badge to proceed into the secure area.

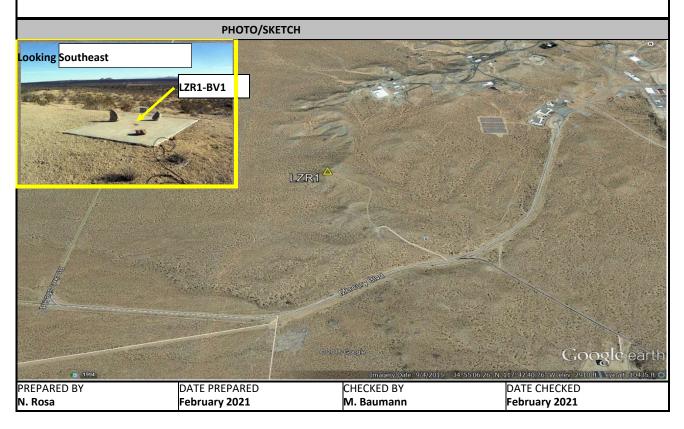
The station is mounted on the center portion of the roof of Building 4800. It isan Ashtech GPS-700718B-NONE antenna. The points of survey are the antenna reference point (ARP) and antenna phase center (PC).

Document Name: National Campaign Airspace Operations, Infrastructure and Data

	GEODETIC SITE IN	NFORMATION							
	ON / CITY, STATE / COUNTRY)	DATUM	~-					
Edwards AFB, CA/USA			WGS ELLIPSOID		ELLIPSOID				
			HEIGHT OF	HEIGHT OF POINT ABOVE	HEIGHT AT				
POINT	LATITUDE (dag min soc)	LONGITUDE	POINT	GROUND	GROUND				
	(deg min sec) N 34 59 09.89396	(deg min sec) W 117 51 44.55716	(meters) 661.816	(meters) 0.20	(meters)				
N 1140-DV1	N 34 59 09.89390	VV 117 51 44.55710	001.810	0.20	N/A				
	DESCRIPTION								
Station N 1140-BV1 (14	ON-BV1) is located on the No	rth Base portion of Edwards	AFB, CA.						
	om the intersection of Rosam		-						
northeast to an interse	ction witha paved road on th	e right. Turn right and go 0.1	mile southeast to	o the stationon the	ngnt.				
The station is a standar	d U.S. Coast & Geodetic Surv	ey brass disk set flush withth	e top of the north	west end of the so	outhwest				
	culvert, stamped N 1140 196			of the street,					
18 meters east of the so	outheast corner of Building 4	444, and 0.2 meter higher th	an the street.						
	PHOTO/S	KEICH	and the second se		N				
A ST & C Start A		ALON							
		© 2018 Google Integery Dr	Lo	oking Northwest	140N-BV1				
PREPARED BY N. Rosa	DATE PREPARED February 2021	CHECKED BY M. Baumann		DATE CHECKED February 2021					

	GEODETIC SITE IN	NFORMATION			
LOCATION (INSTALLATIO Edwards AFB, CA/USA	ON / CITY, STATE / COUNTRY)	DATUM WGS	84	
POINT	LATITUDE (deg min sec)	LONGITUDE (deg min sec)	ELLIPSOID HEIGHT OF POINT (meters)	HEIGHT OF POINT ABOVE GROUND (meters)	ELLIPSOID HEIGHT AT GROUND (meters)
KEDWA 2020-BV1	N 34 59 40.95197	W 117 52 24.43652	680.942	10.33	N/A
	DESCRIP				
	DESCRIP V1 is located on North Base p	-	· · · · •		
0.5 mile to Laboratory F northwest, and go for 0 Station KEDWA-BV1 is t	om the intersection of Rosam Road on the left. Turn left, r 0.15 mile through a fence gate the top center of the tripod at of survey is the bottom mount	north, then northeast, and go e to Building 4221on the righ top the control tower on the t of KEDWA 2020-BV1.	o 0.8 mile to the e it.	nd of pavement.To	
	PHOTO/S	KETCH			58
		KEDWA 2020-BV1			big gyett 19741 ft
PREPARED BY N. Rosa	DATE PREPARED February 2021	CHECKED BY M. Baumann		DATE CHECKED February 2021	

	GEODETIC SITE	INFORMATION			
LOCATION (INSTALLA Edwards AFB, CA/US	ATION / CITY, STATE / COUNTF	RY)	DATUM WG	S 84	
POINT	LATITUDE (deg min sec)	LONGITUDE (deg min sec)	ELLIPSOID HEIGHT OF POINT (meters)	HEIGHT OF POINT ABOVE GROUND (meters)	ELLIPSOID HEIGHT AT GROUND (meters)
NAS9-BV1	N 34 56 53.05428	W 117 53 44.98178	682.983	0.15	N/A
Station NASA 9-BV1 (DESCR NAS9-BV1) is located in the N	IPTION IASA Neil A. Armstrong Fligh	t Research Center c	on Edwards AFB, Ca	alifornia.
2.4 miles to a stop sig meters east of track. The station is a U.S. A	from the intersection of Rosa gn at Lilly Avenue. Turn left o Turn right onto the dirt roa Army Corps of Engineers brass und, stamped NASA-9 1969 L ost of two manholes.	nto Lilly Avenue and go 0.15 d andgo 0.1 mile south to th s disk set in the top of a 0.1r	mile east to a railrone station.	oad track and a dir ete monument pro	t road about 15 jecting 0.15
	рното,	/SKETCH			
	Anase Anase			Looking	Southwest NAS9-BV1
PREPARED BY N. Rosa	DATE PREPARED October 2020	CHECKED B M. Baumar		DATE CHECKED February 2021	

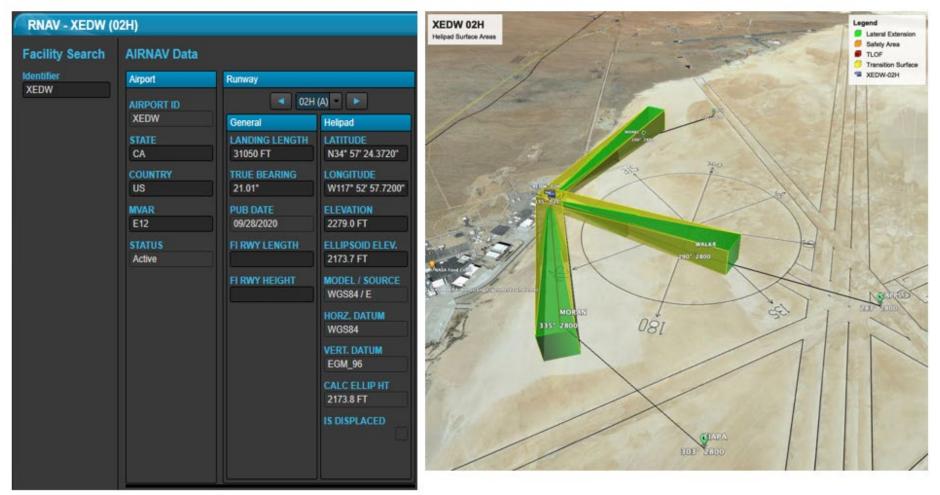

	GEODETIC SITE	INFORMATION				
LOCATION (INSTALLATIO	ON / CITY, STATE / COUNT	RY)	DATUM			
Edwards AFB, CA/USA			WG	is 84		
			ELLIPSOID	HEIGHT OF	ELLIPSOID	
			HEIGHT OF	POINT ABOVE	HEIGHT AT	
POINT	LATITUDE (deg min sec)	LONGITUDE (deg min sec)	POINT	GROUND	GROUND	
GWM 18 2449-BV1	N 34 52 17.75511	W 117 38 55.13414				
GWW 18 2445-BV1	N 34 32 17.73311	VV 117 58 55.15414	807.084	0.25	N/A	
	DESCR				1	
Station GW/M 18 24/9-F		on the Precision Impact Rang	e Area (PIRA) of F	dwards AEB Californ	nia	
Boulevard for 1.7 miles State Highway 58 and g to the intersection with left and go 1.3 miles eas 1.3 miles southeast to tl and GPS tracker. Drive 2.0 miles to B4 road, con station on the left.	passing through the North o 6.5 miles to Exit 193. At Rocket Site Road (Rich Ro it to the DOWNFALL PIRA g ne PIRA range control com southeast on A4 Road (a g ntinue southeast on A4 Ro	h Base Road and Rosamond B Gate, to the intersection with the stop sign turn right and f ad). Turn right and go 6.2 mile gate on the right. Turn right a plex. At this point you must s graded dirt road) for ad for 0.7 mile to a dirt road o to disk set in the top of a 0.15 s It is 9 meters northeastof the	h State Highway 5 Follow Twenty Mul es to the intersect and go sign-in with the ra on the left. Turnle square concrete m	8. Take the east ram le Team Road south ion with Mercury Bc ngecontrol staff and eft and go 0.2 mile e	ip merging onto east for 2.0 miles oulevard. Turn I obtain radios ast to the	
	РНОТО	/SKETCH			N	
GW18			Looking Northeas			
				O S BOYE A	ION OF THE	

GEODETIC SITE INFORMATION							
OCATION (INSTALLATION / CITY, STATE / COUNTRY) DATUM							
dwards AFB, CA/USA			WG	S 84			
			ELLIPSOID	HEIGHT OF	ELLIPSOID		
			HEIGHT OF	POINT ABOVE	HEIGHT AT		
POINT	LATITUDE (deg min sec)	LONGITUDE (deg min sec)	POINT (meters)	GROUND (meters)	GROUND (meters)		
LAZAR 1-BV1	N 34 55 16.37317	W 117 42 44.17505	870.549	0.00	N/A		
DESCRIPTION							
Station LAZAR 1-BV/1 (e southwest portion of the A	ir Force Researchlah	oratory on Edwards			

Station LAZAR 1-BV1 (LZR1-BV1) is located in the southwest portion of the Air Force ResearchLaboratory on Edwards AFB, California.

To reach the station from the intersection of Rosamond Boulevard and North Base Road, go 1.7 miles north on Rosamond Boulevard passing through the North Gate, to the ramp for the eastbound lanes of State Highway 58. Take the ramp east and go 6.4 miles to the 193 exit for Twenty Mule Team Road. Atthe stop sign turn right and go 2.0 miles southeast then east to the intersection with Rocket Site Road (Rich Road) on the right. Turn right and go 6.1 miles south to the intersection with Mercury Boulevard. Turn left and go 1.2 miles east-northeast on to a graded dirt road on the left, northwest. Turn left onto the dirt road and proceed northwest up the hill for 0.3 mile to an intersection with another graded dirt road. Turn right and proceed northwest for 0.4 mile to a concrete pad and station on the left.

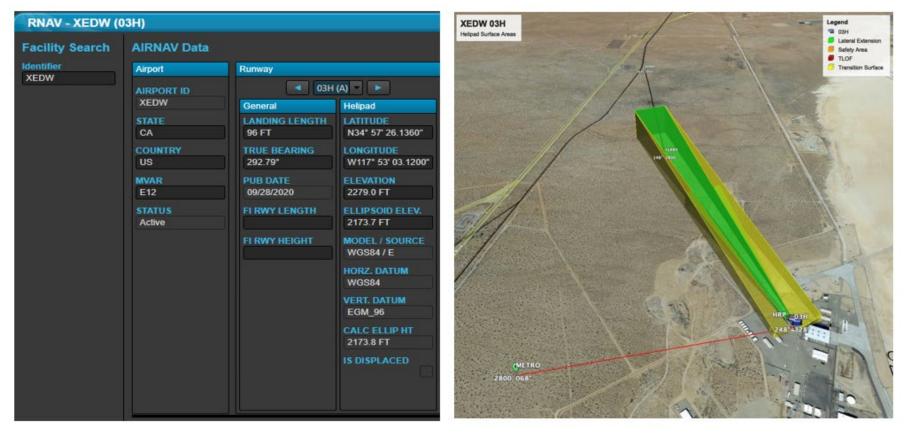
It is marked by a standard DMA brass disk set flush in the center of a 2.4x3.0 meter concrete pad,stamped LAZAR 1 1984 GSS DET 1.



	GEODETIC SITE IN	IFORMATION				
LOCATION (INSTALLATION CONTINUE) LOCATION CONTINUE) LOCATION CONTINUE LOCATION CONTINUE CONTICA CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CON	ON / CITY, STATE / COUNTRY)	DATUM WGS	84		
POINT	MASTER SOUTH N 34 55 18.62567 W 117 52 41.77888 665.512 -0.31 M					
BASE-BV1	N 34 55 18.02507	W 11/ 52 41.//888	665.512	-0.31	N/A	
	DESCRIP	TION				
To reach the station fro mile to the stop bar for Cross the taxiway inters to three roads on the ri station on the left. The station is a Nationa	A BASE-BV1 (_MSB-BV1) is loc om the Building 1600 gate, pro- crossing the intersection of T section and proceed for 0.1 m ight. Turn right onto the sout! Al Engineering Company brass TH BASE 12-55.It is 610 meter ation C111. PHOTO/SI	oceed onto the flight line atS Faxiways Charlie, Echo, and F nile along Taxiway Charlie to hern most of the roads and p s disk set in a concrete monu 's east of the control tower, 2	outh Flight Line R oxtrot on the righ a road on the left. proceed southeast ment 0.31 meters	oad. Turn left and t. Turn left and go : forapproximately below the ground	north 50 meters 0.15 mile to the surface,	
PREPARED BY K. Archuleta	DATE PREPARED March 2017	CHECKED BY B. Wilson	Google	DATE CHECKED		

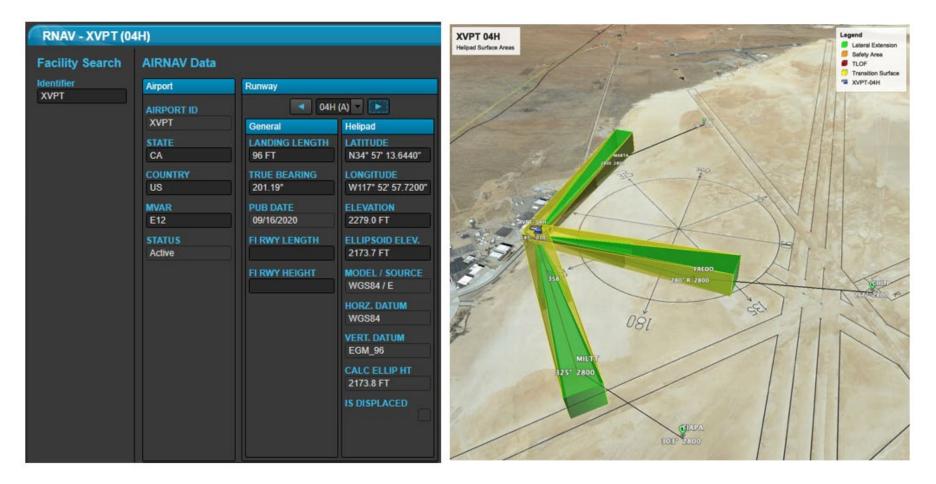
	GEODETIC SITE IN	NFORMATION						
LOCATION (INSTALLATI Edwards AFB, CA/USA	ON / CITY, STATE / COUNTRY)	DATUM WGS	84				
POINT	LATITUDE (deg min sec)	LONGITUDE (deg min sec)	ELLIPSOID HEIGHT OF POINT (meters)	HEIGHT OF POINT ABOVE GROUND (meters)	ELLIPSOID HEIGHT AT GROUND (meters)			
4833W-CENTER	Varies	Varies	Varies	0.00	N/A			
through 4833E-TLOF-4								
4055E-1LOF-4								
DESCRIPTION								
Stations on the Building	g 4833 Helipads are corners a		dSA marked (whe	n conditions allow	ed) with a 3/16-			
	e concrete/asphalt, point of s							
	РНОТО/S	КЕТСН						
	Building 4833 West Helipad			ling 4833 Helipad				
48	4863W-1LOF2 4833W-CENTER 4833W-1LOF3	46895-54-8	4833E_SA-2 4833E_FATO-2 4883E_FATO-2 4883E_T_COF 4883E_T_COF 4883E_T_COF	1	45555 SA-1 45555 FATO-1			
PREPARED BY N. Rosa	DATE PREPARED February 2021	CHECKED BY M. Baumann	1	DATE CHECKED February 2021				

6.4 Landing Surface RNAV and Heliport Airspace Construction

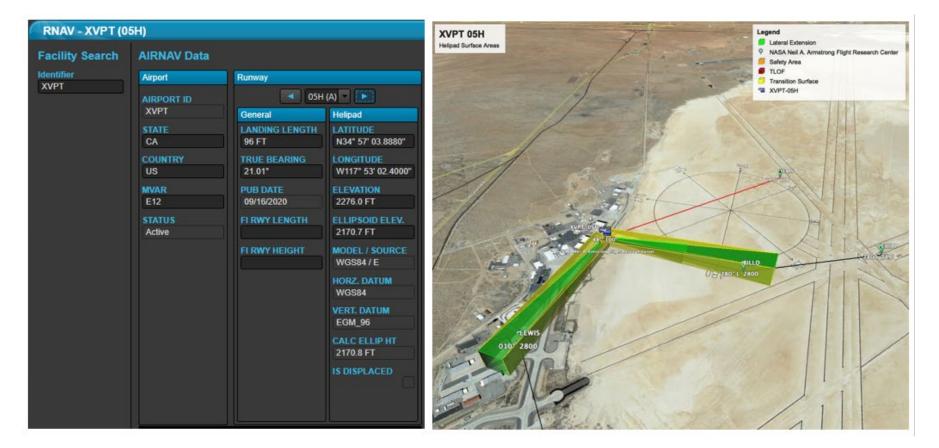

02H

Depicts XEDW 02H selected for dynamic interface calculated magnetic variation, publication date, lat/long geodetic datum, and ellipsoidal heights in feet, surveyed thresholds required by the FAA to be accurate in any landing surface with a takeoff or approach procedure

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data


03H

Depicts XEDW 03H selected for dynamic interface. the calculated magnetic variation, publication date, lat/long geodetic datum, and ellipsoidal heights in feet, surveyed thresholds required by the FAA to be accurate in any landing surface with a takeoff or approach procedure.


Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

04H

Depicts XVPT 04H selected for simulated parallel approaches coincident with 05H that bind the XVPT runway. the calculated magnetic variation, publication date, lat/long geodetic datum, and ellipsoidal heights in feet, surveyed thresholds required by the FAA to be accurate in any landing surface with a takeoff or approach procedure.

05H

Depicts XVPT 05H selected for simulated parallel approaches coincident with 04h that bind the XVPT runway. the calculated magnetic variation, publication date, lat/long geodetic datum, and ellipsoidal heights in feet, surveyed thresholds required by the FAA to be accurate in any landing surface with a takeoff or approach procedure.

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

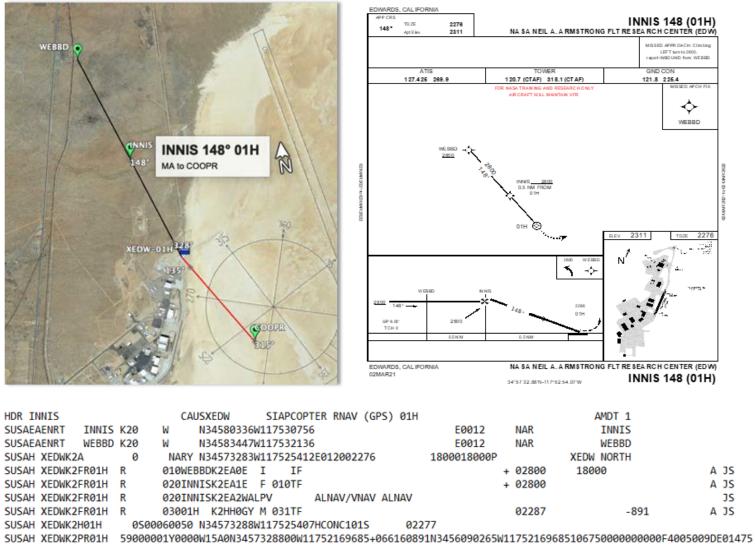
06H

Depicts XVPT 06H selected for route planning and flight following. the calculated magnetic variation, publication date, lat/long geodetic datum, and ellipsoidal heights in feet, surveyed thresholds required by the FAA to be accurate in any landing surface with a takeoff or approach procedure.

RUNWAY 01

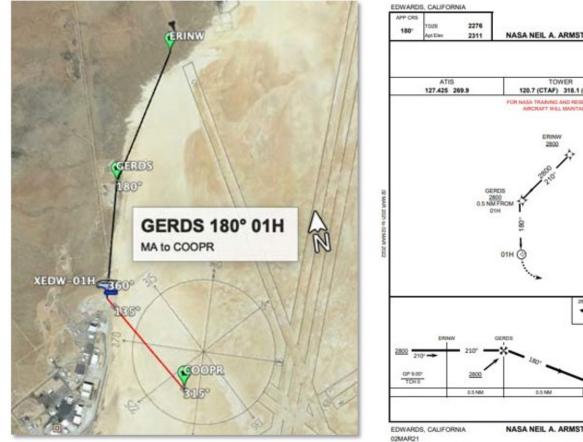
RNAV - XVPT (0	1)				XVPT RWY 01 Vertiport Vertipor Runway 01 Surface Areas	Legend Lateral Extension
Facility Search Identifier XVPT	AIRNAV Data				Tempor roundy of Society Press	NASA Neil A. Armstrong Flight Research C Safety Area TLOF
	Airport	Runway			1ª total	Transition Surface
	AIRPORT ID		< 01 (A) · ·			
	XVPT	General	Threshold	End		A The state
	STATE CA	LANDING LENGTH 1094 FT	LATITUDE N34* 57' 13.6440"	LATITUDE N34* 57' 03.8880"		
	COUNTRY US	TRUE BEARING 201.19°	LONGITUDE W117° 52' 57.7200°	LONGITUDE W117° 53' 02.4000"		- A
	MVAR E12	PUB DATE 09/16/2020	ELEVATION 2279.0 FT	ELEVATION 2276.0 FT	T 260 010	457 ta)
	STATUS Active	FI RWY LENGTH 1124.0 FT	ELLIPSOID ELEV. 2173.7 FT	ELLIPSOID ELEV. 2170.7 FT		////
		FI RWY HEIGHT 2287.4 FT	MODEL / SOURCE WGS84 / E	MODEL / SOURCE WGS84 / E	12 alt	114
			HORZ. DATUM WGS84	HORZ. DATUM WGS84	and the	-111
			VERT. DATUM EGM_96	VERT. DATUM EGM_96		
			CALC ELLIP HT 2173.8 FT	CALC ELLIP HT 2170.8 FT	SAA	No cel
			IS DISPLACED	IS DISPLACED	CRND2	
					323" 2800	The fine

Depicts XVPT RWY 01 selected for short take-off and landing (stol) testing. the calculated magnetic variation, publication date, lat/long geodetic datum, and ellipsoidal heights in feet, surveyed thresholds required by the FAA to be accurate in any landing surface with a takeoff or approach procedure.


RUNWAY 19

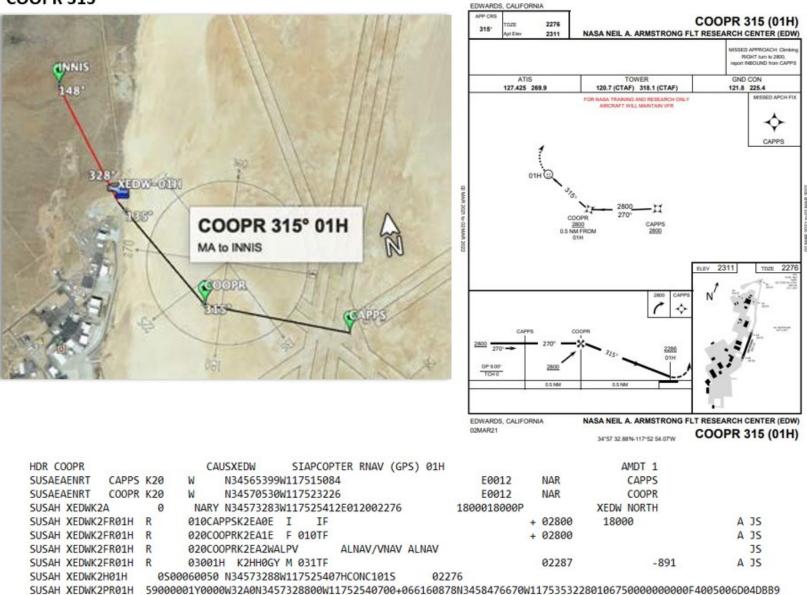
RNAV - XVPT (19)					XVPT RWY 19 Vertoor Runway 19 Surface Areas		
Facility Search	AIRNAV Data				Verigeat hutingy (2 outline revers		
identifier XVPT	Airport	Runway			T XVPT RWY 19		
	AIRPORT ID XVPT	General	19 (A) End				
	STATE	LANDING LENGTH	LATITUDE N34° 57' 03.8880"	LATITUDE N34° 57' 13.6440"	The last		
	COUNTRY	TRUE BEARING 21.01°	LONGITUDE W117° 53' 02.4000"	LONGITUDE W117° 52' 57.7200"	315		
	MVAR E12	PUB DATE 09/16/2020	ELEVATION 2276.0 FT	ELEVATION 2279.0 FT			
	STATUS Active	FI RWY LENGTH 1124.0 FT	ELLIPSOID ELEV. 2170.7 FT	ELLIPSOID ELEV. 2173.7 FT			
		FI RWY HEIGHT 2302.8 FT	MODEL / SOURCE WGS84 / E	MODEL / SOURCE WGS84 / E	S-		
			HORZ. DATUM WGS84	HORZ. DATUM WGS84			
			VERT. DATUM EGM_96	VERT. DATUM EGM_96			
			CALC ELLIP HT 2170.8 FT	CALC ELLIP HT 2173.8 FT			
			IS DISPLACED	IS DISPLACED	181		
					132 JEED TEST		

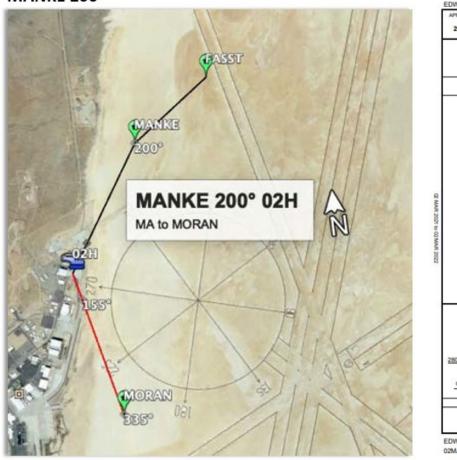
Depicts XVPT RWY 19 selected for short take-off and landing (STOL) testing. the calculated magnetic variation, publication date, lat/long geodetic datum, and ellipsoidal heights in feet, surveyed thresholds required by the FAA to be accurate in any landing surface with a takeoff or approach procedure.


6.5 Approaches and Approach Plates

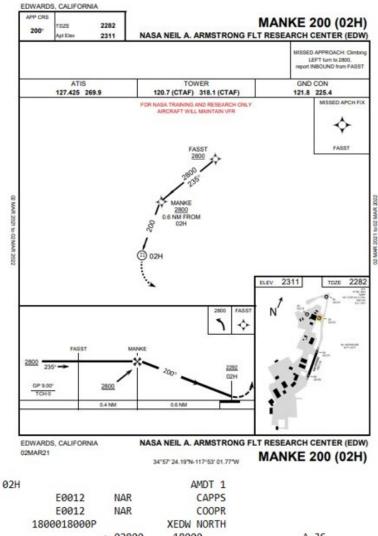
INNIS 148

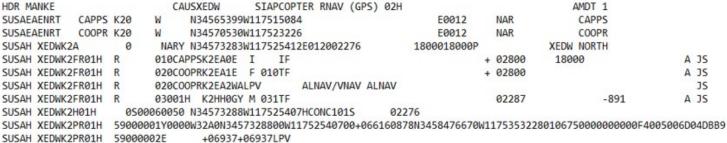
SUSAH XEDWK2PR01H 59000002E +06937+06937LPV

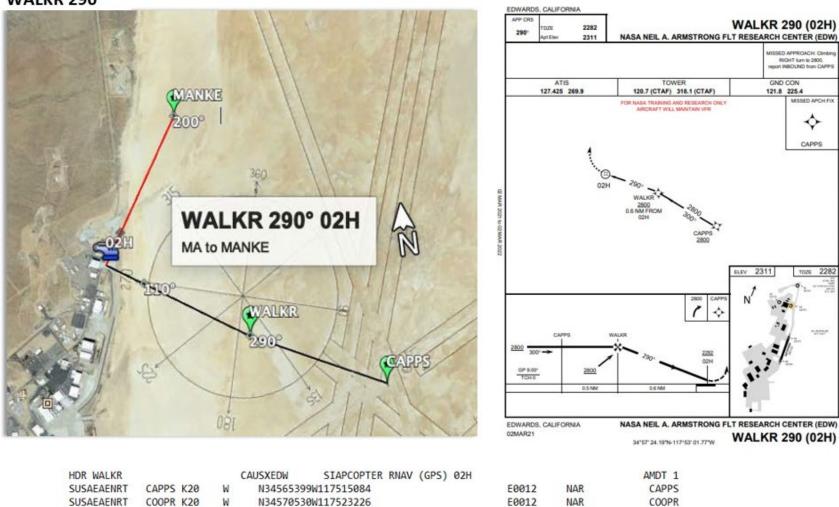

GERDS 180


HDR GERDS	CAUSXEDW	IAPCOPTER RNAV (GPS) 01H		AMDT 1	
SUSAEAENRT ERINW K20	W N34583986W11	7522151	E0012 NAR	ERINW	
SUSAEAENRT GERDS K20	W N34580478W11	7524578	E0012 NAR	GERDS	
SUSAH XEDWK2A Ø	NARY N34573283W11	7525412E012002276	1800018000P	XEDW NORTH	
SUSAH XEDWK2FR01H R	010ERINWK2EA0E I	IF	+ 02800	18000	A JS
SUSAH XEDWK2FR01H R	020GERDSK2EA1E F	010TF	+ 02800		A JS
SUSAH XEDWK2FR01H R	020GERDSK2EA2WALP	ALNAV/VNAV ALNAV			JS
SUSAH XEDWK2FR01H R	03001H K2HH0GY M	031TF	02287	-891	A JS
SUSAH XEDWK2H01H 0S00	060050 N34573288W11	7525407HCONC101S 022	276		
SUSAH XEDWK2PR01H 590000	01Y0000W18A0N345732	8800W11752540700+06616088	6N3456056095W1175316	742510675000000000F4	00500ADD5F74D
SUSAH XEDWK2PR01H 590000	02E +06937+069	37LPV			

+06937+06937LPV




COOPR 315


SUSAH XEDWK2PR01H 59000002E

MANKE 200

NARY N34573283W117525412E012002276

IF

010CAPPSK2EA0E I

020COOPRK2EA2WALPV

020COOPRK2EA1E F 010TF

03001H K2HH0GY M 031TF

0S00060050 N34573288W117525407HCONC101S

+06937+06937LPV

WALKR 290

SUSAH XEDWK2A

SUSAH XEDWK2FR01H R

SUSAH XEDWK2FR01H R SUSAH XEDWK2FR01H R

SUSAH XEDWK2FR01H R

SUSAH XEDWK2PR01H 59000002E

SUSAH XEDWK2H01H

0

02276

ALNAV/VNAV ALNAV

SUSAH XEDWK2PR01H 59000001Y0000W32A0N3457328800W11752540700+066160878N3458476670W1175353228010675000000000F4005006D04DBB9

1800018000P

+ 02800

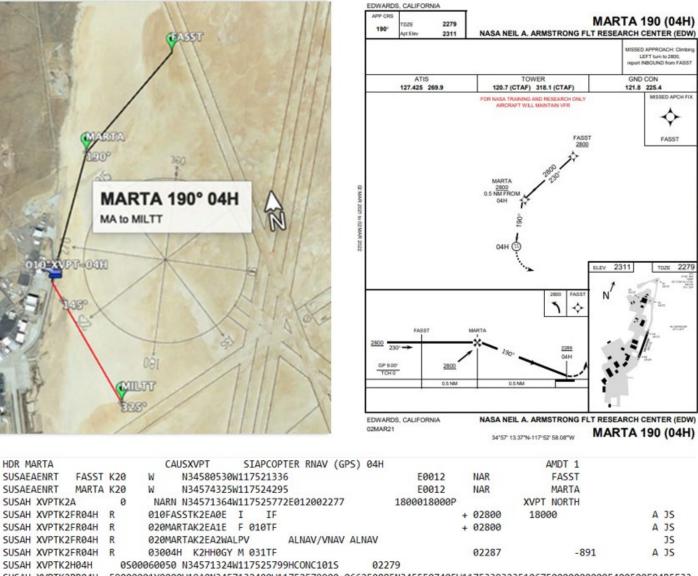
+ 02800

02287

XEDW NORTH

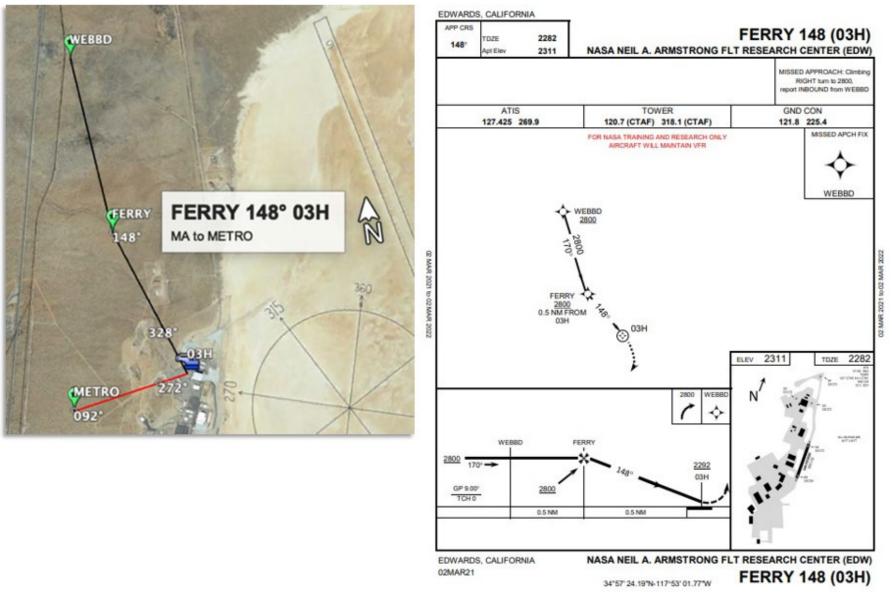
-891

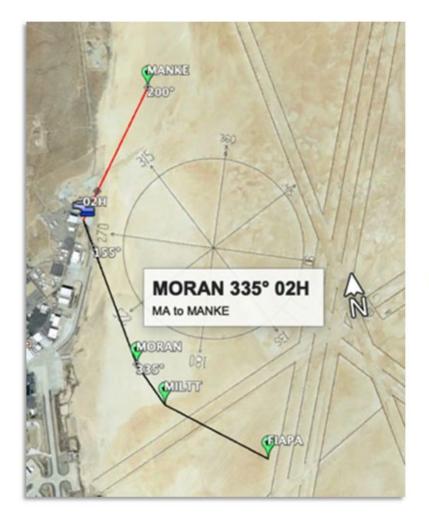
A JS

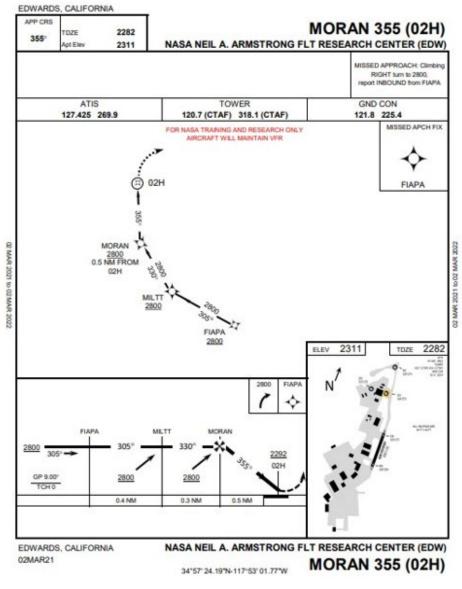

A JS

A JS

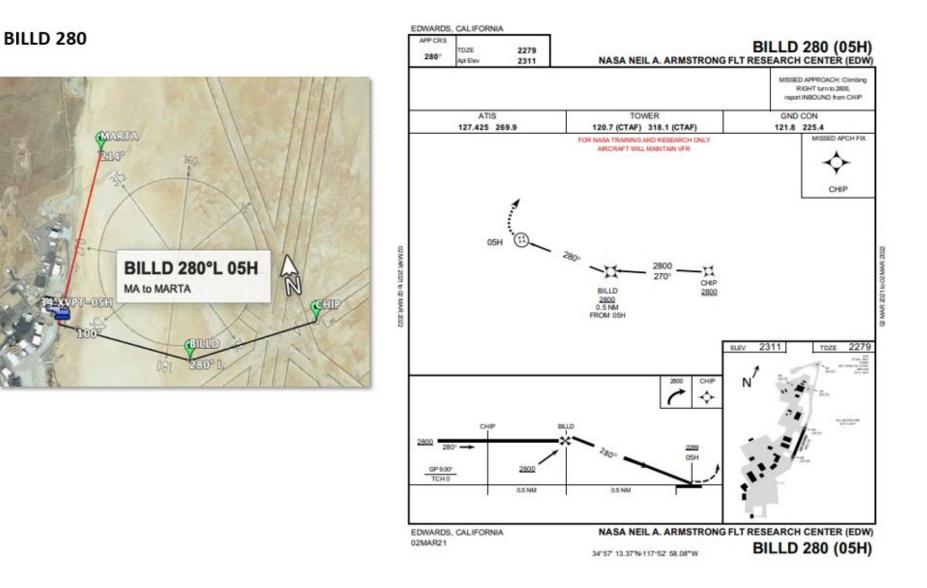
JS


18000

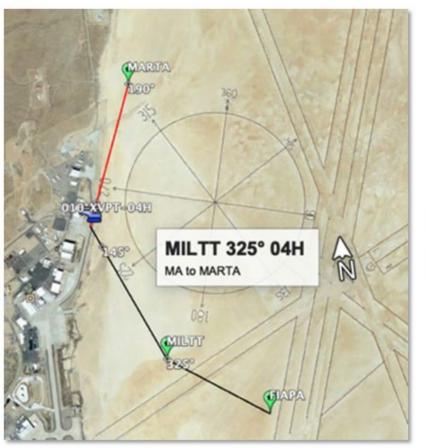


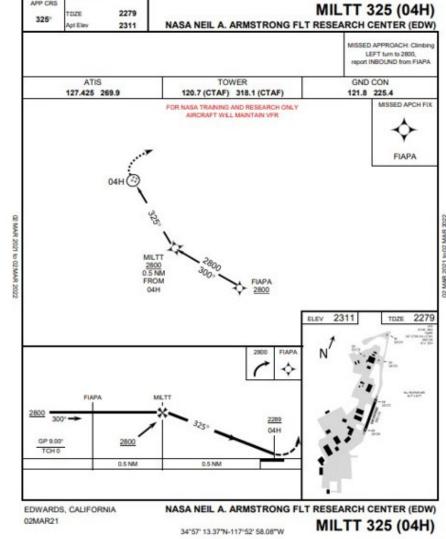

SUSAH XVPTK2PR04H 5900001Y0000W19A0N3457132400W11752579900+066250885N3455507405W1175339323510675000000000F400500F84B5E33 SUSAH XVPTK2PR04H 5900002E +06946+06946LPV



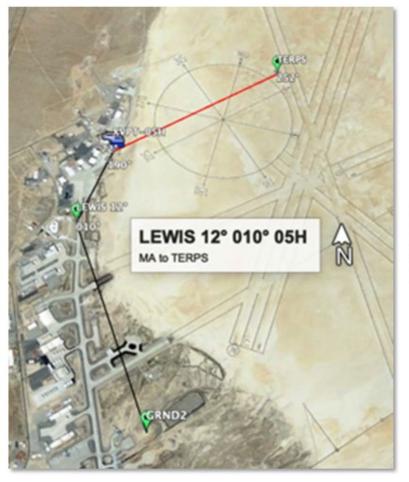


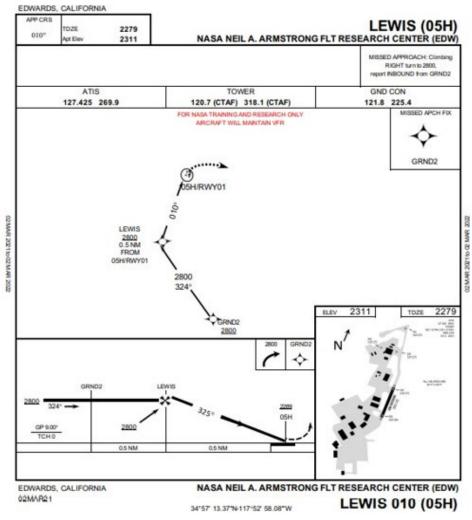
MORAN 355

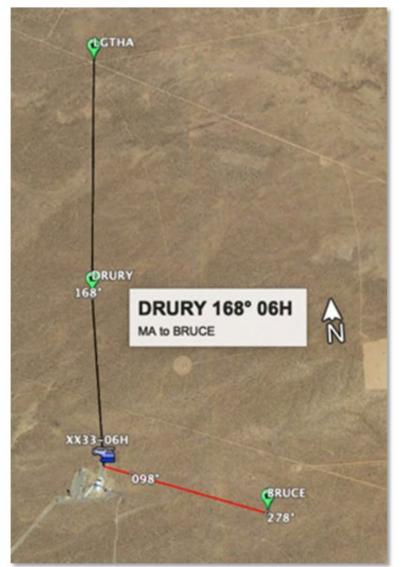




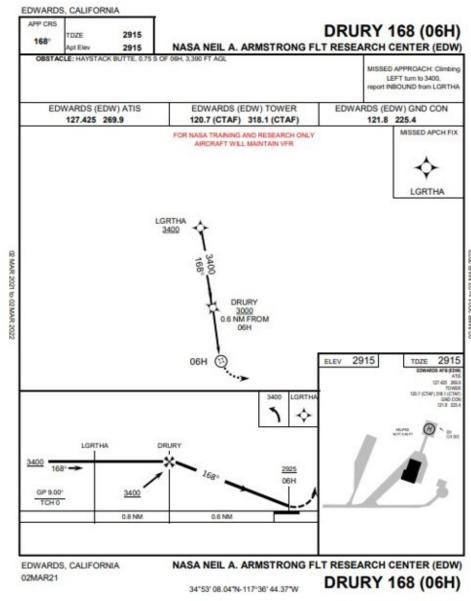
217

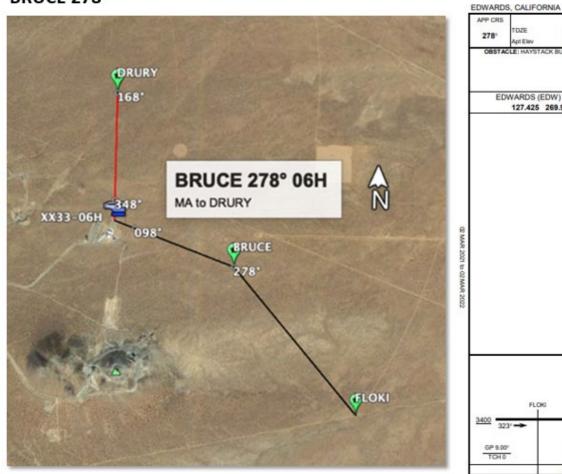



MILTT 325

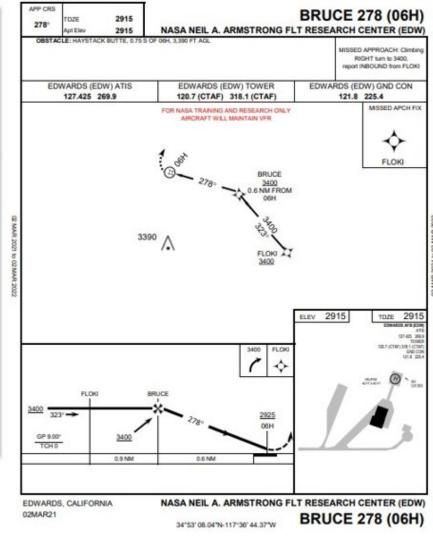

EDWARDS, CALIFORNIA

APP CRS


LEWIS 010



DRURY 168



220

Document No. AAM-NC-069-001 Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

BRUCE 278

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

6.6 Data Element Cards

Data cie	ment Card			
Title	Cruise Noise Evaluation			
Data Element Type	Static			
Scenario	4	UTE		
Metric Type	Infrastructure	Maneuver	NA	
Phase of Flight	Preflight	Event	Range Flight	
Objective				
To acquire vehicle source n	oise during forward flight cruise three	ough ground based acoustic me	asurements. Data will be	processed and used
characterize the noise foot	print during this phase of flight.			
Configuration				
Cruise/forward flight vehicl	e configuration			
Test Conditions				
Light to no winds at altitude	1			
No fog if VFR				
No anomalous thermal inve				
-	with comparable levels to those me	easured during test setup		
Description 1. The pilot will approach ti	he acoustic array from a sufficiently	large distance and prepare to h	e on the prescribed test r	point condition before
	on prior to the acoustic array. 2. 0			
	ound microphone array and at the			
	intain the prescribed constant fligh			
	s been notified that acoustic data re			
for the subsequent test point				
Notes				
Noise during cruise/forward	flight will be conducted over seve	ral test points at different airspe	eds and other parameter	s that are of typical
cruise operation specific to	the vehicle being tested.			
Test Course Description				
The course may take the fo	rm of a racetrack loop (GA-like traf			
The course may take the for array for a flyover event.	fround markers will be deployed to	visually indicate reference point	s along the flight path. F	or example, the
The course may take the for array for a flyover event. O crossing point in which the	Fround markers will be deployed to pilot should be on condition will be a	visually indicate reference point	s along the flight path. F	or example, the
The course may take the for array for a flyover event. O crossing point in which the series of reflective banners	Fround markers will be deployed to pilot should be on condition will be a	visually indicate reference point	s along the flight path. F	or example, the
The course may take the for array for a flyover event. O crossing point in which the	Fround markers will be deployed to pilot should be on condition will be a	visually indicate reference point	s along the flight path. F	or example, the
The course may take the fo array for a flyover event. O crossing point in which the series of reflective banners Reference Guidance	sround markers will be deployed to pilot should be on condition will be a	visually indicate reference poin appropriately marked; the cente	s along the flight path. F	or example, the
The course may take the for array for a flyover event. O crossing point in which the series of reflective banners	sround markers will be deployed to pilot should be on condition will be a	visually indicate reference point	s along the flight path. F	or example, the
The course may take the fo array for a flyover event. O crossing point in which the series of reflective banners Reference Guidance	Fround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fl Pass: Prescribed fight condition	visually indicate reference poin appropriately marked; the cente yover events representative of n performed along the prescribe	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a flyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Desired Criteria	Fround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fl Pass: Prescribed fight condition	visually indicate reference poin appropriately marked; the cente yover events representative of	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a flyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	Fround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fl Pass: Prescribed fight condition	visually indicate reference poin appropriately marked; the cente yover events representative of n performed along the prescribe	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a flyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task	Fround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fl Pass: Prescribed fight condition	visually indicate reference poin appropriately marked; the cente yover events representative of n performed along the prescribe idesired variability of control inp	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a flyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task	Fround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fl Pass: Prescribed fight condition	visually indicate reference poin appropriately marked; the cente yover events representative of n performed along the prescribe	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a flyover event. C crossing point in which the j series of reflective banners Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	Fround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fl Pass: Prescribed fight condition	visually indicate reference poin appropriately marked; the center yover events representative of n performed along the prescribe idesired variability of control inp Desired	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a flyover event. C crossing point in which the j series of reflective banners Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	Fround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fl Pass: Prescribed fight condition	visually indicate reference poin appropriately marked; the cente yover events representative of n performed along the prescribe idesired variability of control inp	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a flyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Desired Criteria	Fround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fl Pass: Prescribed fight condition	visually indicate reference poin appropriately marked; the center yover events representative of n performed along the prescribe idesired variability of control inp Desired	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a flyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name	Fround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fl Pass: Prescribed fight condition	visually indicate reference poin appropriately marked; the center yover events representative of n performed along the prescribe idesired variability of control inp Desired	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a fiyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements	Sround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fl Pass: Prescribed fight condition Fail: Off track, off condition, un	visually indicate reference poin appropriately marked; the center yover events representative of n performed along the prescribe ndesired variability of control inp Desired Resolution	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a fiyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC	Sround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fit Pass: Prescribed fight condition Fail: Off track, off condition, un Kyle Pascioni	visually indicate reference poin appropriately marked; the center yover events representative of on performed along the prescribe ndesired variability of control ing Desired Resolution Email	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a fiyover event. C crossing point in which the j series of reflective banners Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	Sround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fit Pass: Prescribed fight condition Fail: Off track, off condition, un Kyle Pascioni	visually indicate reference poin appropriately marked; the center yover events representative of in n performed along the prescribe ndesired variability of control inp Desired Resolution Email Email	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a fiyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	Sround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fit Pass: Prescribed fight condition Fail: Off track, off condition, un Kyle Pascioni	visually indicate reference poin appropriately marked; the center yover events representative of n performed along the prescribe ndesired variability of control inp Desired Resolution Email Email Email	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a flyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA POIC FOC FAA Technical POC	Sround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fit Pass: Prescribed fight condition Fail: Off track, off condition, un Kyle Pascioni	visually indicate reference poin appropriately marked; the center yover events representative of n performed along the prescribe idesired variability of control inp Desired Resolution Email Email Email Email	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a flyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package NASA POC Alternate NASA POC FAA POC FAA POC FAA POC FAA Technical POC FAA Technical POC	Sround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fit Pass: Prescribed fight condition Fail: Off track, off condition, un Kyle Pascioni	visually indicate reference poin appropriately marked; the center yover events representative of on n performed along the prescribe ndesired variability of control inp Desired Resolution Email Email Email Email Email	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a fiyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA POCL POC FAA Technical POC FAA Technical POC FAA Technical POC Minimum Equipment List	Sround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fit Pass: Prescribed fight condition Fail: Off track, off condition, un Kyle Pascioni	visually indicate reference poin appropriately marked; the center yover events representative of on n performed along the prescribe ndesired variability of control inp Desired Resolution Email Email Email Email Email	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a flyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA Technical POC	Sround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during ff Pass: Prescribed fight condition Fail: Off track, off condition, ur Kyle Pascioni Erin Waggoner	visually indicate reference poin appropriately marked; the center yover events representative of on n performed along the prescribe ndesired variability of control inp Desired Resolution Email Email Email Email Email	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a flyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA POCL POC FAA POICUPOC	Sround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during ff Pass: Prescribed fight condition Fail: Off track, off condition, ur Kyle Pascioni Erin Waggoner	visually indicate reference poin appropriately marked; the center yover events representative of on n performed along the prescribe ndesired variability of control inp Desired Resolution Email Email Email Email Email	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a fiyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA Technical POC FAA Technical POC FAA Technical POC FAA Technical POC Microphone array Weather monitoring syster	Siround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during fi Pass: Prescribed fight condition Fail: Off track, off condition, ur Kyle Pascioni Erin Waggoner	visually indicate reference poin appropriately marked; the center yover events representative of on n performed along the prescribe ndesired variability of control inp Desired Resolution Email Email Email Email Email	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a fiyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA FOCAL POC FAA Technical POC FAA Technical POC FAA Technical POC Minimum Equipment List Microphone array Weather monitoring module Data Collection Requireme	Siround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during ff Pass: Prescribed fight condition Fail: Off track, off condition, ur Kyle Pascioni Erin Waggoner	visually indicate reference poin appropriately marked; the center yover events representative of on n performed along the prescribe ndesired variability of control inp Desired Resolution Email Email Email Email Email	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition
The course may take the fo array for a fiyover event. C crossing point in which the series of reflective banners Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FocAL POC FAA Technical POC FAA Technical POC FAA Technical POC FAA Technical POC Minimum Equipment List Microphone array Weather monitoring system Aircraft tracking module Data Collection Requireme High Precision Lat/Long in C	Siround markers will be deployed to pilot should be on condition will be a Acquire acoustic data during ff Pass: Prescribed fight condition Fail: Off track, off condition, ur Kyle Pascioni Erin Waggoner	visually indicate reference poin appropriately marked; the center yover events representative of n performed along the prescribe indesired variability of control inp Desired Resolution Email Email Email Email Email Email	s along the flight path. F r of the array may also b cruise/forward flight d track under benign env	or example, the e clearly marked wit ironmental condition

le	ARINC 424 Approach Coding		
ata Element Type	Dynamic		
icenario	1	UTE	
Metric Type	Airspace	Maneuver	NA
Phase of Flight	Inflight	Event	Range Flight
Dbjective			
eographical area. 2.1 Heliport Records (H. 2.3 Heliport Approach (I 2.3 Heliport Helipad Reconfiguration A est Conditions . Apply results from site s . Load data into FIAPA so . Identify coding errors, if rescription rocedures do not exist for xplore the steps necessar	FF) cord (HH) turvey (lat/lon, elevations) for application ftware applicable or Route Discovery Scenario 1 and other d to create ARINC 424 coding for the new to an be utilized to inspect approach helip	to fixes emonstrations for adv. vehicle routes.	anced air mobility, therefore we want to
eference Guidance AR Part 139 Airport Certii AA Order 8260 Series C150/5390-2C Heliport I	Design		
14 CFR §77.23 Heliport im ARINC SPECIFICATION 424 Adequate Criteria Desired Criteria			
nstrumentation Package			
Task	High Precision Lat/Long		
Adequate	0.01 degrees	Desired	0.0005 degrees
Adequate	-		
Ndequate nstrumentation Package Name	dGPS	Desired Resolution	0.0005 degrees
Idequate Instrumentation Package Name Task	dGPS Field Elevation	Resolution	0.1
Adequate Instrumentation Package Name Task Adequate	dGPS		
Adequate Instrumentation Package Name Task	dGPS Field Elevation	Resolution	0.1
Adequate Instrumentation Package Name Task Adequate Instrumentation Package	dGPS Field Elevation	Resolution Desired	0.1
Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name	dGPS Field Elevation .01 Ft	Resolution Desired	0.1
Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task	dGPS Field Elevation .01 Ft	Resolution Desired Resolution	0.1 .001 Ft
Adequate instrumentation Package Name Gask Adequate Instrumentation Package Name Task Adequate	dGPS Field Elevation .01 Ft	Resolution Desired Resolution	0.1 .001 Ft
Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package	dGPS Field Elevation .01 Ft Altitude	Resolution Desired Resolution Desired	0.1 .001 Ft FAA Order 8260 Series
Adequate instrumentation Package Name Fask Adequate Instrumentation Package Name Adequate Instrumentation Package Name	dGPS Field Elevation .01 Ft Altitude Laser Range Finder	Resolution Desired Resolution Desired	0.1 .001 Ft FAA Order 8260 Series
Adequate instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Adequate Instrumentation Package	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude	Resolution Desired Resolution Resolution Resolution Resolution Desired	0.1 .001 Ft FAA Order 8260 Series FAA Order 8260 Series FAA Order 8260 Series
Adequate instrumentation Package Name Fask Adequate instrumentation Package Name Task Adequate instrumentation Package Name Eask Adequate Instrumentation Package Name	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude Air Data Computer 3000	Resolution Desired Resolution Desired Resolution Resolution	0.1 .001 Ft FAA Order 8260 Series FAA Order 8260 Series
Adequate instrumentation Package Name Fask Adequate Instrumentation Package Name Stask Adequate Name Fask Adequate Instrumentation Package Name Task	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude	Resolution Desired Resolution Resolution Resolution Resolution Resolution	0.1 .001 Ft FAA Order 8260 Series FAA Order 8260 Series FAA Order 8260 Series FAA Order 8260 Series
Adequate instrumentation Package Name Task Adequate Name Task Adequate Instrumentation Package Vame Task Adequate Instrumentation Package Name Task Adequate	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude Air Data Computer 3000	Resolution Desired Resolution Resolution Resolution Resolution Desired	0.1 .001 Ft FAA Order 8260 Series FAA Order 8260 Series FAA Order 8260 Series
Adequate instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude Air Data Computer 3000 Inertial Reference Unit	Resolution Desired Resolution Resolution Desired Resolution Desired Resolution Desired	0.1 .001 Ft FAA Order 8260 Series FAA Order 8260 Series FAA Order 8260 Series FAA Order 8260 Series FAA Order 8260 Series
Adequate instrumentation Package Name Task Adequate instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name State State	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude Air Data Computer 3000	Resolution Desired Resolution Resolution Resolution Resolution Resolution	0.1 .001 Ft FAA Order 8260 Series FAA Order 8260 Series FAA Order 8260 Series FAA Order 8260 Series
Adequate instrumentation Package Name Fask Nadequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Instrumentation Package Instrumentation Package Name Requirements	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude Air Data Computer 3000 Inertial Reference Unit Model HG 2195 AB	Resolution Desired Resolution Resolution Resolution Resolution Resolution Resolution Resolution Resolution Resolution	0.1 .001 Ft FAA Order 8260 Series FAA Order 8260 Series
Adequate instrumentation Package Name Fask Adequate name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Instrumentation Package Name Fask Adequate Instrumentation Package Name Requirements NAME	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude Air Data Computer 3000 Inertial Reference Unit Model HG 2195 AB David Zahn	Resolution Desired Resolution Resolution Resolution Resolution Resolution Resolution Email	0.1 .001 Ft FAA Order 8260 Series FAA Order 8260 Series A Order 8260 Series FAA Order 8260 Series
Vadequate instrumentation Package Name Task Adequate Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Requirements Name Requirements NASA POC Alternate NASA POC	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude Air Data Computer 3000 Inertial Reference Unit Model HG 2195 AB	Resolution Desired Resolution Resolution Resolution Resolution Resolution Resolution Resolution Email Email Email	0.1 .001 Ft FAA Order 8260 Series FAA Order 8260 Series
Addequate instrumentation Package Name Task Addequate instrumentation Package Name Eask Addequate Name Eask Addequate Name Kaguements NASA POC FAA FOCAL POC	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude Air Data Computer 3000 Inertial Reference Unit Model HG 2195 AB David Zahn Faisal Omar / RJ Harris	Resolution Desired Resolution Resolution Resolution Resolution Resolution Resolution Email Email Email Email	0.1 .001 Ft FAA.Order 8260 Series FAA.Order 8260 Series FAA.Order 8260 Series FAA.Order 8260 Series FAA.Order 8260 Series FAA.Order 8260 Series FAA.Order 8260 Series david.zahn@nasa.gov faisal.g.omar@nasa.gov
Adequate instrumentation Package Name Task Adequate instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Requirements NASA POC NAR POC NA POCL POC FAA POICL POC	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude Air Data Computer 3000 Inertial Reference Unit Model HG 2195 AB David Zahn Faisal Omar / RJ Harris Jay Sandwell / Brad Snelling	Resolution	0.1 .001 Ft FAA Order 8260 Series FAA Order 8260 Series Java Series Ja
Adequate instrumentation Package Name Fask Adequate Instrumentation Package Name Task Adequate Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Requirements NAME Requirements NAME POC FAA FOICAL POC FAA FOICAL POC FAA Technical POC	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude Air Data Computer 3000 Inertial Reference Unit Model HG 2195 AB David Zahn Faisal Omar / RJ Harris	Resolution Resolution Resolution Resolution Resolution Resolution Resolution Resolution Resolution Email Email Email Email Email	0.1 .001 Ft FAA.Order 8260 Series FAA.Order 8260 Series FAA.Order 8260 Series FAA.Order 8260 Series FAA.Order 8260 Series FAA.Order 8260 Series FAA.Order 8260 Series david.zahn@nasa.gov faisal.g.omar@nasa.gov
Vadequate instrumentation Package Name Fask Adequate instrumentation Package Name Fask Adequate Instrumentation Package Name Fask Adequate Instrumentation Package Name Fask Adequate Instrumentation Package Name Requirements NASA POC Name Requirements NASA POC Nernet NASA POC FAA FOCAL POC FAA FoCAL POC FAA Technical POC FAA Technical POC	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude Air Data Computer 3000 Inertial Reference Unit Model HG 2195 AB David Zahn Faisal Omar / RJ Harris Jay Sandwell / Brad Snelling	Resolution	0.1 .001 Ft FAA Order 8260 Series FAA Order 8260 Series Java Series Ja
Videquate Instrumentation Package Vame Fask Videquate Instrumentation Package Vame Fask Videquate Instrumentation Package Vame Fask Videquate Instrumentation Package Vame Requirements VASA POC Viternate NASA P	dGPS Field Elevation .01 Ft Altitude Laser Range Finder Altitude Air Data Computer 3000 Inertial Reference Unit Model HG 2195 AB David Zahn Faisal Omar / RJ Harris Jay Sandwell / Brad Snelling	Resolution Resolution Resolution Resolution Resolution Resolution Resolution Resolution Resolution Email Email Email Email Email	0.1 .001 Ft FAA Order 8260 Series FAA Order 8260 Series Java Series Ja

ïtle	ment Card Spatial Data Integrity Validatio	n	
Data Element Type	Static		22.
Scenario	1	UTE	
Metric Type	Airspace	Maneuver	N/A
Phase of Flight Objective	Preflight	Event	Range Flight
	ns of spatial data providers to UAM navi	gation services in the	vertical and horizontal axis. Compare and
	al Terrain Evaluation Databases (DTED) i		
Configuration			
N/A			
Test Conditions			
1. Select test site locations 2. Conduct site survey	8		
3 Establish Baseline Lat/Lor	g and Field elevation		
4. Run test digital terrain d			
5. Compare and plot deviati	on data points		
Description			and be deep day to day to the second second
			each landing site, as site surveys will not AM services to the prospective metropoli
			ation accuracies in coding, route conforma
			data at the take-off and landing surface.
Notes			
	datum (identify datum error typically ~6	ift. Horizontal/Vertica	I). Must know true value to comapre sd
Test Course Description			
Reference Guidance FAR Part 139 Airport Certifi	cation		
FAR Part 139 Airport Certifi FAA Order 8260 Series	versional		
AC150/5390-2C Heliport De	sign		
14 CFR §77.23 Heliport imag	*		
Adequate Criteria	NA		
Desired Criteria	NA		
Instrumentation Package			
Task	High Precision Lat/Long		
Adequate	0.01 degrees	Desired	0.0005 degrees
Instrumentation Package Name	SBSM	Resolution	0.1
Task	High Precision Lat/Long	nesolution	0.1
Adequate		Desired	0.0005 degrees
Instrumentation Package	0.01 degrees	Desired	0.0005 degrees
Name	TARGETS	Resolution	0.1
Task	High Precision Lat/Long		
Adequate	0.01 degrees	Desired	0.0005 degrees
Instrumentation Package			
Name	Google Earth	Resolution	0.01
Task	High Precision Lat/Long	A second second	
Adequate	0.005 degrees	Desired	0.0005 degrees
Instrumentation Package	1	Lange and the second	T
Name	FIAPA	Resolution	.0005 degrees
Task	Field Elevation		
Adequate	.01 Ft	Desired	0.001 Ft
Instrumentation Package Name	SBSM	Resolution	.01 Ft
Task	Field Elevation	Assessment	
Adequate	.01 Ft	Desired	.001 Ft
Instrumentation Package			
Name	TARGETS	Resolution	0.001
Task	Field Elevation	24	1
Adequate	.01 Ft	Desired	.001 Ft
Instrumentation Package	a deserver and		
Name	Google Earth	Resolution	.01 Ft
Task	Field Elevation		12.
Adequate	.01 Ft	Desired	.001 Ft
Instrumentation Package Name	FIAPA	Resolution	.001 Ft
Requirements	10078	Resolution	and Fi
NASA POC	David Zahn	Email	1
Alternate NASA POC	Erin Waggoner	Email	
FAA FOCAL	Erni Waggoner	Email	2
FAA Policy POC	Keri Lyons	Email	
FAA Policy POL FAA Technical POC	Wesley Major & Robert Bassey	Email	
FAA Technical POC	Jay Sandwell	Email	
Minimum Equipment List		No. Contraction	
Garmin GPS locator			
SBSM DTED			
FIAPA Tablet			
FIAPA Tablet Google Earth DTED			
FIAPA Tablet	where the second se		

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

Retric Type hase of Flight bijective fonitor ADSB system output esearch will be conducted ut nd required navigation perfo pplicable distress fields, mes configuration v/A est Conditions Track and monitor NIC value Track and monitor NIC value Track and monitor NIC value Track and monitor SIA value Digitally reconstructing 3D resorption reas for UAM, UAS, and gen totes for UAM, UAS, and gen totes	NACV values es Jes	validate UAM vel ch will be conduc	hicles adhereance to prescribed flight path ted on contingecy management through
Dbjective Monitor ADSB system output Research will be conducted ut and required navigation perfor applicable distress fields, mess Configuration N/A Eest Conditions 1. Track and monitor NIC value 2. Track and monitor NIC value 3. Track and monitor SID Autor 3. Track and monitor SID Autor 3. Track and monitor SID Autor 4. Track and monitor SID Autor 5. Digitally reconstructing 3D Description Researching low level routing areas for UAM, UAS, and gen Notes Determine what mode 3A flig Validation. Determine Second	Airspace Inflight for navigation, postion, source strength and ilizing the highest levels of conformance to ormance (RNP) parameters. Additional resear sage latency and the SBSM system ability to ess MACV values es ess	Maneuver Event system integrity ralidate UAM vel ch will be conduct	Range Flight for UAM application and route conforma- hides adhereance to prescribed flight path ted on contingecy management through
Phase of Flight Disjective Monitor ADSB system output Beesarch will be conducted ut and required navigation perform applicable distress fields, mes- Configuration WA Fest Conditions 1. Track and monitor NIC value 2. Track and monitor NIC value 3. Track and monitor NIC value 5. Digitally reconstructing 3D Description Researching low level routing areas for UAM, UAS, and gen Notes Determine what mode 3A flig valuation. Determine Second	Inflight for navigation, postion, source strength and illuing the highest levels of conformance to immance (RNP) parameters. Additional resear sage latency and the SBSM system ability to es MACV values es es	Event system integrity ralidate UAM vel ch will be conduc	Range Flight for UAM application and route conforma- hides adhereance to prescribed flight path ted on contingecy management through
Dbjective Monitor ADSB system output Research will be conducted ut and required navigation perfor applicable distress fields, mess Configuration N/A Eest Conditions 1. Track and monitor NIC value 2. Track and monitor NIC value 3. Track and monitor SID Autor 3. Track and monitor SID Autor 3. Track and monitor SID Autor 4. Track and monitor SID Autor 5. Digitally reconstructing 3D Description Researching low level routing areas for UAM, UAS, and gen Notes Determine what mode 3A flig Validation. Determine Second	for navigation, postion, source strength and illuing the highest levels of conformance to mmance (RMP) parameters. Additonal resears sage latency and the SBSM system ability to es MACV values es es	system integrity validate UAM vel ch will be conduct	y for UAM application and route conformar hicles adhereance to prescribed flight path ted on contingecy management through
Monitor ADSB system output Research will be conducted ut and required navigation perfo speciable distress fields, mes Configuration W/A Test Conditions 1. Track and monitor NIC value 2. Track and monitor SIL value 1. Track and monitor SIL value 3. Track and monitor SIL value 3. Digitally reconstructing 3D Description Researching low level routing areas for UAM, UAS, and gen Notes Determine what mode 3A flig Validation. Determine Second	ilizing the highest levels of conformance to ormance (RNP) parameters. Additional resear sage latency and the SBSM system ability to es MACV values es es	validate UAM vel ch will be conduc	hicles adhereance to prescribed flight path ted on contingecy management through
and required navigation perfo applicable distress fields, mess Configuration N/A Test Conditions 1. Track and monitor NIC value 2. Track and monitor NACp - 8 3. Track and monitor SNA value 5. Digitally reconstructing 3D Description Researching low level routing areas for UAM, UAS, and gen Notes Determine what mode 3A flig Validation. Determine Second	armance (RNP) parameters. Additional resear sage latency and the SBSM system ability to ses AACv values es es	ch will be conduc	ted on contingecy management through
applicable distress fields, mess Configuration N/A Test Conditions 1. Track and monitor NIC value 2. Track and monitor NIC value 4. Track and monitor SID Autor 5. Digitally reconstructing 3D Description Researching low level routing areas for UAM, UAS, and gen Notes Validation. Determine Second	sage latency and the SBSM system ability to es MACV values es es		
Configuration N/A Test Conditions 1. Track and monitor NIC value 2. Track and monitor SIL value 4. Track and monitor SIL value 5. Digitally reconstructing 3D Description Researching low level routing areas for UAM, UAS, and gen Notes Determine what mode 3A flig Validation. Determine Second	nes MACy values es	alert governing	authority in realtime.
N/A Test Conditions 1. Track and monitor NIC value 2. Track and monitor NACp • 8 3. Track and monitor SNA value 5. Digitally reconstructing 3D Description Researching low level routing areas for UAM, UAS, and gen Notes Determine what mode 3A flig Validation. Determine Second	NACV values es Jes		
 Track and monitor NIC value. Track and monitor NACp - 8 3 Track and monitor SLA value. Track and monitor SLA value. Digitally reconstructing 3D Description Researching low level routing areas for UAM, UAS, and gen Notes Determine what mode 3A flig validation. Determine Second 	NACV values es Jes		
4.Track and monitor SDA valu 5. Digitally reconstructing 3D Description Researching low level routing areas for UAM, UAS, and gen Notes Determine what mode 3A flig Validation. Determine Second	NACV values es Jes		
3 Track and monitor SIL value 4. Track and monitor SDA value 5. Digitally reconstructing 3D Description Researching low level routing areas for UAM, UAS, and gen Notes Determine what mode 3A flig Validation. Determine Second	8 18		
4.Track and monitor SDA valu 5. Digitally reconstructing 3D Description Researching low level routing areas for UAM, UAS, and gen Notes Determine what mode 3A flig Validation. Determine Second	105		
areas for UAM, UAS, and gen Notes Determine what mode 3A flig Validation. Determine Second	flight		
Researching low level routing areas for UAM, UAS, and gen Notes Determine what mode 3A flig Validation. Determine Second			
areas for UAM, UAS, and gen Notes Determine what mode 3A flig Validation. Determine Second	in a condensed environment and evolution w	avs to flight follo	w deconflict closely spaced containment
Validation. Determine Second	eral aircraft in the NAS. Utilizing SBSM syst		
Validation. Determine Second			
	ht will be needed to deconflict and monitor		
	tary survelleince source for GPS accuracy (R	adar track, WAM	, TDOA, WAM2), and Geographic Probabil
of Detection for UAM operation Test Course Description	ons.		
rest course pescription			
Reference Guidance			
Reference Guidance FAR Part 139 Airport Certifica	ation		
FAA Order 8260 Series			
AC150/5390-2C Heliport Desig			
14 CFR §77.23 Heliport imagin			
Adequate Criteria Desired Criteria	NA		
Instrumentation Package	NA.		
Task	Velocity tracking		
Required	300 m/s	Desired	150 m/s
Instrumentation Package	and the second sec		
Name	SBSM	Resolution	0.25 kts
Task	Acceleration Tracking		
Required	10 m/s^2	Desired	6 m/s*2
Instrumentation Package Name	SBSM	Resolution	0.25^2 kts
Task	Lat/Long Jump Between Time Span	Resolution	0.25~2 kts
Required	2624.67 ft (800 Meters)	Desired	100.6 /07.54-1
Instrumentation Package	2624.67 it (600 Meters)	Deared .	180 ft (55 Meters)
Name	SBSM	Resolution	0.01 Degree
Task	Altitude Miscompare (GPS - Pressure Altitude	de) (Raw vs Adju	sted)
Required	2000 Ft	Desired	50 Ft
Instrumentation Package	SBSM		
Name Task	Time Span Validation (Update Interval late	Resolution	25ft (ADSB) (6.25 ft Ability)
Required		Desired	
in compare to the	2 secs (time of generated position to transmission)		700 ms
Instrumentation Package			Page 114
Name	SBSM	Resolution	250 ms
Task	Navigational Accurancy Code (Position) (NA	Cp)	
Required		Desired	
Instrumentation Package		Baselation	
Name Task	SBSM Navigational Accuracy Code (Vertical) (NA	Resolution	
Required		Desired	
Instrumentation Package			Val
Name		Resolution	
Task	Navigational Integrity Code (NIC)		
Required		Desired	
Instrumentation Package Name		Baselator	14
Name Task	System Desgin Assurance (SDA)	Resolution	
Required	street reality wate area (20%)	Desired	
Instrumentation Package		and and a	Val.
Name		Resolution	
Task	Source Integrity Level (SIL)		
Required		Desired	
Instrumentation Package			Ve l
Name		Resolution	
Requirements	David Taba	Email	
NASA POC Alternate NASA POC	David Zahn Faisal Omar / Savuv Verma	Email	
FAA FOCAL	Faisal Omar / Savvy Verma	Email	-
FAA Policy POC	Alex Moreno	Email	
FAA Technical POC	Wilson Fish	Email	
FAA Technical POC	Wade Price	Email	
Minimum Equipment List			
SBMS			
anns ATI Lab Data Collection Requirement:			

Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

itle	ARINC 424 Approach Coding		
Data Element Type	Dynamic		
Scenario	1	UTE	MTE 6
Metric Type	Airspace	Maneuver	NA
Phase of Flight	inflight	Event	Range Evaluation
Objective		1	
peographical area. 12.1 Heliport Records (H. 12.3 Heliport Approach () 12.9 Heliport Helipad Re Configuration VA Test Conditions 1. Apply results from site 2. Load data into FIAPA as 3. Identify coding errors, i Description Procedures do not exist for splore the steps necessa	HF) cord (HH) survey (lat/lon, elevations) for application oftware	to fixes monstrations for adva vehicle routes.	inced air mobility, therefore we want to
Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport In ACTR §77-23 Heliport In ARINC SPECIFICATION 424 Adequate Criteria	Design aginary surfaces	for coding	
Desired Criteria	Propery survey data is avialable to b	uild error-free coding	
Instrumentation Package			
Task	High Precision Lat/Long		1
Adequate	0.01 degrees	Desired	0.0005 degrees
Instrumentation Package			
Name	dGPS	Resolution	0.1
Task	Field Elevation		
Adequate	.01 Ft	Desired	.001 Ft
Instrumentation Package			1
Name		Resolution	
Task	Altitude		
Adequate	1	Desired	FAA Order 8260 Series
Instrumentation Package		-	
Name	Laser Range Finder	Resolution	FAA Order 8260 Series
Task	Altitude		
Adequate		Desired	FAA Order 8260 Series
Instrumentation Package		Long and	
Name	Air Data Computer 3000	Resolution	FAA Order 8260 Series
Task	Inertial Reference Unit		A
Adequate		Desired	FAA Order 8260 Series
Instrumentation Package	and an experimental second second		
Name	Model HG 2195 AB	Resolution	FAA Order 8260 Series
Requirements			
NASA POC	David Zahn	Email	david.zahn@nasa.gov
Alternate NASA POC	Faisal Omar / RJ Harris	Email	faisal.g.omar@nasa.gov
		Email	
FAA FOCAL POC	Jay Sandwell / Brad Snelling	Email	Jay.Sandwell@faa.gov
FAA FOCAL POC FAA Policy POC			Ben James@faa.gov
	Ben James	Email	
FAA Policy POC FAA Technical POC	Ben James		
FAA Policy POC FAA Technical POC FAA Technical POC	Ben James	Email	
FAA Policy POC FAA Technical POC FAA Technical POC FAA Technical POC			
FAA Policy POC FAA Technical POC FAA Technical POC		Email	

226

itle	Spatial Data Integrity Validation		
Data Element Type	Static		
Scenario	1	UTE	
Metric Type	Infrastructure	Maneuver	NA.
Phase of Flight Objective	Preflight	Event	Range Flight
and the second se	ons of spatial data providers to UAM naviga	tion services in the	vertical and horizontal axis. Compare an
	tal Terrain Evaluation Databases (DTED) in u	use for UAM flight	planning of point in space departure and
Configuration			
N/A Test Conditions			
1. Select test site locations			
2. Conduct site survey	April Contractor and		
 Establish Baseline Lat/Lo Run test digital terrain 			
 Kompare and plot deviat 			
Description			
	mand mobility, high precision lat/longs must		
	operational urban enviroments like Dallas D for safe launch and recovery of flight. Wit		
	nd bias errors will hinge entirely on the inte		
Notes			
	datum (identify datum error typically ~6ft.	Horizontal/Vertica	il). Must know true value to comapre sd
Test Course Description			
Reference Guidense			
Reference Guidance FAR Part 139 Airport Certi	fication		
FAA Order 8260 Series			
AC150/5390-2C Heliport D			
14 CFR §77.23 Heliport ima Adequate Criteria	NA		
Desired Criteria	NA		
Instrumentation Package			
Task	High Precision Lat/Long		
Adequate	0.01 degrees	Desired	0.0005 degrees
Instrumentation Package			
Name	SBSM	Resolution	0.1
Task	High Precision Lat/Long	Desired	a prest d
Adequate Instrumentation Package	0.01 degrees	Desired	0.0005 degrees
Name	TARGETS	Resolution	0.1
Task	High Precision Lat/Long		
Adequate	0.01 degrees	Desired	0.0005 degrees
Instrumentation Package			
Name	Google Earth	Resolution	0.01
Task	High Precision Lat/Long	Davised	
Adequate Instrumentation Package	0.005 degrees	Desired	0.0005 degrees
Name	FIAPA	Resolution	.0005 degrees
Task	Field Elevation		
Adequate	.01 Ft	Desired	0.001 Ft
Instrumentation Package			
Name	SBSM	Resolution	.01 Ft
Task	Field Elevation	Destand	
Adequate Instrumentation Package	.01 Ft	Desired	.001 Ft
Name	TARGETS	Resolution	0.001
Task	Field Elevation		
Adequate	.01 Ft	Desired	.001 Ft
Instrumentation Package			
Name	Google Earth	Resolution	.01 Ft
Task	Field Elevation	Desired	001.5
Adequate Instrumentation Package	.01 Ft	uested	.001 Ft
Name	FIAPA	Resolution	.001 Ft
Requirements			
NASA POC	David Zahn	Email	
Alternate NASA POC	Erin Waggoner	Email	
FAA FOCAL POC	M - 1 5	Email	
	Keri Lyons Warley Major & Robert Parray	Email	-
FAA Policy POC	Wesley Major & Robert Bassey	Email	
FAA Technical POC	lav Sandwell	A COLORED	
FAA Technical POC FAA Technical POC	Jay Sandwell		
FAA Technical POC	Jay Sandwell		
FAA Technical POC FAA Technical POC Minimum Equipment List Garmin GPS locator SBSM DTED	Jay Sandwell		
FAA Technical POC FAA Technical POC Minimum Equipment List Garmin GPS locator SBSM DTED FIAPA Tablet	Jay Sandwell		
FAA Technical POC FAA Technical POC Minimum Equipment List Garmin GPS locator SBSM DTED	Jay Sandwell		

Data Elei			۲ 🌚 🧐
Title	Vertiport Evaluation		
Data Element Type	Static		
Scenario	1	UTE	
Metric Type	Infrastructure	Maneuver	NA
Phase of Flight	Preflight	Event	Range Flight
Objective			
	alution is to baseline Airport and Heliport st and integration. The resulting analysis will d		nd criteria to identify operational safety gaps
Configuration	and integration. The resulting analysis will be	inversito, itor, salet	y Area, weir clear and Parking Separation.
N/A			
Test Conditions			
1. Establish projected landing	a site location		
	ace Analysis for UAM operations		
3. Determine safety area bo			
4 Establish terrain and vertic			
5. Determine power sourcin			
6. Establish acoustic noise at			
7. Identify orographic effects			
8. Delta ISA- Crtical High and			
Description			
The National Campaign team	n will evaluate the proposed landing surface	e against design guidan	ce, hazard materials management, safety
marking and lighting, in an e	ffort to baseline UAM operational assumption	ons and identify gaps ir	safety. The evaluation will serve as a
performanced based, point in	n space, take off and land surface against p	roposed minimum UAN	I vehicle performance standards in which to
anchor precision take-off an	d landing profiles.		
Notes			
	limit cross-wind operationscalculate criti	cal high and low for star	ndard vehicle instrumentation at facility plac
Test Course Description			
N/A			
Reference Guidance			
14 CFR §139 Certification of	Airports		
FAA Order 8260 Series			
AC150/5390-2C Heliport Des	-		
Airport Circulars Landing Pag			
	/7460-1L, Obstruction Marking & Lighting		
	Sec-3, Evaluation & Surveillance of Heliport		
	struction, Alteration, Activation, And Deacti	vation Of Airports	
14 CFR §77.23 Heliport imag	inary surfaces SE, AND PRESERVATION OF THE NAVIGAB	E AIDEDACE	
Adequate Criteria	NA	LE AIRSPACE	
Desired Criteria	NA		
Instrumentation Package			
Task			
Adequate		Desired	
Instrumentation Package			
Name		Resolution	
Requirements			
NASA POC	Erin Waggoner	Email	
Alternate NASA POC	David Zahn	Email	
FAA FOCAL POC		Email	
FAA Policy POC	Wesley Major, Robert Bassey	Email	
FAA Technical POC		Email	
FAA Technical POC	Keri Lyons	Email	
Minimum Equipment List			
Garmin Hand Held			
SBSM			
303141			
FIAPA Tablet			
FIAPA Tablet			
FIAPA Tablet Google Earth	ts		
FIAPA Tablet Google Earth TARGETS Data Collection Requirement	ts		
FIAPA Tablet Google Earth TARGETS	ts		

Data Ele			
	Vertiport Registration		
Data Element Type	Static		
Scenario	1	UTE	
Metric Type	Infrastructure	Maneuver	N/A
Phase of Flight	Preflight	Event	Range Flight
vertical take off and land Configuration N/A		implified/optionally piloted, re	mote-piloted, and autonomous systems uti
Test Conditions			
	struction (Modified 7480) – Annex 1		
2. Conduct site survey (1		2	
 Receive notional Letter Vertiport Master Reco 	er of Determination (TSI/ASI) – Annex	3	
 Vertiport Master Rect Grant notional Activat 			
Description	Anne Santa - Anne S		
	insist of industry partner submitting a	modified Grand Challenge Notic	e of Construction form (7480), which will ini
			s to and from the prospective vertiport. A by grand challenge team through current
Notes Test Course Description This task may be perform	-	vith the designated landing poir	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's e Reference Guidance FAR Part 139 Airport Cerl	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur	vith the designated landing poir	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's e Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification	vith the designated landing poir	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pillot's e Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design	vith the designated landing poir	nt being directly under the reference point o
Notes Test Course Description This task may be perform aircraft when the pilot's e Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport Adequate Criteria	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA	vith the designated landing poir	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's e Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Desired Criteria	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA NA	vith the designated landing poir	at being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's er Reference Guidance FAR Part 139 Airport Cerl FAR Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Desired Criteria Instrumentation Packag	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA NA	vith the designated landing poir	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's er Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Desired Criteria Instrumentation Packag Task	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA NA	vith the designated landing poir e XX for an example course.	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's of Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Desired Criteria Desired Criteria Instrumentation Packag Task Adequate	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA NA e	vith the designated landing poir	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's of Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA NA e	vith the designated landing poir re XX for an example course. Desired	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's e Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Instrumentation Packag Task Adequate Instrumentation Packag Name	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA NA e	vith the designated landing poir e XX for an example course.	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's e Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Desired Criteria Instrumentation Packag Task Adequate Instrumentation Packag Name Requirements	ned using the ADS-33E hover course were said the hover point. Refer to figure tification Design NA NA e e e e	vith the designated landing poin te XX for an example course. Desired Resolution	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's of Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Desired Criteria Instrumentation Packag Task Adequate Instrumentation Packag Name Requirements NASA POC	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA NA e e David Zahn	vith the designated landing poir e XX for an example course. Desired Resolution Email	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's of Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series ACL50/5390-2C Heliport Adequate Criteria Desired Criteria Desired Criteria Instrumentation Packag Task Adequate Instrumentation Packag Name Requirements NASA POC Alternate NASA POC	ned using the ADS-33E hover course were said the hover point. Refer to figure tification Design NA NA e e e e	vith the designated landing poir e XX for an example course. Desired Resolution Email Email	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's of Reference Guidance FAR Part 139 Airport Cert FAR Part 139 Airport Cert FAR Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Instrumentation Packag Task Adequate Instrumentation Packag Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA NA e David Zahn Erin Waggoner	vith the designated landing poin re XX for an example course. Desired Resolution Email Email Email	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's e Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Desired Criteria Desired Criteria Instrumentation Packag Task Adequate Instrumentation Packag Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA POICy POC	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA NA e e David Zahn	vith the designated landing poin re XX for an example course. Desired Resolution Email Email Email Email Email	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's of Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Desired Criteria Instrumentation Packag Task Adequate Instrumentation Packag Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA Policy POC FAA Technical POC	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA NA e David Zahn Erin Waggoner Keri Lyons	vith the designated landing poin re XX for an example course. Desired Resolution Email Email Email Email Email	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's of Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Desired Criteria Instrumentation Packag Task Adequate Instrumentation Packag Name Requirements NASA POC Alternate NASA POC FAA FoCAL POC FAA Technical POC FAA Technical POC	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification NA NA e Design NA NA e Course v NA NA e Course v NA NA e Course v NA NA e Course v NA NA NA Alex Moreno	vith the designated landing poin re XX for an example course. Desired Resolution Email Email Email Email Email	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's of Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/S390-2C Heliport Adequate Criteria Desired Criteria Desired Criteria Instrumentation Packag Task Adequate Instrumentation Packag Name Requirements NASA POC Alternate NASA POC FAA POCL POC FAA Policy POC FAA Technical POC FAA Technical POC FAA Technical POC Minimum Equipment Lis	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA NA e David Zahn Erin Waggoner Keri Lyons Alex Moreno t	vith the designated landing poin re XX for an example course. Desired Resolution Email Email Email Email Email	nt being directly under the reference point o
Notes Test Course Description This task may be perforn aircraft when the pilot's of Reference Guidance FAR Part 139 Airport Cert FAA Order 8260 Series AC150/5390-2C Heliport Adequate Criteria Desired Criteria Instrumentation Packag Task Adequate Instrumentation Packag Name Requirements NASA POC Alternate NASA POC FAA FoCAL POC FAA Technical POC FAA Technical POC	ned using the ADS-33E hover course v eye is at the hover point. Refer to figur tification Design NA NA e David Zahn Erin Waggoner Keri Lyons Alex Moreno t	vith the designated landing poin re XX for an example course. Desired Resolution Email Email Email Email Email	nt being directly under the reference point o

ata Element Type Static status of the second	tie	Post-flight Weather Data & Study	ξ.	
Metric Type Infrastructure Meneuver NA Phase of Flight Event Range Flight Phase of Flight Event Range Flight Dedictives are to (1) collect data that describe atmospheric conditions near helipad/vertiports durit atabehoders poor flight Conditions Configuration N/A Sector Hight Event 2. Deploy weather soming equipment A feasure and record weather data Event Event 3. Perform quality control and formatting decks E. Controls Event Event Event 2. Deploy weather soming equipment A feasure and record weather data Event	ta Element Type	Static		-
shase of Flight Predigite Event Range Flight Objectives are to (1) collect data that describe atmospheric conditions near helipads/vertiports durin takeholders post-flight Event Range Flight VA Free Conditions Event Range Flight I. Conductions Event Event Event I. Conductions Event Event Event I. Conductions Event Event Event I. Restore and record weather data Event Event Event I. Restore and record weather data Event Event Event Neasure and record weather data III be collected during National Campaign flight activities and made available post flight minute resolution. The SoDAR records average wind data every 20m (65R) between 20.250m (65.820R) Vester Source Description Eventer Guidance Eventer Guidance Eventer Guidance NA Eventer Guidance III incot Collect weather data during flight text activities and distribute data to at the disquite Criteria NA III incot Collect weather data III incot Desired 0.1 incot Collect weather data III incot				and the second se
Objective Contiguation Description Configuration WA Configuration VA Enclosed Test Configuration VA A Measure and record weather data Section data will be collected/recorded at 1 second resolution, and 500AR data will be collected/recorded at 1 second resolution, and 500AR data will be collected/recorded at 1 second resolution, and 500AR data will be collected/recorded at 1 second resolution, and 500AR data will be collected/recorded at 1 second resolution, and 500AR data will be collected/recorded at 1 second resolution, and 500AR data will be collected/recorded at 1 second resolution, and 500AR data will be collected/recorded at 1 second resolution, and 500AR data will be collected/recorded at 1 second resolution, and 500AR data will be collected/recorded at 1 second resolution (561 between 10 2 150m (562 001 (562 0			and the second second	
he objectives are to (1) collect data that describe atmospheric conditions near helipady/vertiports duri actifiguration //A issee: and record weather data will be collected/recorded at 1-second recolution, and 5soAR data will initive recolution. The 5oDAR records average wind data every 20m (65R) between 20.250m (65.820R) //A issee: and records average wind data every 20m (65R) between 20.250m (65.820R) //A issee: and records average wind data every 20m (65R) between 20.250m (65.820R) //A issee: and records average wind data every 20m (65R) between 20.250m (65.820R) //A issee: and records average wind data every 20m (65R) between 20.250m (65.820R) //A //A //A //A //A //A //A //A //A //		Presignt	Event	Kange Flight
Configuration V/A For Conditions 1. Conduct site survey 2. Deploy watcher sensing equipment 3. Reform quality control and formatting checks 5. Distribute data 5. Perform quality control and formatting checks 6. Distribute data 5. Perform quality control and formatting checks 6. Distribute data 5. Perform quality control and formatting checks 6. Distribute data 5. Perform quality control and formatting checks 6. Distribute data 5. Perform quality control and formatting checks 6. Distribute data 5. Perform quality control and formatting checks 6. Distribute data 5. Perform quality control and formatting checks 6. Distribute data 5. Perform quality control and formatting checks 6. Distribute data 5. Perform quality control and formatting checks 6. Distribute data 5. Perform quality control and formatting checks 6. Distribute data 5. Perform quality control and formatting checks 6. Distribute data 5. Perform quality control and formatting the data every 20m (65R) between 20.250m (65.820); 7. Perform 7. Perform 1. Perform		t data that describe atmospheric condition	s near helipads/\	vertiports during flight tests, (2) deliver
NA Test Conditions i. Conduct site survey 2. Deploy weather sensing equipment 3. Reform generation sheek on equipment 4. Measure and record weather data 5. Enteriorn quarter data 5. Enteriorn quarter data 5. Enteriorn quarter data 6. Distribute data Constructed tata Constructed Construct Cons				
Text Conditions				
1. Conduct site survey 2. Opday weather sening equipment 3. Nerform appraisons theok on equipment 4. Measure and record weather data 5. Reform appreciations theok on equipment 5. Nerform appreciations theok on equipment 6. Senterm appreciations theok on equipment 6. Distribute data Description Weather data will be collected/recorded at 1 second resolution, and 50048 data will minute resolution. The 500AR records average wind data every 20m (55k) between 20-250m (55-820k) Notes Test Course Description Reference Guidance FAA Aviation Weather Sawing the collected/recorded at 1 second resolution, and 50048 data will minute resolution. The 500AR records average wind data every 20m (55k) between 20-250m (55-820k) Notes Test Course Description Reference Guidance FAA Aviation Weather Sawings, Advisory Circular 00-45H Change 2 (2019) FCM-4-2019, Fedara Standards for Sing Meteorological Sensors at Aligorits 10-6560-20C, String Criteria for Automated Weather Observing Systems IAdequate Criteria Collect weather data during flight test activities and distribute data to st Description Reference Guidance Fask Wind speed (surface) Adequate Task Wind speed (surface) Adequate 1 i front Soute fast advisory Qircular 00-45H Collection Name Reform Savage Wind direction (surface) Adequate 1 i dogrees Description Insk M Young Wind Monitor AQ Resolution 0.1 king: Task Temperature Adequate 1 i dogrees Description Insk Reform Resolution 0.0 digrees Description Insk Reform Resolution 0.0 digrees Name Soutech EEI81 Temperature/RH Probe Resolution 0.0 ling: Task Wind speed (soffs) Wind speed (soffs) Wind speed (soffs) Name Resolution 0.0 ling: Task Wind speed (soffs) Wind speed (soffs) Resolution 0.0 ling: Task Soutech EEI81 Temperature/RH Probe Resolution 0.0 ling: Task Wind speed (soffs) Wind speed (soffs) Wind speed (soffs) Resolution 0.0 ling: Task Wind speed (soffs) Wind speed (soffs) Resolution 0.0 ling: Task Wind speed (soffs) Wind speed (soffs) Resolution 0.0 ling: Task Wind speed (soffs) Wind speed (soffs) Resolution 0.0 ling: Task	V			
2. Deploy weather serving equipment 4. Measure and record weather data 5. Perform quality control and formatting checks 6. Distribute data Description Weather data will be collected during National Campaign flight activities and made available post-flight analyses. Surface weather data will be collected/recorded at 1 second resolution, and SoDAR data will minute resolution. The SoDAR records average wind data every 20m (65ft jbetween 20-250m (65 e20h) Notes Test Course Description Reference Guidance FAA Aviation Weather Services, Advisory Circular 00-45H Change 2 (2019) FCM-54-2019, Foderal Standards for Siting Meteorological Sensors at Airports 10-0569.00, Siting Circles for Automated Weather Observing System Adequate Criteria NA Instrumentation Package Task Mind geneed (ourface) Adequate 1 knot 1				
4. Measure and record wasther data 5. Perform quality control and formatting checks 6. Distribute data Description Weather data will be collected during National Campaign flight activities and made available post-flight analyses. Surface weather data will be collected/recorded at 1 second resolution, and SoDAR data will minute resolution. The SoDAR records average wind data every 20m (658) between 20-250m (65-820k) Notes Test Course Description Reference Guidance FRA Aviation Weather Services, Advisory Circular 00-4581 Change 2 (2019) FCM-54-2019, Federal Standards for Siting Meteorological Sensors at Airports 10-6560-20C, Siting Circeita for Automated Weather Observing Systems Adequate 0 interia Reference Guidance 10-06560-20C, Siting Circeita for Automated Weather Observing Systems Adequate 0 interia Reference 1 knot 10 degrees 10 degrees Name 10 degrees Name 10 degrees 10 degree 10 degr		upment		
5. Perform quality control and formatting checks 6. Distribute data Westher data will be collected during National Campaign flight activities and made available post flight minute resolution. The SoDAR records average wind data every 20m (65ft) between 20-250m (65-820h) Notes Text Course Description Reference Guidance FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Westher Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Mesther Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Mesther Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Package Name Ref Wind geneed (2014) Adequate 0 0.1 king Faa 1 (2014) Adequate 0 0.1 king Faa 1 (2014) Faak Relative hundity Adequate 1 (2014) Adequate N/A [Desired 0.1] (2014) Task Relative hundity Adequate N/A [Desired 0.1] (2014) Task Sectech EE181 Temperature/RH Probe Resolution 0.1] (2014) Fak Sectech EE181 Temperature/RH Probe Resolution 0.1] (2014) Task Wind Interton package Name Sectech EE181 Temperature/RH Probe Resolution 0.1] (2014) Task Wind Interton package Name Calculation Package Name Calculation Package Name Calculation Package Name Calculation Package Name Calculation Pa				
6. Distribute data Description Vexther data will be collected during National Campaign flight activities and made available post-flight analyzes. Surface weather data will be collected/recorded at 1 second resolution, and SoDAR data will minute resolution. The SoDAR records average wind data every 20m (6Sft) between 20 2506 second; Notes Text Course Description Reference Gudance Reference Gudance Calculation Vexther Services, Advisory Circular 00-4581 Change 2 (2019) FCM-54-2019, Foderal Standards for Sitting Meteorological Sensors at Airports JD6560.200; Sting Circles for Automated Weather Observing System Adequate Criteria Collect weather data during flight test activities and distribute data to st Desired Criteria NA Instrumentation Package Vind System Manage Mind Garcetion (surface) Adequate 1 knot Vind Garcetion (surface) Adequate 1 0 degrees Mind Garcetion (surface) Adequate 1 0 degrees Mind Garcetion (surface) Adequate 1 0 degrees Name Ref Young Wind Monitor AQ, Resolution 0.1 knot, Task Relative humdity Adequate 1 degree Name Soottech EE181 Temperature/RH Probe Resolution 0.1 (signee Name Name Soottech EE181 Temperature/RH Probe Name Name Name Soottech EE181 Temperature/RH Probe Name Name Name Soottech EE181 Temperature/RH Probe Name Name Name Name Calculation NA Resolution 0.1 (signee Name Name Name Calculation NA Resolution 0.1 (signee Name Name Name Redometrics SoDAR model 4000 Resolution 0.1 (signee Name Name Redometrics SoDAR model 4000 Resolution 0.1 (signee Name Redometrics SoDAR model 4000 R				
Description Weather data will be collected/recorded at 1 second resolution, and 500AR data will minute resolution. The SoDAR records average wind data every 20m (65ft) between 20-250m (65 820h) Notes Text Course Description Reference Guidance FAA Aviation Weather Services, Advisory Circular 00-45H Change 2 (2019) FCM-42-02B, FCM-31 Standards for Sitting Meteorological Sensors at Airports ID-6560-202, Sting Criteria for Automated Weather Observing Systems Adequate Criteria NA Desired Criteria NA Desired Criteria NA Mind speed (surface) Adequate I knot Soften E181 Temperature Adequate Did Soften E181 Temperature/RH Probe Resolution O.1 degree Instrumentation Package Name Soften E181 Temperature/RH Probe Resolution O.1 degree Name Soften E181 Temperature/RH Probe Resolution O.0 Jin/lg, IHz Tak Mind direction (aloft) Adequate N/A Desired N/A Desi		tormatting creats		
FCM 54-2019, Federal Standards for Siting Meteorological Sensors at Airports JO6560.20C, Siting Oriteria for Automated Weather Observing Systems Adequate Criteria Collect weather data during flight test activities and distribute data to st Desired Criteria NA Instrumentation Radiage Second State S				
minute resolution. The SoDAR records average wind data every 20m (658) between 20-250m (65-820h) Notes Test Course Description Reference Guidance FAA Aviation Weather Services, Advisory Circular 00-45H Change 2 (2019) FCM-54-2019, Federal Standards for Siting Meteorological Sensors at Airports ID 65602.02, Siting Criteria for Automated Weather Observing Systems Adequate Criteria Collect weather data during flight test activities and distribute data to st Desired Criteria Name Reference Buiddance I knot Units Mind Speed (surface) Adequate I knot Name Reformertation Package Name Ref Voung Wind Monitor AQ, Resolution I degrees Instrumentation Package Name Reformer BM Young Wind Monitor AQ, Resolution I degree Instrumentation Package Name Reformer BM Young Wind Monitor AQ, Resolution I degree Instrumentation Package Name Reformer BM Young Wind Monitor AQ, Resolution I degree Instrumentation Package Name Reformer BM Young Wind Monitor AQ, Resolution I degree Instrumentation Package Name Reformer BM Young Wind Monitor AQ, Resolution I degree Instrumentation Package Name Reformer BM Young Wind Monitor AQ, Resolution I degree Instrumentation Package Name Reformer BM Young Wind Monitor AQ, Resolution I degree Instrumentation Package Name Reformer B Re				
Notes Test Course Description Reference Guidance FAA Aviation Weather Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Weather Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Weather Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Weather Services, Advisory Circular 00-45H Change 2 (2019) FAA Suita Services Services and Automated Weather Observing Systems Adequate Oriteria Collect weather data during flight test activities and distribute data to st Desired Oriteria Collect weather data during flight test activities and distribute data to st Desired Oriteria Na Mind speed (surface) Adequate 1 have BRM Young Wind Monitor AQ, Resolution 0.1 knot, 1 Task Wind direction (surface) Adequate 1 oldgrees Desired 0.1 degree Instrumentation Package Name RRM Young Wind Monitor AQ, Resolution 0.1 degree Instrumentation Package Name Soutceh EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Relative humdity Adequate 0.010/HR Resolution 0.1%, 1Hz Task Station pressure Adequate 0.010/HR Resolution 0.01%, 1Hz Task Doulry Station pressure Adequate 0.010/HR Resolution 0.01%, 1Hz Task Desired N/A Desi	김 씨는 그는 것은 것은 것은 것을 가지 않는 것을 많이 없다.			
Test Course Description Reference Guidance FAA Aviation Weather Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Weather Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Weather Services, Advisory Circular 00-45H Change 2 (2019) FAA Aviation Weather Services, Advisory Circular 00-45H Change 2 (2019) Collect weather data during flight test activities and distribute data to st Adequate Criteria NA Instrumentation Package Task Wind speed (purface) Adequate Name Resolution Adequate Name Resolution Adequate Name Resolution Adequate Name Scottech EE181 Temperature/RH Probe Resolution 0.11 degree Name Vairale PB100 barrometer Resolution 0.11 degree Name Vairale PB100 barrometer Resolution 0.01inHg Name Name Calculation pressure Adequate NyA Desired NyA Desired NyA Name Calculation Calculation Calculation NyA Name Calculation Resolution 0.01inHg NyA Desired NyA Name Calculation NyA Desired NyA Name Name Calculation Resolution 0.01inHg NyA Desired NyA Name Name Calculation Resolution 0.01inHg NyA Desired NyA Name Name Calculation 0.01inHg NyA Desired NyA Name Calculation 0.01inHg NyA Desired NyA Name Name Calculation NyA Name Name Calculation NyA Name Name Calculation NyA Name Name Calculation NyA Name Name Name Calculation NyA Name Name Name Name Name Name Name Name		records average wind data every zon to	sit) between 20-2	Soni (65%20it) Adt. All data will be ta
Reference Guidance FAA Avitation Weather Services, Advisory Circular 00-45H Charge 2 (2019) FCM 54-2019, Federal Standards for Sitting Meteorological Sensors at Airports IO 6550 202, Sitting Criteria for Automated Weather Observing System Adequate Criteria Collect weather data during flight test activities and distribute data to st Desired Criteria Nation Readage Task Wind speed (surface) Adequate 1 knot Desired 0.1 knot Instrumentation Readage Name 8 M Young Wind Monitor AQ, Resolution 0.1 knot, 1 Task Wind direction (surface) Adequate 10 degrees Desired 0.1 degree Instrumentation Readage Name 8 M Young Wind Monitor AQ, Resolution 0.1 degree Instrumentation Package Name 8 M Young Wind Monitor AQ, Resolution 0.1 degree Instrumentation Package Name 8 M Young Wind Monitor AQ, Resolution 0.1 degree Instrumentation Package Name 8 M Young Wind Monitor AQ, Resolution 0.1 degree Instrumentation Package Name 8 M Young Wind Monitor AQ, Resolution 0.1 degree Instrumentation Package Name 8 Sottech EE181 Temperature/RH Probe Resolution 0.1 degree Instrumentation Package Name 9 Sottech EE181 Temperature/RH Probe Resolution 0.01%, 1Hz Task 9 Station pressure Adequate N/A 0.01inHg 0.02inHg Name 0 Valiasla PTB110 barometer Resolution 0.01/H, 1Hz Task 0 Denired 1.01/H (Markage) Name 0 Calculation Resolution 1.01/H, 1Hz Task 0 Mind speed (aloft) Adequate N/A 0.02inHg Name 7 Calculation Resolution 1.01/H, 1Hz Task 0 Wind direction (aloft) Adequate N/A 0.02inHg Name 7 Redometrics SoDAR model 40000 Resolution 1.01 knots, Task 0 Mind direction (aloft) Adequate N/A 0.02inHg Name 7 Redometrics SoDAR model 4000 Resolution 1.01 knots, Task 0 Mind direction (aloft) Adequate N/A 0.02inHg Name 7 Redometrics SoDAR model 4000 Resolution 1.01 knots, Task 0 Mind direction (aloft) Adequate N/A 0.02inHg Name 7 Redometrics SoDAR model 4000 Resolution 1.01 knots, Task 0 Mind direction (aloft) Adequate N/A 0.02inHg Name 7 Redometrics SoDAR model 4000 Resolution 1.01 knots, Task 0 Mind direction (aloft) Adequate N/A 0.02inHg Name 7 Redometrics SoDAR				
Reference Guidance FAA Avitation Weather Services, Advisory Circular 00-45H Charge 2 (2019) FCM 54-2019, Federal Standards for Sitting Meteorological Sensors at Airports IO 6550 202, Sitting Criteria for Automated Weather Observing System Adequate Criteria Collect weather data during flight test activities and distribute data to st Desired Criteria Nation Readage Task Wind speed (surface) Adequate 1 knot Desired 0.1 knot Instrumentation Readage Name 8 M Young Wind Monitor AQ, Resolution 0.1 knot, 1 Task Wind direction (surface) Adequate 10 degrees Desired 0.1 degree Instrumentation Readage Name 8 M Young Wind Monitor AQ, Resolution 0.1 degree Instrumentation Package Name 8 M Young Wind Monitor AQ, Resolution 0.1 degree Instrumentation Package Name 8 M Young Wind Monitor AQ, Resolution 0.1 degree Instrumentation Package Name 8 M Young Wind Monitor AQ, Resolution 0.1 degree Instrumentation Package Name 8 M Young Wind Monitor AQ, Resolution 0.1 degree Instrumentation Package Name 8 Sottech EE181 Temperature/RH Probe Resolution 0.1 degree Instrumentation Package Name 9 Sottech EE181 Temperature/RH Probe Resolution 0.01%, 1Hz Task 9 Station pressure Adequate N/A 0.01inHg 0.02inHg Name 0 Valiasla PTB110 barometer Resolution 0.01/H, 1Hz Task 0 Denired 1.01/H (Markage) Name 0 Calculation Resolution 1.01/H, 1Hz Task 0 Mind speed (aloft) Adequate N/A 0.02inHg Name 7 Calculation Resolution 1.01/H, 1Hz Task 0 Wind direction (aloft) Adequate N/A 0.02inHg Name 7 Redometrics SoDAR model 40000 Resolution 1.01 knots, Task 0 Mind direction (aloft) Adequate N/A 0.02inHg Name 7 Redometrics SoDAR model 4000 Resolution 1.01 knots, Task 0 Mind direction (aloft) Adequate N/A 0.02inHg Name 7 Redometrics SoDAR model 4000 Resolution 1.01 knots, Task 0 Mind direction (aloft) Adequate N/A 0.02inHg Name 7 Redometrics SoDAR model 4000 Resolution 1.01 knots, Task 0 Mind direction (aloft) Adequate N/A 0.02inHg Name 7 Redometrics SoDAR model 4000 Resolution 1.01 knots, Task 0 Mind direction (aloft) Adequate N/A 0.02inHg Name 7 Redometrics SoDAR	st Course Description			
FAA Aviation Weather Services, Advisory Circular 00 45H Charge 2 (2019) FCM 54-2019, Federal Standards for Sting Meteorological Sensors at Alirports JOS5602.0C; Sting Otteria for Automated Weather Observing Systems Adequate Criteria NA Desired Criteria NA Instrumentation Package Na Name RM Young Wind Monitor AQ, Resolution 0.1 knot, 1 Task Wind speed (surface) Adequate 1 knot Desired 0.1 knot, 1 Task Wind direction (surface) 0.1 knot, 1 Adequate 10 degrees Desired 0.1 knot, 1 Task Wind direction (surface) 0.1 degree 10 degrees Name RM Young Wind Monitor AQ, Resolution 0.1 degree Instrumentation Package N/A Desired 0.1 degree Name Soottech EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Relative humdity 0.01mig 0.01mig 0.01mig Instrumentation Package N/A Desired 0.1%, 1Hz Task Station pressure Resolution 0.1%, 1Hz Task Outlinkg Desi				
FAA Avision Weather Services, Advisory Circular 00:455H Charge 2 (2019) FCM 54-2019, Federal Standards for Siting Meteorological Sensors at Alirports JOSEGOZO, Standards for Siting Meteorological Sensors at Alirports JOSEGOZO, Standards for Siting Meteorological Sensors at Alirports JOSEGOZO, Stang Circuitar 60 Adequate Criteria Na Intrumentation Package Task Wind speed (purface) Adequate 1 knot Desired 0.1 knot, 1 Task Wind direction (purface) Adequate 0.1 knot, 1 Adequate 10 degrees Desired 0.1 knot, 1 Task Wind direction (purface) Adequate 0.1 degree Name RM Young Wind Monitor AQ Resolution 0.1 degree Instrumentation Package Intermentation Package 0.1 degree 0.1 degree Name Soottech EE181 Temperature/RH Probe Resolution 0.1 degree Task Relative humdity Adequate 0.01inHg 0.01inHg Instrumentation Package N/A Desired 0.1%, IHz Task Station pressure 0.01inHg 0.01inHg Instrument	ference Guidance			
DG55G2DC, Siting Criteria for Automated Weather Observing Systems Adequate Criteria Collect weather data during flight test activities and distribute data to st Desired Criteria NA Instrumentation Package Task Wind speed (surface) Adequate 1 k not Desired 0.1 knot, 1 Instrumentation Package Name PA Young Wind Monitor AQ Resolution 0.1 knot, 1 Task Wind direction (surface) Adequate 10 degrees Desired 0.1 degree Instrumentation Package Name RM Young Wind Monitor AQ Resolution 0.1 degree Instrumentation Package Name SM Young Wind Monitor AQ Resolution 0.1 degree Instrumentation Package Name Soutceh EE181 Temperature/RH Probe Resolution 0.1 degree Name Soutceh EE181 Temperature/RH Probe Resolution 0.01%, 1Hz Task Demity altitude Adequate 0.01mHg Desired 0.01mHg. Task Demity altitude N/A Desired N/A Instrumentation Package Name Calculation Resolution 0.01% (1Hz Task Demity altitude Adequate N/A Desired N/A Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 0.1 knots, Task GP5 location of instrument platforms Adequate N/A Desired N/A Instrumentation Package Name Sadometrics SoDAR model 4000 Resolution 1 degree, Task GP5 location of instrument platforms Adequate N/A Desired N/A Instrumentation Package Name Sadometrics SoDAR model 4000 Resolution 0.1 knots, Task GP5 location of instrument platforms Adequate N/A Desired N/A Instrumentation Package Name Sadometrics SoDAR model 4000 Resolution 0.00001 de Bardemetries NASA POC Vegan F	A Aviation Weather Servic			
Adequate Criteria Collect weather data during flight test activities and distribute data to st Desired Criteria NA Instrumentation Package 1 knot Task Wind speed (purface) Adequate 1 knot Instrumentation Package 0.1 knot Name RM Young Wind Monitor AQ Resolution Task Wind direction (purface) Adequate 10 degrees Desired Instrumentation Package Name Resolution Name RM Young Wind Monitor AQ Resolution Task Temperature 0.1 degree Instrumentation Package Desired 0.1 degree Name Scottech EE181 Temperature/RH Probe Resolution Adequate 0.4 degree 0.1 degree Instrumentation Package N/A Desired 0.1%, 1Hz Task Scottech EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Scottech EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Scottech EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Desired 0.01mHg 0.01mHg Instrumentation Package N/A Desired 0.1%, 1Hz Task Densired 0.01mH			rports	
Desired Criteria NA Instrumentation Package Important (sec) Adequate 1 knot Desired 0.1 knot Name RM Young Wind Monitor AQ Resolution 0.1 knot Task Wind direction (surface) Adequate 10 degrees Desired 0.1 degree Name RM Young Wind Monitor AQ Resolution 0.1 degree Important (sec) Adequate 10 degrees Desired 0.1 degree Important (sec) Name RM Young Wind Monitor AQ Resolution 0.1 degree Task Temperature 0.1 degree Important (sec) Adequate 1 degree Desired 0.1 degree Instrumentation Package Name Socitech EE181 Temperature/RH Probe Resolution 0.1 degree Instrumentation Package N/A Desired 0.01mig Outining Instrumentation Package N/A Desired 0.01mig Important (sec) Name Socitech EE181 Temperature/RH Probe Resolution 0.01mig Instrumentation			livities and distrib	bute data to stakeholders post-flight
Instrumentation Package Tissk Wind speed (surface) Adequate 1 knot Desired 0.1 knot Instrumentation Package Name RM Young Wind Monitor AQ. Resolution 0.1 knot, 1 Task Wind direction (surface) Adequate 10 degrees Desired 0.1 degree Instrumentation Package Name RM Young Wind Monitor AQ. Resolution 0.1 degree Task Temperature Adequate 1 degree Desired 0.1 degree Name Sottech EE181 Temperature/RH Probe Resolution 0.1 degree Name Sottech EE181 Temperature/RH Probe Resolution 0.1 degree Name Sottech EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Relative hundity Adequate N/A Desired 0.1%, 1Hz Task Station pressure Name Sottech EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Station pressure Name Sottech EE181 Temperature/RH Probe Resolution 0.01inHg, 1Hz Task Dentity altitude Adequate 0.01inHg Desired 0.01inHg Instrumentation Package Name Valsala PTB110 barometer Resolution 0.01inHg, Task Dentity altitude Adequate N/A Desired N/A Desired N/A Instrumentation Package Name Calculation Resolution 10ft, 1Hz Task Wind speed (aloft) Adequate N/A Desired N/A Instrumentation Package Name Radometrics SoDAR model 4000 Resolution 0.1 knots, Task GP5 location finstrument platforms Adequate N/A Desired N/A Instrumentation Package Name Radometrics SoDAR model 4000 Resolution 1 degree, Task GP5 location finstrument platforms Adequate N/A Desired N/A Instrumentation Package Name Radometrics SoDAR model 4000 Resolution 1 degree, Task GP5 location finstrument platforms Adequate N/A Desired N/A Instrumentation Package Name Garmin GPSISK-HVS puck and/or NGA site SarNA POC Tegan French Email FAA FOCAL POC Email Field Fiel		and a series of a series of the series of the	and the second section	The residence participation
Task Wind speed (surface) Adequate 1 knot Desired 0.1 knot Instrumentation Package RM Young Wind Monitor AQ Resolution 0.1 knot, 1 Task Wind direction (surface) Adequate 0.1 degree Adequate 10 degrees Desired 0.1 degree Name RM Young Wind Monitor AQ Resolution 0.1 degree Task Temperature 0.1 degree 0.1 degree Adequate 1 degree Desired 0.1 degree Instrumentation Package Name Scottech EE181 Temperature/RH Probe Resolution 0.1 degree Name Scottech EE181 Temperature/RH Probe Resolution 0.1% Intrumentation Adequate N/A Desired 0.1% 1Hz Name Scottech EE181 Temperature/RH Probe Resolution 0.1% Name Scottech EE181 Temperature/RH Probe Resolution 0.1% Adequate N/A Desired 0.01mHg Name Scottech EE181 Temperature/RH Probe Resolution 0.01mHg Name Scottech EE181 Temperature/RH Probe Resolution 0.01mHg Instrumentation Package N/A Desired 0.01mHg Name Valsala PTB110	sired Criteria	NA		
Adequate 1 knot Desired 0.1 knot Instrumentation Package Name RM Young Wind Monitor AQ, Resolution 0.1 knot, 1 Task Wind direction (surface) Adequate 10 degrees Desired 0.1 degree Adequate 10 degrees Desired 0.1 degree Instrumentation Package Name RM Young Wind Monitor AQ, Resolution 0.1 degree Adequate 1 degree Desired 0.1 degree Instrumentation Package Name Sottech EE181 Temperature/RH Probe Resolution 0.1 degree Task Relative hundity Adequate 0.1%, 1Hz Adequate N/A Desired 0.1%, 1Hz Task Station pressure Adequate 0.01mHg Name Scottech EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Station pressure Adequate 0.01mHg Name Scottech EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Station pressure Adequate 0.01mHg Name Valsala PTB110 barrometer Resolution 0.01mHg Task Density altitude Adequate N/A Name Calculation Resolution 0.1 knot	the second se			
Instrumentation Package RM Young Wind Monitor AQ. Resolution 0.1 knot, 1 Task Wind direction (surface) Adequate 10 degrees Desired 0.1 degree Name RM Young Wind Monitor AQ. Resolution 0.1 degree Name RM Young Wind Monitor AQ. Resolution 0.1 degree Name RM Young Wind Monitor AQ. Resolution 0.1 degree Name I degree Desired 0.1 degree Name Scottech EE181 Temperature/RH Probe Resolution 0.1 degree Task Relative humdity Adequate N/A Desired 0.1% Instrumentation Package Name Scottech EE181 Temperature/RH Probe Resolution 0.1 degree Instrumentation Package Name Scottech EE181 Temperature/RH Probe Resolution 0.1% (1Hz Task Relative humdity Adequate N/A Desired 0.1% (1Hz) Task Station pressure Adsquate 0.01inHig Desired 0.001inHig Instrumentation Package Name Valisala PTB110 barometer Resolution 0.01inHig, Task Density altitude Adequate N/A Desired N/A Instrumentation Package Name Calculation Resolution 10ft, 1Hz Task Wind speed (aloft) Adequate N/A Desired N/A Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 0.1 knots, Task GPS location of instrument platforms Adequate N/A Desired N/A Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 1 degree, Task GPS location of instrument platforms Adequate N/A Desired N/A Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 1 degree, Task GPS location of instrument platforms Adequate N/A Desired N/A Instrumentation Package Name Garmin GPS16X+HVS puck and/or NGA site Resolution Alternate NASA POC Tegan French Email FAA FOCAL POC				10 Lange
NameRM Young Wind Monitor AQ.Resolution0.1 knot, 1TaskWind direction (surface)Adequate10 degreesDesired0.1 degreeInstrumentation PackageResolution0.1 degreeNameRM Young Wind Monitor AQ.Resolution0.1 degreeTaskTemperatureAdequate1 degreeDesired0.1 degreeInstrumentation PackageSottech EE181 Temperature/RH ProbeResolution0.1 degreeTaskRelative hundityAdequate0.1%, 1HzAdequateN/ADesired0.1%, 1HzTaskRelative hundity0.1%, 1HzAdequateN/ADesired0.01%, 1HzTaskSottech EE181 Temperature/RH ProbeResolution0.1%, 1HzTaskStation pressure0.01mHgDesired0.01mHgInstrumentation PackageDensiry altitudeN/AInstrumentation PackageNameValisala PTB110 barometerResolution10ft, 1HzTaskDensiry altitudeN/AInstrumentation PackageNameCalculationResolution10ft, 1HzTaskWind speed (aloft)Instrumentation PackageN/ANameRadiometrics SoDAR model 4000Resolution0.1 knots, 1AdequateN/ADesiredN/AInstrumentation PackageSociation of instrument platformsAdequateNameRadiometrics SoDAR model 4000Resolution1 degree, 1TaskGP5 location of instrument platformsAdequate <td< td=""><td></td><td>1 knot</td><td>Desired</td><td>0.1 knot</td></td<>		1 knot	Desired	0.1 knot
Task Wind direction (surface) Adequate 10 degrees Desired 0.1 degree Name RM Young Wind Monitor AQ Resolution 0.1 degree Name RM Young Wind Monitor AQ Resolution 0.1 degree Adequate 1 degree Desired 0.1 degree Adequate 1 degree Desired 0.1 degree Name Scottech EE181 Temperature/RH Probe Resolution 0.1 degree Name Scottech EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Relative humdity Adequate 0.01mHg Instrumentation Package Name Scottech EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Station pressure Adequate 0.01mHg Instrumentation Package N/A Desired 0.01mHg Instrumentation Package Valisala PTB110 barometer Resolution 0.01mHg Instrumentation Package N/A Desired N/A Instrumentation Package N/A Desired N/A Instru		BM Young Wind Monitor AO	Resolution	0.1 knot. 1 Hz
Adequate 10 degrees Desired 0.1 degree Name RM Young Wind Monitor AQ Resolution 0.1 degree Task Temperature Adequate 0.1 degree Name I degree Desired 0.1 degree Instrumentation Package I degree Desired 0.1 degree Name Scottech EE181 Temperature/RH Probe Resolution 0.1 degree Task Relative humdity Adequate 0.1% Instrumentation Package Instrumentation Package 0.01mig Desired 0.1% Name Scottech EE181 Temperature/RH Probe Resolution 0.1%, IHz Task Station pressure Adequate 0.01mig Desired 0.01mig, IHz Instrumentation Package Instrumentation Package Instrumentation 0.01mig, IHz Name Valisala PTB110 barometer Resolution 0.01mig, IHz Instrumentation Package N/A Desired N/A Instrumentation Package N/A Instrumentation 0.01mig, IHz Name Calculation Resolution 0.01mig, IHz Task Wind speed (aloft) Adequate N/A Adequate N/A IDesired N/A Instrumentation		neutropomo ununa sentropola		
Instrumentation Package Name RM Young Wind Monitor AQ Resolution O.1 degree Task Temperature Adequate I degree Name Scottech EE181 Temperature/RH Probe Resolution O.1 degree Instrumentation Package Name Scottech EE181 Temperature/RH Probe Resolution O.1% Intrumentation Package Name Scottech EE181 Temperature/RH Probe Resolution O.1% Intrumentation Package Name Vaisala PTB110 barometer Resolution O.01inHg Instrumentation Package Name Calculation N/A Desired N/A Desired N/A Instrumentation Package Name Resolution O.1% Intrumentation Scottech EE181 Temperature/RH Probe Resolution O.1% Intrumentation Scottech EE181 Temperature/RH Probe Resolution O.1% Intrumentation Scottech EE181 Temperature/RH Probe Resolution O.01inHg ODEIred O.01inHg ODEIred O.01inHg ODEIred N/A Desired N/A Instrumentation Resolution O.1 knots, Task Wind speed (aloft) Adequate N/A Instrumentation Resolution O.1 knots, Task Wind direction (aloft) Adequate N/A Instrumentation Resolution I degree, Task GPS location of instrument platforms Adequate N/A Instrumentation Resolution I degree, Task GPS location of instrument platforms Adequate N/A Instrumentation Resolution I degree, Task AGPS Calculatio N/A Instrumentation Resolution I degree, Task AGPS Location of instrument platforms Adequate N/A Instrumentation Resolution I degree, Task AGPS Location of instrument platforms Adequate N/A Instrumentation Resolution I degree, Task AGPS Location of instrument platforms Adequate N/A Instrumentation Resolution I degree, Task AGPS Location of instrument platforms Adequate N/A Instrumentation Resolution I degree, Resolution I degree, Resolution I degree Resolution			Desired	0.1 degree
Task Temperature Adequate 1 degree Desired 0.1 degree Instrumentation Package Name Scottech EE181 Temperature/RH Probe Resolution 0.1 degree Name Scottech EE181 Temperature/RH Probe Resolution 0.1 degree Adequate N/A Desired 0.1%, 1Hz Adequate N/A Desired 0.1%, 1Hz Task Station pressure Adequate 0.01mHg Instrumentation Package Densired 0.01mHg Desired 0.01mHg Instrumentation Package Valisala PTB110 barometer Resolution 0.01mHg Instrumentation Package N/A Desired N/A Instrumentation Package N/A <td></td> <td>Alacene .</td> <td></td> <td></td>		Alacene .		
Adequate 1 degree Desired 0.1 degree Name Scottech EE181 Temperature/RH Probe Resolution 0.1 degree Task Relative hundity Adequate 0.1 degree NAme N/A Desired 0.1% Instrumentation Package N/A Desired 0.1% Name Scottech EE181 Temperature/RH Probe Resolution 0.1% Instrumentation Package Outlinig Desired 0.01mig Instrumentation Package Valisala PTB110 barometer Resolution 0.01mig Instrumentation Package Valisala PTB110 barometer Resolution 0.01mig Instrumentation Package N/A Desired N/A Instrumentatio	me	RM Young Wind Monitor AQ	Resolution	0.1 degree, 1Hz
Instrumentation Package Name Soutch EE181 Temperature/RH Probe Resolution 0.1 degree Task Relative humdity Adequate N/A Desired 0.1% Instrumentation Package Name Soutch EE181 Temperature/RH Probe Resolution 0.1%, IHz Task Station pressure Adequate 0.01inkig Desired 0.01inkig Desired 0.01inkig Instrumentation Package Name Vaisala PTB110 barometer Resolution 0.01inkig Instrumentation Package Name Calculation Resolution 0.01inkig N/A Desired N/A Desired N/A Desired N/A Instrumentation Package Name Resolution 0.01inkig Instrumentation N/A Instrumentation Resolution 0.01inkig Instrumentation Resolution 0.1 knots, Task Wind speed (aloft) Adequate N/A Instrumentation Resolution 0.1 knots, Task GPS location of instrument platforms Adequate N/A Instrumentation Resolution I degree, I Task GPS location of instrument platforms Adequate N/A Instrumentation Resolution 0.00001 d survey Requirements Name Sarmin GPS16X+HVS pusk and/or NGA site Resolution 0.00001 d survey Requirements NASA POC Luke Bard Email FAA FOCAL POC Email FAA Technical POC Email FAA Technical POC Email	ak (Temperature		
Name Scottech EE181 Temperature/RH Probe Resolution 0.1 degree Task Relative humdity		1 degree	Desired	0.1 degree
Task Relative hundity Adequate N/A Desired 0.1% Instrumentation Package Name Scottech EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Station pressure Adequate 0.01/nig Desired 0.01/nig Adequate 0.01/nig Desired 0.01/nig Desired 0.01/nig Name Valsala PTB110 barometer Resolution 0.01/nig Desired N.01/nig Name Valsala PTB110 barometer Resolution 0.01/nig Desired N/A Instrumentation Package N/A Desired N/A Instrumentation Package Name Calculation Resolution 10ft, 1Hz Task Wind speed (aloft) Adequate N/A Desired N/A Instrumentation Package N/A Instrumentation Package N/A Desired N/A Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 1 degree, task GPS location of instrument platforms Adequate N/		Scottech EE181 Temperature/RH Probe	Resolution	0.1 degree, 1Hz
Adequate N/A Desired 0.1% Instrumentation Package Sottech EE181 Temperature/RH Probe Resolution 0.1%, 1Hz Task Station pressure Adequate 0.001nHg Desired 0.01nHg Instrumentation Package O.01nHg Desired 0.01nHg 0.01nHg Name Valisala PTB110 barometer Resolution 0.01nHg Task Density altitude 0.01nHg 0.01nHg Adequate N/A Desired N/A Instrumentation Package N/A Desired N/A Instrumentation				
Instrumentation Package Name Sottech EE181 Temperature/RH Probe Resolution O.1%, 1Hz Task Station pressure Adequate O.01InHg Instrumentation Package Name Valiala PTB110 barometer Resolution O.01InHg Instrumentation Package Name Calculation Resolution IOft, 1Hz Task Wind speed (aloft) Adequate N/A Desired N/A Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution I degree, 1 Task GPS location of instrument platforms Adequate N/A Desired N/A Instrumentation Package Regultements Adequate N/A Instrumentation Package Regultements Adequate N/A Instrumentation Package Regultements Adequate N/A Instrumentation Package Regultements Name Sadiometrics SoDAR model 4000 Resolution I degree, 1 Task GPS location of instrument platforms Adequate N/A Instrumentation Package Regultements Name Sadiometrics SoDAR model 4000 Resolution I degree, 1 Task GPS location of instrument platforms Adequate N/A Instrumentation Package Name Sadiometrics SoDAR model 4000 Resolution I degree, 1 Task GPS location of instrument platforms Adequate N/A Instrumentation Package Name Sadiometrics SoDAR model 4000 Resolution I degree, 1 Task GPS location of instrument platforms Adequate N/A Instrumentation Package Name Sadiometrics SoDAR model 4000 Resolution I degree, 1 Task GPS location of instrument platforms Adequate N/A Instrumentation Package Name Sadiometrics Adequate N/A Instrumentation Package NA Instrumentation Package NA Instrumentation Package NA Instrumentation Package Resolution I degree, 1 Task Adequate N/A Instrumentation Package NA Instrumentat	equate	N/A	Desired	0.1%
Task Station pressure Adequate 0.01inHg Desired 0.01inHg Instrumentation Package Valsala PTB110 barometer Resolution 0.01inHg Name Valsala PTB110 barometer Resolution 0.01inHg Task Density altitude Adequate N/A Desired N/A Instrumentation Package N/A Desired N/A Instrumentation Package Name Calculation Resolution 10ft, 1Hz Task Wind speed (aloft) Adequate N/A Instrumentation Package Instrumentation Package Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 0.1 knots, Task Wind direction (aloft) Adequate N/A Instrumentation Package N/A Desired N/A Instrument platforms	trumentation Package			
Adequate 0.01inHg Desired 0.01inHg Instrumentation Package Vaisala PTB110 barometer Resolution 0.01inHg Task Density altitude Adequate N/A Desired N/A Instrumentation Package N/A Desired N/A Instrumentation Package Name Calculation Resolution 10ft, 1Hz Task Wind speed (aloft) Adequate N/A Instrumentation Package N/A Desired N/A Instrumentation Package Instrumentation Package N/A Desired N/A Instrumentation Package N/A Desired N/A Instrumentation 0.1 knots, Task Wind direction (aloft) Adequate N/A Instrumentation 1 degree, Name Radiometrics SoDAR model 4000 Resolution 1 degree, 1 degree, Task GPS location of instrument platforms Adequate N/A Instrumentation Package Name Garmin GPS16X-HVS puck and/or NGA site Resolution 0.000001 degree, <td></td> <td>Scottech EE181 Temperature/RH Probe</td> <td>Resolution</td> <td>0.1%, 1Hz</td>		Scottech EE181 Temperature/RH Probe	Resolution	0.1%, 1Hz
Instrumentation Package Valsala PTB110 barometer Resolution 0.01inHg. Task Density altitude Adequate N/A Desired N/A Instrumentation Package Name Calculation Resolution 10ft, 1Hz Task Wind speed (aloft) Adequate N/A Desired N/A Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 0.1 knots, Task Wind direction (aloft) Adequate N/A Desired N/A Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 1 degree, Task Wind direction (aloft) Adequate N/A Desired N/A Instrumentation Package Requirements Adequate N/A Desired N/A Instrumentation Package Requirements Name Garmin GPS16X-HVS puck and/or NGA site Resolution 0.000001 de survey Requirements NASA POC Luke Bard Email FAA FOCAL POC Fean French Email FAA Technical POC Email FAA Technical POC Email	ġ.			
Name Vaisala PTB110 barometer Resolution 0.01InHg, Task Density altitude		0.01inHg	Desired	0.01inHg
Task Density altitude Adequate N/A Desired N/A Instrumentation Package Name Calculation Resolution 10ft, 1Hz Name Calculation Resolution 10ft, 1Hz Task Wind speed (aloft) Instrumentation Package N/A Adequate N/A Desired N/A Instrumentation Package Wind speed (aloft) 0.1 knots, Adequate N/A Desired N/A Instrumentation Package Wind direction (aloft) Adequate N/A Adequate N/A Desired N/A Instrumentation Package Mame Resolution 1 degree, i Name Radiometrics SoDAR model 4000 Resolution 1 degree, i Task GPS location of instrument platforms Adequate N/A Instrumentation Package N/A Desired N/A Instrumentation Package N/A Instrumentation Package N/A Name Garmin GPS16X.HVS puck and/or NGA site Resolution <		Vairala PTR110 barometer	Resolution	0.01ipHg_1Hz
Adequate N/A Desired N/A Instrumentation Package Vana Resolution 10ft, 1Hz Task Wind speed (aloft) Adequate N/A Desired N/A Instrumentation Package N/A Desired N/A Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 0.1 knots, Task Wind direction (aloft) Adequate N/A Instrumentation Package N/A Desired N/A Instrumentation Package N/A Desired N/A Instrumentation Package Radiometrics SoDAR model 4000 Resolution 1 degree, Task GPS location of instrument platforms Adequate N/A Indegree, Name Garmin GPS16X-HVS puck and/or NGA site Resolution 0.00001 degree, Name Garmin GPS16X-HVS puck and/or NGA site Resolution 0.00001 degree, Requirements NA Desired N/A 1 NA FOC Luke Bard Email FAA FOCAL POC Email F	10			
Instrumentation Package Name Calculation Resolution 10ft, 1Hz Task Wind speed (aloft) Adequate N/A Desired N/A Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 0.1 knots, Task Wind direction (aloft) Adequate N/A Desired N/A Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 1 degree, Task GPS location of instrument platforms Adequate N/A Desired N/A Instrumentation Package Name Garmin GPS16X-HVS puck and/or NGA site Resolution 0.00001 de survey Requirements NASA POC Luke Bard Email Alternate NASA POC Tegan French Email FAA FOCAL POC FAA Technical POC Email FAA Technical POC Email	A CONTRACTOR OF THE OWNER OF THE		Desired	N/A
Name Calculation Resolution 10ft, 1Hz Task Wind speed (aloft)				
Adequate N/A Desired N/A Instrumentation Package Radiometrics SoDAR model 4000 Resolution 0.1 knots, Task Wind direction (aloft) Adequate N/A Desired N/A Instrumentation Package N/A Desired N/A Instrumentation Package Radiometrics SoDAR model 4000 Resolution 1 degree, Name Radiometrics SoDAR model 4000 Resolution 1 degree, Task GPS location of instrument platforms Adequate N/A Desired N/A Instrumentation Package N/A Desired N/A Instrumentation Package Sarmin GPS16X-HVS puck and/or NGA site Resolution 0.00001 de survey Requirements NAA Desired N/A Desired Alternate NASA POC Luke Bard Email FAA FOCAL POC Email Email FAA Policy POC Email FAA Technical POC Email Email FAA Technical POC		Calculation	Resolution	10ft, 1Hz
Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 0.1 knots, Task Wind direction (aloft) Adequate N/A Desired N/A Instrumentation Package Name Radiometrics SoDAR model 4000 Resolution 1 degree, Task GPS location of instrument platforms Adequate N/A Desired N/A Instrumentation Package Name Garmin GPS16X-HVS puck and/or NGA site Resolution 0.00001 de survey Requirements NASA POC Luke Bard Email Alternate NASA POC Tegan French Email FAA FOCLA POC Email FAA Technical POC Email FAA Technical POC Email	ġ.	Wind speed (aloft)		
Name Radiometrics SoDAR model 4000 Resolution 0.1 knots, Task Wind direction (aloft)		N/A	Desired	N/A
Task Wind direction (aloft) Adequate N/A Desired N/A Instrumentation Package Name Resolution of Instrument platforms I degree, I Name Realiometrics SoDAR model 4000 Resolution I degree, I Task GPS location of Instrument platforms Adequate N/A Adequate N/A Desired N/A Instrumentation Package N/A Desired N/A Instrumentation Package Survey 0.00001 degree 0.00001 degree Requirements Survey Resolution 0.00001 degree 0.00001 degree NASA POC Luke Bard Email Alternate NASA POC Tegan French Email FAA Policy POC Email FAA Technical POC Email FAA Technical POC		Radiometrics SoDAR model 4000	Recolution	0.1 knots, 2 minutes
Adequate N/A Desired N/A Instrumentation Package Radiometrics SoDAR model 4000 Resolution 1 degree, Task Name Radiometrics SoDAR model 4000 Resolution 1 degree, Task Adequate N/A Desired N/A Instrumentation Package N/A Desired N/A Instrumentation Package Survey Desired N/A Name Garmin GPS16X HVS puck and/or NGA site Resolution 0.00001 desired Survey Survey Email Alternate NASA POC Luke Bard Email FAA FOC Luke Bard Email FAA FocAL POC Email FAA Policy POC Email FAA Technical POC Email Email FAA Technical POC Email	and a second		nassenuel	
Instrumentation Package Radiometrics SoDAR model 4000 Resolution 1 degree, 1 Task GPS location of instrument platforms Adequate N/A Desired N/A Instrumentation Package Name Garmin GPS16XHVS puck and/or NGA site Resolution 0.00001 de survey Requirements NASA POC Luke Bard Email Alternate NASA POC Tegan French Email FAA FOCLA POC Email FAA Tochnical POC Email FAA Tochnical POC Email FAA Tochnical POC Email Email			Desired	N/A
Name Radiometrics SoDAR model 4000 Resolution 1 degree, Task GPS location of instrument platforms Adequate N/A Desired N/A Instrumentation Package N/A Desired N/A Instrumentation Package N/A Name Garmin GPS16X-HVS puck and/or NGA site survey Resolution 0.00001 degraded survey 0.00001 degraded survey Requirements NASA POC Luke Bard Email Alternate NASA POC Fegan French Email FAA FOCAL POC Email FAA FOCAL POC Email FAA Technical POC Email FAA POL PAA Technical POC Email FAA POL PAA Technical POC FAA POL PAA Technical POC Email <td< td=""><td></td><td></td><td></td><td></td></td<>				
Adequate N/A Desired N/A Instrumentation Package Garmin GPS16X HVS puck and/or NGA site Resolution 0.00001 ds Name Garmin GPS16X HVS puck and/or NGA site Resolution 0.00001 ds Requirements NASA POC Luke Bard Email FAA FOCAL POC Tegan French Email FAA FOCAL POC Email FAA FOCAL POC FAA FOCAL POC Email Email FAA FOCAL POC Email Email		Radiometrics SoDAR model 4000	Resolution	1 degree, 2 minutes
Instrumentation Package Name Garmin GPS16X-HVS puck and/or NGA site Resolution 0.00001 ds survey Requirements NASA POC Luke Bard Email Alternate NASA POC Tegan French Email FAA FOCLA POC Email FAA FOCLA POC Email FAA FocLa POC Email Email FAA Technical POC Email		GPS location of instrument platforms		45
Name Garmin GPS16X-HVS puck and/or NGA site Resolution 0.00001 ds Requirements <td></td> <td>N/A</td> <td>Desired</td> <td>N/A</td>		N/A	Desired	N/A
survey Email Requirements Email NASA POC Luke Bard Email Alternate NASA POC Tegan French Email FAA FOCAL POC Email Email FAA FOC, POC Email Email FAA Technical POC Email Email		Garmin GPS 16Y, MVS much and/or MPA die	Resolution	0.00001 degrees
Requirements NASA POC Luke Bard Email Alternate NASA POC Tegan French Email FAA FOCAL POC Email Email FAA FOCAL POC Email Email FAA FOCAL POC Email Email FAA FOCHICE Email Email			nesonation	success self-see
NASA POC Luke Bard Email Alternate NASA POC Tegan French Email FAA FOCAL POC Email FAA Policy POC Email FAA Technical POC Email	guirements		-	
Alternate NASA POC Tegan French Email FAA FOCAL POC Email FAA Policy POC Email FAA Technical POC Email		Luke Bard	Email	
FAA Policy POC Email FAA Technical POC Email				
FAA Technical POC Email	A FOCAL POC		a second according	
FAA Technical POC Email	A Technical POC		Email	
Minimum Equipment List Surface weather stations, at least 1 page and active balload/verticent during field tests				102
Surface weather stations, at least 1 near each active helipad/vertiport during flight tests SoDAR, 1 near each test area with active helipads/veritiports during flight tests	nimum Equipment List	and 1 many and notice belles down to the	harless fileba an er-	

Data Eler	nent Card		۵ 🐼 🚱
Title	Departure Estimated Flight Perform	ance	
Data Element Type	Dynamic		
Scenario	1,2,3	UTE	NA
Metric Type	Vehicle	Maneuver	NA
Phase of Flight	Inflight	Event	Range Flight
Objective			``````````````````````````````````````
Gross Weight, Predicted Hov	for Departure: rre Altitude, Free Air Temperature (FAT), Ene er Torque/Power (10 ft. IGE), Predicted Hover tate of Climb (Dual Motor), Min Rate of Climi	Torque/Power (5	ft. OGE), Hover Energy Flow, Hover
Configuration			
Test Conditions			
Description			
Description			
Notes			
Notes			
Test Course Description			
Test Course Description			
Reference Guidance			
Adequate Criteria			
Desired Criteria			
Instrumentation Package			
Task			
Adequate		Desired	
Instrumentation Package			
Name		Resolution	
Requirements			
NASA POC		Email	
Alternate NASA POC		Email	
FAA FOCAL POC		Email	
FAA Policy POC		Email	
FAA Technical POC		Email	
FAA Technical POC		Email	
Minimum Equipment List			•
Data Collection Requirement	S		

Title Data Element Type Scenario Metric Type Phase of Flight Objective	Climb/Descent/Glide Dynamic 1,2,3		
Scenario Metric Type Phase of Flight			
Metric Type Phase of Flight	1,2,3	UTE	NA
Phase of Flight	Vehicle	Maneuver	NA
-			1.1.1
Objective	Inflight	Event	Range Flight
Intent of these tests is to d	letermine control margins in ord	er to assure that, at any point i	n the aircraft envelope, there is sufficient
	e gusts and allow maneuvering,		
-			us speeds >30 KCAS to evaluate control
	racteristics. General comments		-
Configuration			
configuration			
m and that			
Test Conditions Test Limitations: little to n	- •		
Test Tolerances:	o turbulence		
Knock it Off: >= 10% contr	ol margin romaining		
Description	oi margin remaining		
	maintain altitude van collective	to uppy speed, record control p	ositions at discrete speeds from 30 KIAS up t
-	ective, lateral cyclic, anti-torque		ositions at discrete speeds from 30 KIAS up t
			nd control positions (long curlin collective
		o vary climb/descent rate, reco	rd control positions (long cyclic, collective,
lateral cyclic, anti-torque p	edals)		
Notes			
Test Course Description			
Reference Guidance			
Adquate Criteria	Operational State I: - CHR 1	to 3	
Desired Criteria	-	noderate turbulence and crossy	vinds – CHR 4 to 6
	operational state it, in and i		
Instrumentation Package	_		
Task			
Adequate		Desired	
Instrumentation Package			
Name		Resolution	
Requirements			
NASA POC		Email	
Alternate NASA POC		Email	
FAA FOCAL POC		Email	
FAA Policy POC		Email	
FAA Technical POC		Email	
FAA Technical POC		Email	
Minimum Equipment List			

Title	Critical Azimuth Controllability	(OH58C)	
Data Element Type	Dynamic		
Scenario	1,2,3	UTE	NA
Metric Type	Vehicle	Maneuver	Trimmed Flight Control Positions (TFCP)
Phase of Flight	Inflight	Event	Range Flight
Objective			
Critical Azimuth tests for test techniques. Low-spe control axes for the OH-5 Record GW, HP, OAT.	ed forward, rearward, and sideward fligh	"book" numbers for all a	zimuth capability, and to demonstrate flight
Configuration dependent on UAM vehic			
In Level Flight (IGE) – ma control positions. Evaluat	rol margin remaining on (no calibrated pace vehicle) intain 10 foot skid height, slowly increas	al azimuths. Translate at a	target azimuth (side/front/rear), record a given Azimuth angle, Ų, while monitoring os costeollabilius characteristics
Notes	control margin is reached in any control	axis. capture comments	on controllability characteristics.
Knock it off - 10% control	margin remaining		
Test Course Description			
Flat Surface with referen	ce lines		
Reference Guidance			
§27/29.143 Controllabilit	y & Maneuverability		
Advisory Circular 27-1B C	ertification of Normal Category Rotorcraf	ťt	
Advisory Circular 29-2C C	ertification of Transport Category Rotorcr	aft	

ask	Weight		
dequate		Desired	
nstrumentation Package			
lame	Gross Weight (GW)	Resolution	+/-10 lbs
ask			
dequate		Desired	
nstrumentation Package			
lame	Azimuth (ψ)	Resolution	+/-1°
ask			
dequate		Desired	
nstrumentation Package	-		
ame	Center of Gravity (cg)	Resolution	
ask	True Airspeed (KTAS)		
dequate		Desired	
strumentation Package			
ame	Groundspeed	Resolution	+/-1 knot
ask	Inceptor		
dequate		Desired	
strumentation Package			-6
lame	Longitudinal Cyclic	Resolution	+/-0.5%
ask	Inceptor		
dequate		Desired	
strumentation Package			
ame	Lateral Cyclic	Resolution	+/-0.5%
isk	Inceptor		
dequate		Desired	
strumentation Package			
ame	Anti-torque pedal	Resolution	+/-0.5%
sk	Inceptor		
dequate		Desired	
strumentation Package			
ame	Collective	Resolution	+/-0.5%
isk	Power		
dequate		Desired	
strumentation Package	1	e conce	
ame	Torque (Q)	Resolution	+/-1%
ask	Winds		
dequate		Desired	N
strumentation Package		bestred	
ame	winds at 10 feet	Resolution	+/-1 knot
equirements		The solution	·, · · ·····
IASA POC		Email	
Iternate NASA POC		Email	
AA FOCAL POC	-	Email	
AA POLAL POL AA Policy POC	David Webber	Email	david.webber@faa.gov
AA Policy POC AA Technical POC		Email	uaviu.webber@raa.gov
AA Technical POC AA Technical POC	David Webber		devid webber Of
	David Webber	Email	david.webber@faa.gov
linimum Equipment List			

Title	Departure Estimate	ed Flight Performance		
Data Element Type	Dynamic	_		
Scenario	1,2,3	UTE	NA	
Metric Type	Vehicle	Maneuver	NA	
Phase of Flight	Inflight	Event	Range Flight	
Objective				
Estimate Flight Performa	nce for Departure:			
Max Torque/Power Availa	ble, Velocity Never to Excee	d (VNE) - Indicated Air Speed (IAS),	Cruise Speed (kts.), Cruise Torque/Pow	/er
		Speed, Max Range Torque/Power, N	Nax Endurance, (Indicated Air Speed (IA	s)),
Max Endurance Torque/Po	ower			
Configuration				
Test Conditions				
Description				
Al-A				
Notes				
Notes Test Course Description				
Test Course Description				
Test Course Description Reference Guidance				
Test Course Description Reference Guidance Adequate Criteria				
Test Course Description Reference Guidance Adequate Criteria Desired Criteria				
Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package				
Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task		Decied		
Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate		Desired		
Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package		Desired		
Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name				
Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements		Resolution		
Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC				
Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC		Resolution		
Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC		Resolution Email Email Email		
Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA Policy POC		Resolution Email Email		
Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name		Resolution Email Email Email Email		

Title	Dynamic Stability		
Data Element Type	Dynamic		
Scenario	1.2.3	UTE	NA
Metric Type	Vehicle	Maneuver	NA
		Event	
Phase of Flight	Inflight	Event	Range Flight
Objective	an the Oly FOC and a Flight Ch		with an alfin in the fallowed by abaranti
	-		with specific inputs, followed by observation
			be evaluated. Natural Gust observations w
	eather conditions permit. Cit	sed loop, mission related, testing w	ill occur with the conduct of UAM Task
Elements. Configuration			
Test Conditions			
	no disturbance for open loop	tests; natural turbulence for natura	gust observations
Test Tolerances:	no disturbance for open loop	tests, natural turbulence for natura	gust observations
Knock it Off:			
Description			
Open Loop tests			
Stabilize at trim Airspee			
		bserve vertical rate (w) response	
	step input (δlong) and obser		
Phugoid – change airspe			
		return cyclic to neutral and observe	response
	h impulse, observe response	return cyclic to neutral and observe	response
Notes	h impulse, observe response	return cyclic to neutral and observe	response
Notes	h impulse, observe response	return cyclic to neutral and observe	response
Short Period – insert pito Notes Caution- Recovery from Test Course Description	h impulse, observe response	return cyclic to neutral and observe	response
Notes Caution- Recovery from (h impulse, observe response	return cyclic to neutral and observe	response
Notes Caution- Recovery from (h impulse, observe response	return cyclic to neutral and observe	response
Notes Caution- Recovery from Test Course Description	h impulse, observe response	return cyclic to neutral and observe	response
Notes Caution- Recovery from I Test Course Description Reference Guidance	h impulse, observe response unusual attitude		response
Notes Caution- Recovery from (Test Course Description Reference Guidance Adequate Criteria	h impulse, observe response unusual attitude Operational State I: - C	HR 1 to 3	
Notes Caution- Recovery from i Test Course Description Reference Guidance Adequate Criteria Desired Criteria	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III		
Notes Caution- Recovery from i Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III	HR 1 to 3	
Notes Caution- Recovery from (Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III	HR 1 to 3 and moderate turbulence and crossy	
Notes Caution- Recovery from (Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III	HR 1 to 3	
Notes Caution- Recovery from i Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III	HR 1 to 3 and moderate turbulence and crosss Desired	
Notes Caution- Recovery from i Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III	HR 1 to 3 and moderate turbulence and crossy	
Notes Caution- Recovery from i Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III	HR 1 to 3 and moderate turbulence and crosss Desired Resolution	
Notes Caution- Recovery from i Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III	HR 1 to 3 and moderate turbulence and crosss Desired Resolution Email	
Notes Caution- Recovery from in Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III	HR 1 to 3 and moderate turbulence and crossy Desired Resolution Email Email	
Notes Caution- Recovery from of Test Course Description Reference Guidance Adequate Criteria Desired Criteria Desired Criteria Instrumentation Package Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III	HR 1 to 3 and moderate turbulence and crosss Desired Resolution Email	
Notes Caution- Recovery from of Test Course Description Reference Guidance Adequate Criteria Desired Criteria Desired Criteria Instrumentation Packago Naka Adequate Instrumentation Packago Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III	HR 1 to 3 and moderate turbulence and crossy Desired Resolution Email Email	
Notes Caution- Recovery from of Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Instrumentation Package Instrumentation Package NASA POC Alternate NASA POC FAA FOCAL POC FAA POIcy POC	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III	HR 1 to 3 and moderate turbulence and crossy Desired Resolution Email Email Email	
Notes Caution- Recovery from i Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC	h impulse, observe response unusual attitude Operational State I: - C Operational State II, III	HR 1 to 3 and moderate turbulence and crosss Desired Resolution Email Email Email Email	

Title	Hover Power Margin (I	GE/OGE) Free Flight Meth	od
Data Element Type	Dynamic		
Scenario	1,2,3	UTE	NA
Metric Type	Vehicle	Maneuver	NA
Phase of Flight	Inflight	Event	Range Flight
Objective			
appropriate engine/moto other). Make note of par- transition height from IGE IGE/OGE hover, and to de and Hover Ceiling.	r parameters on the flight test card ameters that can be directly, or indi to OGE for a given vehicle design.	(Structural, Temperature, Engine rectly, controlled by the pilot, and Power Margin tests for the OH-5	g envelope and incorporate provisions to reco /EPU component Speeds, Energy discharge r those limit parameters that cannot. Determi 8C will be used to validate "book" numbers f ompare measured performance to Hover Ch
Configuration			
Test Conditions			
Test Limitations: <3 knots	5		
Test Tolerances:			
Knock it Off: any engine a	anomalies		
Hover IGE – OH-58C – Ble NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re ndustry practice for captu	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE	ta (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet	mize cyclic/anti-torque inputs, fix collective a lakes sense to pick up a few skid heights ely small diameter props/rotors? er) =60 foot skid height what is typical e a vertical ascent, climb avoiding H-V and
Hover IGE – OH-58C – Ble NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for capti reestablish? Other?	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE	ta (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet	akes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height what is typical
NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE	ta (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet	akes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height what is typical
Hover IGE – OH-58C – Ble NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for captor reestablish? Other? Notes Test Course Description	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE	ta (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet	akes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height what is typical
Hover IGE – OH-58C – Ble NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for captor reestablish? Other? Notes Test Course Description	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE	ta (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet	akes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height what is typical
Hover IGE – OH-58C – Ble NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for captor reestablish? Other? Notes Test Course Description Reference Guidance	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE	ta (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak	akes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height what is typical
Hover IGE – OH-58C – Ble NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for captor reestablish? Other? Notes Test Course Description Reference Guidance Adequate Criteria	al translation, and record engine da foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 t	ta (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and
Hover IGE – OH-58C – Bie NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for capti reestabilish? Other? Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 t Operational State II, III and r	a (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and
Hover IGE – OH-58C – Bie NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for capti reestabilish? Other? Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 t Operational State II, III and r	a (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and
Hover IGE – OH-58C – Ble NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for captor reestablish? Other? Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 t Operational State II, III and r	a (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and
Hover IGE – OH-58C – Ble NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for captor reestablish? Other? Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 Operational State II, III and r	a (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak o 3 moderate turbulence and crosswi	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and
Hover IGE – OH-58C – Bie NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for captor reestablish? Other? Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 Operational State II, III and r	a (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak o 3 moderate turbulence and crosswi	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and
Hover IGE – OH-58C – Bie NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for capti reestablish? Other? Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 Operational State II, III and r	ta (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak o 3 moderate turbulence and crosswi	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and
Hover IGE – OH-58C – Bie NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for capti reestablish? Other? Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 Operational State II, III and r	ta (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak o 3 moderate turbulence and crosswi	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and
tover IGE – OH-58C – Bie NR – stabilize with minim- between 2 and 10(?) as a tover OGE – OH-58C - Re ndustry practice for capti- restablish? Other? Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 Operational State II, III and r	a (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak o 3 moderate turbulence and crosswi Desired Resolution	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and
Hover IGE – OH-58C – Bie NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for capti reestablish? Other? Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 Operational State II, III and r	ta (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak o 3 moderate turbulence and crosswi Desired Resolution Email	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and
Hover IGE – OH-58C – Bie NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for capti reestabilish? Other? Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 Operational State II, III and r	a (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak o 3 moderate turbulence and crosswi Desired Resolution Email Email	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and
Hover IGE – OH-58C – Ble NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for capti reestablish? Other? Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Desired Criteria Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA Policy POC	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 Operational State II, III and r	a (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak o 3 moderate turbulence and crosswi Desired Resolution Email Email Email	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and
Hover IGE – OH-58C – Ble NR – stabilize with minim between 2 and 10(?) as a Hover OGE – OH-58C - Re industry practice for captor reestablish? Other? Notes	al translation, and record engine dat foundation – given the fact that a l speat above test technique at OGE uring OGE hover in a SE helicopter? Operational State I: - CHR 1 Operational State II, III and r	a (Q, NR, TOT, N1, FF) I think it m ot of participants will have relativ (defined as 2 times Rotor Diamet Monitor engine then simply mak o 3 moderate turbulence and crosswi Desired Resolution Email Email Email Email	takes sense to pick up a few skid heights ely small diameter props/rotors? er) ≈60 foot skid height — - what is typical e a vertical ascent, climb avoiding H-V and

itle	Landing Handling Quality		
	Static		
Data Element Type Scenario	1	UTE	
Metric Type	1 Vehicle	Maneuver	Landing
Phase of Flight	Inflight	Event	Range Flight
Objective	mingin	Even	Nange Fight
Evaluate vehicle controllabilit check vehicle dynamics when moderately aggressive many Configuration Configuration: Landing Appro	ty and stability during the VTOL aircraft task n the pilot is forced into tight compensatory 1 her up to what would be considered safe in a vach configuration (gear/flaps down)	racking behavior. Th	e task is designed to maneuver the vehicle
Test Conditions	and levels		
 Light and moderate turbule Winds up to maximum ross 	nce levels overy headwind and 17 knots crosswind fron	the critical direction	
 AUW or maximum permissi 		the critical direction	
Description	In the second seco		
arrest sink rate momentarily 2. Accomplish a gentle landin 3. Final position shall be the p elements of the landing gear Notes	f greater than 10 ft., maintain an essentially to make last minute corrections before touc g with a smooth continuous descent, with n position that existed at touchdown. It is not a have made contact with the pad.	hdown. o objectionable oscilla cceptable to adjust th	tions e aircraft position and heading after all
	ir vehicle control response characteristics to p		•
	le in this task or if the loss of sensor feedbad	k results in a change i	n response type, the air vehicle shall be
assessed in each control resp	onse type for this task.		
Test Course Description	using the ADS-33E hover course with the de	innated badles activ	though directly under the effective as in the
	using the ADS-33E nover course with the de s at the hover point. Refer to figure XX for an	0	t being directly under the reference point or
Reference Guidance	s at the nover point. Neter to figure XX for an	example course.	
FAR Part 21.17B			
FAR Part 27 (23.2135) Control			
FAR Part 27 (23, 2145) Stabili			
FAR Part 27 (23.2145) Stabili ADS-33 Pirouette Task			
ADS-33 Pirouette Task			
		r OH-58C): CHR 1 to 3	· · · · · · · · · · · · · · · · · · ·
ADS-33 Pirouette Task ADS-33 Landing Task	ty	-	· · · · · · · · · · · · · · · · · · ·
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria	ty HQ Evaluation Metrics (reference only fo	-	· · · · · · · · · · · · · · · · · · ·
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria	ty HQ Evaluation Metrics (reference only fo	ets: CHR 4 to 6	
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tarp Once altitude is below 10 ft., complete th	ets: CHR 4 to 6	
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tarp	e landing within X sec	onds
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tarp Once altitude is below 10 ft., complete th Ex. 10 seconds	e landing within X sec	onds
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tarp Once altitude is below 10 ft., complete th	ets: CHR 4 to 6 e landing within X sec Desired Resolution	onds Ex. 10 seconds Ex. 3 feet
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tarp Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of	ets: CHR 4 to 6 e landing within X sec Desired Resolution	onds Ex. 10 seconds Ex. 3 feet ence point
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refer	onds Ex. 10 seconds Ex. 3 feet
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tarp Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refen Desired	onds Ex. 10 seconds Ex. 3 feet ence point
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refer Desired Resolution	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the o	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refer Desired Resolution lesignated reference	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Adequate	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refer Desired Resolution	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the o	ets: CHR 4 to 6 elanding within X sec Desired Resolution the designated refer Desired Resolution lesignated reference Desired	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the c Ex. 3 feet	ets: CHR 4 to 6 elanding within X sec Desired Resolution the designated refer Desired Resolution lesignated reference Desired Resolution Resolution	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point Ex. 0.5 foot
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the of Ex. 3 feet Attain an aircraft heading at touchdown t	ets: CHR 4 to 6 elanding within X sec Desired Resolution the designated refer Desired Resolution elsignated reference Desired Resolution that is aligned with the	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point Ex. 0.5 foot reference heading within ±X degrees
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the c Ex. 3 feet	ets: CHR 4 to 6 elanding within X sec Desired Resolution the designated refer Desired Resolution lesignated reference Desired Resolution Resolution	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point Ex. 0.5 foot
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Instrumentation Package Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the of Ex. 3 feet Attain an aircraft heading at touchdown t	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refer Desired Resolution lesignated reference Desired Resolution that is aligned with the Desired	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point Ex. 0.5 foot reference heading within ±X degrees
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Instrumentation Package Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the of Ex. 3 feet Attain an aircraft heading at touchdown t	ets: CHR 4 to 6 elanding within X sec Desired Resolution the designated refer Desired Resolution elsignated reference Desired Resolution that is aligned with the	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point Ex. 0.5 foot reference heading within ±X degrees
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Instrumentation Package Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the of Ex. 3 feet Attain an aircraft heading at touchdown t	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refer Desired Resolution lesignated reference Desired Resolution hat is aligned with the Desired Resolution	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point Ex. 0.5 foot reference heading within ±X degrees
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the of Ex. 3 feet Attain an aircraft heading at touchdown t	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refer esignated reference Desired Resolution lesignated reference Resolution hat is aligned with the Desired Resolution tesined	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point Ex. 0.5 foot reference heading within ±X degrees
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the of Ex. 3 feet Attain an aircraft heading at touchdown t	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refer esignated reference Desired Resolution tat is aligned with the Desired Resolution tat is aligned with the Desired Resolution tesignated reference Resolution the designated reference the designated re	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point Ex. 0.5 foot reference heading within ±X degrees
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the of Ex. 3 feet Attain an aircraft heading at touchdown t	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refer Resolution lesignated reference Desired Resolution hat is aligned with the Desired Resolution the designated reference the designated r	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point Ex. 0.5 foot reference heading within ±X degrees
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Requirements Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA Policy POC	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the of Ex. 3 feet Attain an aircraft heading at touchdown t	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refer Resolution lesignated reference Desired Resolution hat is aligned with the Desired Resolution the Email Email Email Email	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point Ex. 0.5 foot reference heading within ±X degrees
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA Technical POC	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the of Ex. 3 feet Attain an aircraft heading at touchdown t	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refer Resolution lesignated reference Desired Resolution hat is aligned with the Desired Resolution Email Email Email Email Email	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point Ex. 0.5 foot reference heading within ±X degrees
ADS-33 Pirouette Task ADS-33 Landing Task Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Task Adequate Instrumentation Package Name Requirements Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA Policy POC	ty HQ Evaluation Metrics (reference only fo Moderate turbulence and crosswinds tar Once altitude is below 10 ft., complete th Ex. 10 seconds Ex. Flight Tracking Touch down within ±X ft. longitudinally of Ex. 3 feet Touch down within ±X ft. laterally of the of Ex. 3 feet Attain an aircraft heading at touchdown t	ets: CHR 4 to 6 e landing within X sec Desired Resolution the designated refer Resolution lesignated reference Desired Resolution hat is aligned with the Desired Resolution the Email Email Email Email	onds Ex. 10 seconds Ex. 3 feet ence point Ex. 1 foot point Ex. 0.5 foot reference heading within ±X degrees

Title	Lateral Reposition (varied wi	nds)	
Data Element Type	Dynamic		
Scenario	1,2,3	UTE	xx
Metric Type	Vehicle	Maneuver	Reposition
Phase of Flight	Inflight	Event	Range Flight
Objective		Lient	hange man
objective			
Configuration			
Test Conditions			
Description			
Notes	Custom Decise (Decedation		
	System Design/Description		
 Inceptor Design Pilot Displays/Flight Re 	aference parameters		
 Flight Guidance Design 			
 Flight Envelope/Limita 			
Test Course Description			
	nall be oriented approximately 45 degrees	relative to the heading o	f the aircraft. The target hover point will
	Helipad from which aircraft deviations ca	-	
Reference Guidance			
Adequate Criteria	HQ Evaluation Metrics (reference o	nly for OH-58C): CHR 1 to	3
Desired Criteria			5
	Moderate turbulence and crosswin	ds targets: CHR 4 to 6	
Instrumentation Packag			
Task	Maintain lateral-longitudinal posit		
Adequate	6 ft.	Desired	3 ft.
Instrumentation Packag	e		
Name		Resolution	
Task	Maintain altitude within:		
Task Adequate	Maintain altitude within: 8 ft.	Desired	5 ft.
	8 ft.	Desired	5 ft.
Adequate	8 ft.	Desired	Sft.
Adequate Instrumentation Packag	8 ft.		5 ft.
Adequate Instrumentation Packag Name	8 ft. e Maintain heading within:		
Adequate Instrumentation Packag Name Task	8 ft. e Maintain heading within: 10 degrees	Resolution	5 ft. 5 degrees
Adequate Instrumentation Packag Name Task Adequate	8 ft. e Maintain heading within: 10 degrees	Resolution	
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag	8 ft. e Maintain heading within: 10 degrees	Resolution Desired	
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within:	Resolution Desired	5 degrees
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec.	Resolution Desired Resolution	
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec.	Resolution Desired Resolution	5 degrees
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec.	Resolution Desired Resolution Desired	5 degrees
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Adequate Instrumentation Packag Name Task	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec. e Maintain stabilized hover:	Resolution Desired Resolution Desired Resolution Resolution	5 degrees 5 sec.
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec. e Maintain stabilized hover: >30 sec.	Resolution Desired Resolution Desired	5 degrees
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec. e Maintain stabilized hover: >30 sec.	Resolution Desired Resolution Resolution Resolution Desired	5 degrees 5 sec.
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Adequate Instrumentation Packag Name	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec. e Maintain stabilized hover: >30 sec.	Resolution Desired Resolution Desired Resolution Resolution	5 degrees 5 sec.
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Requirements	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec. e Maintain stabilized hover: >30 sec.	Resolution Desired Resolution Resolution Resolution Resolution Resolution Resolution	5 degrees 5 sec.
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Requirements NASA POC	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec. e Maintain stabilized hover: >30 sec.	Resolution Desired Resolution Resolution Resolution Resolution Resolution Email	5 degrees 5 sec.
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Requirements NASA POC Alternate NASA POC	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec. e Maintain stabilized hover: >30 sec.	Resolution Desired Resolution Resolution Resolution Resolution Resolution Resolution	5 degrees 5 sec.
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Requirements NASA POC	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec. e Maintain stabilized hover: >30 sec.	Resolution Desired Resolution Resolution Resolution Resolution Resolution Email	5 degrees 5 sec.
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec. e Maintain stabilized hover: >30 sec.	Resolution Desired Resolution Resolution Resolution Resolution Resolution Email Email	5 degrees 5 sec.
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Requirements NASA POC Alternate NASA POC	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec. e Maintain stabilized hover: >30 sec.	Resolution Desired Resolution Desired Resolution Resolution Resolution Email Email Email	5 degrees 5 sec.
Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Task Adequate Instrumentation Packag Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA POlicy POC	8 ft. e Maintain heading within: 10 degrees e Attain stabilized hover within: 8 sec. e Maintain stabilized hover: >30 sec.	Resolution Desired Resolution Desired Resolution Resolution Resolution Email Email Email Email Email	5 degrees 5 sec.

Title	ment Card		
	Level Flight		
Data Element Type	Dynamic		
Scenario	1,2,3	UTE	NA
Metric Type	Vehicle Inflight	Maneuver	NA Banga Eliabt
Phase of Flight Objective	innight	Event	Range Flight
Vmax endurance). Record a Level Flight Performance te and to demonstrate flight te		ect these speeds (Al book" numbers for l	titude, Temperature, battery health, other). evel flight performance at various airspeeds,
Configuration			
Test Conditions			
Test Limitations: little to no	turbulence		
Test Tolerances: Knock it Off:			
Description			
Repeat at different airspeed the altitude of interest (no r Notes		Rotor Speeds (NR).	proposal will be to limit Dry Run testing to
Test Course Description			
Reference Guidance			
Adequate Criteria	Operational State I: - CHR 1 to 3		
	Operational State II, III and moderate tur	bulence and crosswi	inds – CHR 4 to 6
Desired Criteria			
Desired Criteria			
Instrumentation Package		Desired	
Instrumentation Package Task Adequate Instrumentation Package			
Instrumentation Package Task Adequate		Desired Resolution	
Instrumentation Package Task Adequate Instrumentation Package Name Requirements			
Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC		Resolution Email	
Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC		Resolution Email Email	
Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC		Resolution Email Email Email	
Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA POLicy POC		Resolution Email Email Email Email	
Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC		Resolution Email Email Email	

Title	Maneuverability		
Data Element Type	Dynamic		
Scenario	1,2,3	UTE	NA
	Vehicle		NA
Metric Type		Maneuver	Denne Filela
Phase of Flight	Inflight	Event	Range Flight
Objective			
			conducted to demonstrate flight test
-	sample of rotorcraft data to be o	compared to UAM aircraft charact	enstics.
Configuration			
Test Conditions			
ref: Aft CG			
Test Limitations: little to	no disturbance		
Test Tolerances:			
Knock it Off: φ > 70°			
Description			
Windup Turn (WUT)			
Windup Turn (WUT) Stabilize at trim Airspeed		ion, perform slow Windup Turn (W	/UT) to 2gs (60° φ) and record cyclic positi
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° d		ion, perform slow Windup Turn (W	/UT) to 2gs (60° φ) and record cyclic posit
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° d Notes	φ – observe FS vs NZ.	ion, perform slow Windup Turn (W	/UT) to 2gs (60° $\varphi)$ and record cyclic positi
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° d Notes	φ – observe FS vs NZ.	ion, perform slow Windup Turn (W	/UT) to 2gs (60° φ) and record cyclic positi
Windup Turn (WUT)	φ – observe FS vs NZ.	ion, perform slow Windup Turn (W	/UT) to 2gs (60° φ) and record cyclic positi
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° d Notes Caution- Avoid unloading	φ – observe FS vs NZ.	ion, perform slow Windup Turn (W	/UT) to 2gs (60° φ) and record cyclic positi
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading	φ – observe FS vs NZ.	ion, perform slow Windup Turn (W	/UT) to 2gs (60° φ) and record cyclic positi
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description	φ – observe FS vs NZ.	ion, perform slow Windup Turn (W	/UT) to 2gs (60° φ) and record cyclic positi
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description	φ – observe FS vs NZ.		/UT) to 2gs (60° φ) and record cyclic positi
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria	φ – observe FS vs NZ. ; (<+0.5g limit) Operational State I: - CHR		
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria Desired Criteria	 observe FS vs NZ. (<+0.5g limit) Operational State I: - CHR Operational State II, III and 	1 to 3	
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	 observe FS vs NZ. (<+0.5g limit) Operational State I: - CHR Operational State II, III and 	1 to 3	
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task	 observe FS vs NZ. (+0.5g limit) Operational State I: - CHR Operational State II, III and 	1 to 3	
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate	φ – observe FS vs NZ. ; (<+0.5g limit) Operational State I: - CHR Operational State II, III and	1 to 3 d moderate turbulence and crossw	
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	φ – observe FS vs NZ. ; (<+0.5g limit) Operational State I: - CHR Operational State II, III and	1 to 3 d moderate turbulence and crossw	
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name	φ – observe FS vs NZ. ; (<+0.5g limit) Operational State I: - CHR Operational State II, III and	1 to 3 d moderate turbulence and crossw Desired	
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements	φ – observe FS vs NZ. ; (<+0.5g limit) Operational State I: - CHR Operational State II, III and	1 to 3 d moderate turbulence and crossw Desired Resolution	
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC	φ – observe FS vs NZ. ; (<+0.5g limit) Operational State I: - CHR Operational State II, III and	1 to 3 d moderate turbulence and crossw Desired Resolution Email	
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	φ – observe FS vs NZ. ; (<+0.5g limit) Operational State I: - CHR Operational State II, III and	1 to 3 d moderate turbulence and crossw Desired Resolution Email Email	
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	φ – observe FS vs NZ. ; (<+0.5g limit) Operational State I: - CHR Operational State II, III and	1 to 3 d moderate turbulence and crossw Desired Resolution Email Email Email	
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA POIcy POC	φ – observe FS vs NZ. ; (<+0.5g limit) Operational State I: - CHR Operational State II, III and	1 to 3 d moderate turbulence and crossw Desired Resolution Email Email Email Email Email	
Windup Turn (WUT) Stabilize at trim Airspeed at 15°, 30°, 45°, and 60° of Notes Caution- Avoid unloading Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC	φ – observe FS vs NZ. ; (<+0.5g limit) Operational State I: - CHR Operational State II, III and	1 to 3 d moderate turbulence and crossw Desired Resolution Email Email Email	

Title	Partial Power & Glid	de	
Data Element Type	Dynamic		
Scenario	1,2,3	UTE	NA
Metric Type	Vehicle	Maneuver	Climb.Descent.Glide
Phase of Flight	Inflight	Event	Range Flight
Objective	iningite	Lven	Nangeringin
performance parameter angle). Record any envir other).	s (e.g., VY, VTOSS, VAPP, Vm onmental or system factors tl ght Performance tests for the	in-I, Vfor min Rate of descent, Vfor hat affect these speeds (Altitude, Te	erformance charts. Determine key min angle of descent, Vmax Glide, Glide mperature, battery health, failure scenario bok" numbers for performance at various
Determine test GW, HPO establish test airspeed a			speed at ~200ft above test band, reduce Q P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description		Oft, record data (Q, NR, KIAS, and H	
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description	t reduced Q. Hack at HPO +50	Oft, record data (Q, NR, KIAS, and H	
establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance	t reduced Q. Hack at HPO +50 weeds (all key parameters), se	Oft, record data (Q, NR, KIAS, and H everal Gross Weights	
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance Adequate Criteria	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C	Oft, record data (Q, NR, KIAS, and H weral Gross Weights	P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C Operational State II, III	Oft, record data (Q, NR, KIAS, and H everal Gross Weights	P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C Operational State II, III	Oft, record data (Q, NR, KIAS, and H weral Gross Weights	P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C Operational State II, III	Oft, record data (Q, NR, KIAS, and H everal Gross Weights HR 1 to 3 and moderate turbulence and cross	P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C Operational State II, III	Oft, record data (Q, NR, KIAS, and H weral Gross Weights	P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C Operational State II, III	Oft, record data (Q, NR, KIAS, and H everal Gross Weights HR 1 to 3 and moderate turbulence and cross Desired	P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C Operational State II, III	Oft, record data (Q, NR, KIAS, and H everal Gross Weights HR 1 to 3 and moderate turbulence and cross	P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C Operational State II, III	Oft, record data (Q, NR, KIAS, and H everal Gross Weights HR 1 to 3 and moderate turbulence and cross Desired Resolution	P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C Operational State II, III	Oft, record data (Q, NR, KIAS, and H everal Gross Weights HR 1 to 3 and moderate turbulence and cross Desired Resolution Email	P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C Operational State II, III	Oft, record data (Q, NR, KIAS, and H everal Gross Weights HR 1 to 3 and moderate turbulence and cross Desired Resolution Email Email	P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C Operational State II, III	Oft, record data (Q, NR, KIAS, and H everal Gross Weights HR 1 to 3 and moderate turbulence and cross Desired Resolution Email	P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C Operational State II, III	Oft, record data (Q, NR, KIAS, and H everal Gross Weights HR 1 to 3 and moderate turbulence and cross Desired Resolution Email Email	P), take several time hacks/records with a f
Determine test GW, HPC establish test airspeed a hack at HPO -500ft Repeat at different airsp Notes Test Course Description	t reduced Q. Hack at HPO +50 weeds (all key parameters), se Operational State I: - C Operational State II, III	Oft, record data (Q, NR, KIAS, and H everal Gross Weights HR 1 to 3 and moderate turbulence and cross Desired Resolution Email Email Email	P), take several time hacks/records with a f

Title	Precision Hover FTP Tabl	e 29	
Data Element Type	Dynamic		
Scenario	1,2,3	UTE	xx
Metric Type	Vehicle	Maneuver	Hover
Phase of Flight	Inflight	Event	Range Flight
Objective			
Check ability to maintain Check for inceptor contri Identify pilot-induced or			erate wind from the most critical direction.
Configuration			
Configuration: Landing Ap	proach configuration (gear/flaps o	lown)	
Test Conditions			
	or maximum permissible hover we	ight if lower)	
1. Calm winds			
2. Maximum recovery hea			
		AM certification requirement")	background – there is an open question as to
	cal azimuth with light turbulence		
Description			
 The ground track should hover point. For capturing 	be such that the aircraft will arrive g the hover point the pilot should a	e over the target hover point af apply a smooth deceleration.	ion Point altitude, whichever is greater. er performing a 45 degree translation toward
Initiate the maneuver at The ground track should hover point. For capturin The pilot shall attempt t	be such that the aircraft will arrive g the hover point the pilot should a o attain a stabilized hover within t ed hover, the pilot shall maintain a	e over the target hover point af apply a smooth deceleration. he specified performance times	
 Initiate the maneuver at The ground track should hover point. For capturing The pilot shall attempt t After capturing a stabilized 	be such that the aircraft will arrive g the hover point the pilot should a o attain a stabilized hover within t ed hover, the pilot shall maintain a	e over the target hover point af apply a smooth deceleration. he specified performance times	er performing a 45 degree translation toward after the initiation of the deceleration.
 Initiate the maneuver at The ground track should hover point. For capturing The pilot shall attempt t After capturing a stabiliz desired position tolerance Notes 	be such that the aircraft will arrive g the hover point the pilot should a o attain a stabilized hover within t ed hover, the pilot shall maintain a	e over the target hover point aft apply a smooth deceleration. he specified performance times a stabilized hover for 30 second	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified
Initiate the maneuver at The ground track should hover point. For capturin The pilot shall attempt t After capturing a stabiliz desired position tolerance Notes NORMAL OPS (No degrade	be such that the aircraft will arrive g the hover point the pilot should a o attain a stabilized hover within t ed hover, the pilot shall maintain a es.	e over the target hover point af apply a smooth deceleration. he specified performance times a stabilized hover for 30 second o Degraded Visual Environmen	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified
Initiate the maneuver at The ground track should hover point. For capturing The pilot shall attempt t After capturing a stabiliz desired position tolerance Notes NORMAL OPS (No degrade OH-58C utilizes a Reversib Detailed Flight Control S	be such that the aircraft will arrivi g the hover point the pilot should a o attain a stabilized hover within t ed hover, the pilot shall maintain a s. d performance, No agility limits, N	e over the target hover point af apply a smooth deceleration. he specified performance times a stabilized hover for 30 second o Degraded Visual Environmen	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified
Initiate the maneuver at The ground track should hover point. For capturing The pilot shall attempt t After capturing a stabiliz desired position tolerance NORMAL OPS (No degrade OH-58C utilizes a Reversib Detailed Flight Control S Inceptor Design	be such that the aircraft will arrivi g the hover point the pilot should a o attain a stabilized hover within t ted hover, the pilot shall maintain as. d performance, No agility limits, N le FCS, Collective/Cyclic/Anti-torq system Design/Description	e over the target hover point af apply a smooth deceleration. he specified performance times a stabilized hover for 30 second o Degraded Visual Environmen	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified
Initiate the maneuver at The ground track should hover point. For capturin The pilot shall attempt t After capturing a stabiliz desired position tolerance NORMAL OPS (No degrade OH-S&C utilizes a Reversib Detailed Flight Control S Inceptor Design Pilot Displays/Flight Refe	be such that the aircraft will arrivi g the hover point the pilot should a o attain a stabilized hover within t ted hover, the pilot shall maintain as. d performance, No agility limits, N le FCS, Collective/Cyclic/Anti-torq system Design/Description	e over the target hover point af apply a smooth deceleration. he specified performance times a stabilized hover for 30 second o Degraded Visual Environmen	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified
Initiate the maneuver at The ground track should hover point. For capturing The pilot shall attempt t After capturing a stabilit desired position tolerance NORMAL OPS (No degrade OH-58C utilizes a Reversib Detailed Flight Control S Inceptor Design Pilot Displays/Flight Refi Flight Guidance Design	be such that the aircraft will arrivi g the hover point the pilot should a o attain a stabilized hover within ti ed hover, the pilot shall maintain a s. d performance, No agility limits, N le FCS, Collective/Cyclic/Anti-torq system Design/Description erence parameters	e over the target hover point af apply a smooth deceleration. he specified performance times a stabilized hover for 30 second o Degraded Visual Environmen	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified
Initiate the maneuver at The ground track should hover point. For capturin The pilot shall attempt t After capturing a stabiliz desired position tolerance Notes NORMAL OPS (No degrade OH-S8C utilizes a Reversib Detailed Flight Control S Inceptor Design Filot Displays/Flight Refi Flight Guidance Design Flight Envelope/Limitati	be such that the aircraft will arrivi g the hover point the pilot should a o attain a stabilized hover within ti ed hover, the pilot shall maintain a ss. d performance, No agiilty limits, N le FCS, Collective/Cyclic/Anti-torq system Design/Description erence parameters ons	e over the target hover point aff apply a smooth deceleration. he specified performance times a stabilized hover for 30 second o Degraded Visual Environmen ue pedals, No Autopilot, No FM	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified t)
Initiate the maneuver at The ground track should hover point. For capturin The pilot shall attempt t After capturing a stabiliz desired position tolerance Notes NORMAL OPS (No degrade OH-58C utilizes a Reversib Detailed Flight Control S Inceptor Design Pilot Displays/Flight Ref Flight Guidance Design Flight Envelope/Limitati There shall be no undesira	be such that the aircraft will arrivi g the hover point the pilot should a o attain a stabilized hover within ti ed hover, the pilot shall maintain a ss. d performance, No agiilty limits, N le FCS, Collective/Cyclic/Anti-torq system Design/Description erence parameters ons	e over the target hover point aff apply a smooth deceleration. he specified performance times a stabilized hover for 30 second o Degraded Visual Environmen ue pedals, No Autopilot, No FM	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified
Initiate the maneuver at The ground track should hover point. For capturing The pilot shall attempt t After capturing a stabiliz desired position tolerance NORMAL OPS (No degrade OH-58C utilizes a Reversib Detailed Flight Control S Inceptor Design Flight Guidance Design Flight Envelope/Limitati	be such that the aircraft will arrivi g the hover point the pilot should a o attain a stabilized hover within ti ed hover, the pilot shall maintain a ss. d performance, No agiilty limits, N le FCS, Collective/Cyclic/Anti-torq system Design/Description erence parameters ons	e over the target hover point aff apply a smooth deceleration. he specified performance times a stabilized hover for 30 second o Degraded Visual Environmen ue pedals, No Autopilot, No FM	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified t)
Initiate the maneuver at The ground track should hover point. For capturin The pilot shall attempt t After capturing a stabiliz desired position tolerance Notes NORMAL OPS (No degrade OH-58C utilizes a Reversib Detailed Flight Control S Inceptor Design Pilot Displays/Flight Ref Flight Guidance Design Flight Envelope/Limitati There shall be no undesira	be such that the aircraft will arrivi g the hover point the pilot should a o attain a stabilized hover within ti ed hover, the pilot shall maintain a ss. d performance, No agiilty limits, N le FCS, Collective/Cyclic/Anti-torq system Design/Description erence parameters ons	e over the target hover point aff apply a smooth deceleration. he specified performance times a stabilized hover for 30 second o Degraded Visual Environmen ue pedals, No Autopilot, No FM	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified t)
Initiate the maneuver at The ground track should hover point. For capturin The pilot shall attempt t After capturing a stabiliz desired position tolerance NORMAL OPS (No degrade OH-S&C utilizes a Reversib Detailed Flight Control S Inceptor Design Pilot Displays/Flight Ref Flight Guidance Design Flight Envelope/Limitati There shall be no undesira hover Test Course Description The target hover point sha	be such that the aircraft will arriving the hover point the pilot should a o attain a stabilized hover within t ed hover, the pilot shall maintain a es. d performance, No agility limits, N le FCS, Collective/Cyclic/Anti-torq pystem Design/Description erence parameters ons ble motions (e.g., pitch or roll axis	e over the target hover point af apply a smooth deceleration. he specified performance times a stabilized hover for 30 second to Degraded Visual Environmen ue pedals, No Autopilot, No FM bobble) in any axis either durin	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified t) IS IS IS Is the transition to hover or the stabilized
Initiate the maneuver at The ground track should hover point. For capturin The pilot shall attempt t After capturing a stabiliz desired position tolerance NORMAL OPS (No degrade OH-S&C utilizes a Reversib Detailed Flight Control S Inceptor Design Pilot Displays/Flight Ref Flight Guidance Design Flight Envelope/Limitati There shall be no undesira hover Test Course Description The target hover point sha	be such that the aircraft will arrivi g the hover point the pilot should is o attain a stabilized hover within t ized hover, the pilot shall maintain is as. d performance, No agility limits, N le FCS, Collective/Cyclic/Anti-torq iystem Design/Description erence parameters ons ble motions (e.g., pitch or roll axis	e over the target hover point af apply a smooth deceleration. he specified performance times a stabilized hover for 30 second to Degraded Visual Environmen ue pedals, No Autopilot, No FM bobble) in any axis either durin	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified t) IS IS IS Is the transition to hover or the stabilized
Initiate the maneuver at The ground track should hover point. For capturin The pilot shall attempt t After capturing a stabiliz desired position tolerance NORMAL OPS (No degrade OH-S&C utilizes a Reversib Detailed Flight Control S Inceptor Design Pilot Displays/Flight Ref Flight Guidance Design Flight Envelope/Limitati There shall be no undesira hover Test Course Description The target hover point sha	be such that the aircraft will arriving the hover point the pilot should a o attain a stabilized hover within t ed hover, the pilot shall maintain a es. d performance, No agility limits, N le FCS, Collective/Cyclic/Anti-torq pystem Design/Description erence parameters ons ble motions (e.g., pitch or roll axis	e over the target hover point af apply a smooth deceleration. he specified performance times a stabilized hover for 30 second to Degraded Visual Environmen ue pedals, No Autopilot, No FM bobble) in any axis either durin	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified t) IS IS IS Is the transition to hover or the stabilized
 Initiate the maneuver at The ground track should hover point. For capturing The pilot shall attempt t After capturing a stabiliz desired position tolerance NORMAL OPS (No degrade OH-58C utilizes a Reversib Detailed Flight Control S Inceptor Design Filot Displays/Flight Refi Flight Envelope/Limitati There shall be no undesira hover Test Course Description The target hover point shar reference the center of a H Reference Guidance AC 27-1 	be such that the aircraft will arriving the hover point the pilot should a o attain a stabilized hover within t ed hover, the pilot shall maintain a es. d performance, No agility limits, N le FCS, Collective/Cyclic/Anti-torq pystem Design/Description erence parameters ons ble motions (e.g., pitch or roll axis	e over the target hover point af apply a smooth deceleration. he specified performance times a stabilized hover for 30 second to Degraded Visual Environmen ue pedals, No Autopilot, No FM bobble) in any axis either durin	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified t) IS IS IS Is the transition to hover or the stabilized
 Initiate the maneuver at The ground track should hover point. For capturing The pilot shall attempt t After capturing a stabiliz desired position tolerance NORMAL OPS (No degrade OH-58C utilizes a Reversib Detailed Flight Control S Inceptor Design Pilot Displays/Flight Refi Flight Guidance Design Flight Guidance Designin Flight Guidance Designin There shall be no undesiration The target hover point share Reference Guidance AC 27-1 AC 27-2 	be such that the aircraft will arriving the hover point the pilot should a o attain a stabilized hover within t ed hover, the pilot shall maintain a es. d performance, No agility limits, N le FCS, Collective/Cyclic/Anti-torq pystem Design/Description erence parameters ons ble motions (e.g., pitch or roll axis	e over the target hover point af apply a smooth deceleration. he specified performance times a stabilized hover for 30 second to Degraded Visual Environmen ue pedals, No Autopilot, No FM bobble) in any axis either durin	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified t) IS IS IS Is the transition to hover or the stabilized
Initiate the maneuver at The ground track should hover point. For capturing The pilot shall attempt t After capturing a stabiliz desired position tolerance NORMAL OPS (No degrade OH-58C utilizes a Reversib Detailed Flight Control S Inceptor Design Pilot Displays/Flight Refi Flight Guidance Design Flight Envelope/Limitati There shall be no undesira hover Test Course Description The target hover point sha reference Guidance AC 27-2 FAA Order 4040-26	be such that the aircraft will arrivi g the hover point the pilot should a o attain a stabilized hover within t ed hover, the pilot shall maintain a as. d performance, No agility limits, N le FCS, Collective/Cyclic/Anti-torq gystem Design/Description erence parameters ons ble motions (e.g., pitch or roll axis and be oriented approximately 45 di lelepad from which aircraft deviation	e over the target hover point aff apply a smooth deceleration. he specified performance times a stabilized hover for 30 second to Degraded Visual Environmen ue pedals, No Autopilot, No FM bobble) in any axis either durin agrees relative to the heading o ons can be measured. Reference	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified t) IS IS If the transition to hover or the stabilized f the aircraft. The target hover point will f figure XX
 Initiate the maneuver at The ground track should hover point. For capturing The pilot shall attempt t After capturing a stabiliz desired position tolerance NORMAL OPS (No degrade OH-58C utilizes a Reversib Detailed Flight Control S Inceptor Design Pilot Displays/Flight Refi Flight Guidance Design Flight Guidance Designin Flight Guidance Designin There shall be no undesiration The target hover point share Reference Guidance AC 27-1 AC 27-2 	be such that the aircraft will arrivi g the hover point the pilot should a o attain a stabilized hover within t ed hover, the pilot shall maintain a as. d performance, No agility limits, N le FCS, Collective/Cyclic/Anti-torq gystem Design/Description erence parameters ons ble motions (e.g., pitch or roll axis and be oriented approximately 45 di lelepad from which aircraft deviation	e over the target hover point af apply a smooth deceleration. he specified performance times a stabilized hover for 30 second to Degraded Visual Environmen ue pedals, No Autopilot, No FM bobble) in any axis either durin agrees relative to the heading o ons can be measured. Reference	er performing a 45 degree translation toward after the initiation of the deceleration. s while attempting to maintain the specified t) IS IS If the transition to hover or the stabilized f the aircraft. The target hover point will f figure XX

Instrumentation Packag	e			
Task	Maintain lateral-longitudinal po	sition within:	- 1×	
Adequate	6 ft.	Desired	3 ft.	
Instrumentation Packag	e			
Name		Resolution		
Task	Maintain altitude within:			
Adequate	8 ft.	Desired	5 ft.	
Instrumentation Packag	e			
Name		Resolution		
Task	Maintain heading within:			
Adequate	10 degrees	Desired	5 degrees	
Instrumentation Packag	e			
Name		Resolution		
Task	Attain stabilized hover within:			
Adequate	8 sec.	Desired	5 sec.	
Instrumentation Packag	e			
Name		Resolution		
Task	Maintain stabilized hover:	144		
Adequate	> 30 sec.	Desired	>30 sec.	
Instrumentation Packag	e			
Name		Resolution		
Requirements				
NASA POC	Mike Feary	Email	5-	
Alternate NASA POC	Sam Simpliciano	Email		
FAA FOCAL POC		Email		
FAA Policy POC	John Jordan	Email		
FAA Technical POC		Email		
FAA Technical POC	David Webber	Email		
Minimum Equipment Li	st			
dGPS				
IMU				
Torque				

Title	Sawtooth Climb & Desce	ent	
Data Element Type	Dynamic		
Scenario	1,2,3	UTE	NA
Metric Type	Vehicle	Maneuver	Climb.Descent.Glide
Phase of Flight	Inflight	Event	Range Flight
Dbjective			
performance parameters angle). Record any enviro other).	s (e.g., VY, VTOSS, VAPP, Vmin-I, V onmental or system factors that aff	for min Rate of descent, Vfor r fect these speeds (Altitude, Te) performance charts. Determine key nin angle of descent, Vmax Glide, Glide mperature, battery health, failure scenar ok" numbers for performance at various
Configuration			
Test Conditions			
Test Limitations: little to	no turbulence		
Test Tolerances:			
Knock it Off:			
Description			6 H .: 1 H
A A A A A A A A A A A A A A A A A A A			s, fix collective, and record level flight en
data (Q, NR, OAT, KIAS) Fest band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clin	time hack and climb through test band above test band ~200ft, start des	nd start climb at test Airspeed and recording (Q, NR, KIAS, an scent at test airspeed through	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a
data (Q, NR, OAT, KIAS) Test band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clin descend through test bar (all key parameters). sey	Descend below test band ~200ft, ar time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a	nd start climb at test Airspeed and recording (Q, NR, KIAS, an scent at test airspeed through	and maintain target NR for climbs and d HP) at several time increments up to
data (Q, NR, OAT, KIAS) Test band HP0 +/-500ft. descents. At HP0-500ft, 1 HP0+500ft. Continue clin descend through test ban (all key parameters). sev Notes	Descend below test band ~200ft, ar time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a	nd start climb at test Airspeed and recording (Q, NR, KIAS, an scent at test airspeed through	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a
data (Q, NR, OAT, KIAS) Test band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clin descend through test bar (all key parameters). sey	Descend below test band ~200ft, ar time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a	nd start climb at test Airspeed and recording (Q, NR, KIAS, an scent at test airspeed through	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a
data (Q, NR, OAT, KIAS) Test band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clin descend through test ban (all kev parameters). sev Notes	Descend below test band ~200ft, ar time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a	nd start climb at test Airspeed and recording (Q, NR, KIAS, an scent at test airspeed through	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a
data (Q, NR, OAT, KIAS) Test band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clim descend through test ban all key parameters). sev Notes Test Course Description Reference Guidance	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights	nd start climb at test Airspeed and recording (Q, NR, KIAS, an scent at test airspeed through at several time increments dow	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a
data (Q, NR, OAT, KIAS) Test band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clim descend through test ban all key parameters), sev Notes Test Course Description Reference Guidance Adequate Criteria	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t	nd start climb at test Airspeed and recording (Q, NR, KIAS, and scent at test airspeed through at several time increments dow	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs
data (Q, NR, OAT, KIAS) Test band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clim descend through test ban all key parameters), sev Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t Operational State II, III and m	nd start climb at test Airspeed and recording (Q, NR, KIAS, an scent at test airspeed through at several time increments dow	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs
data (Q, NR, OAT, KIAS) Test band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clim descend through test ban all key parameters), sev Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t Operational State II, III and m	nd start climb at test Airspeed and recording (Q, NR, KIAS, and scent at test airspeed through at several time increments dow	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs
data (Q, NR, OAT, KIAS) Fest band HPO +/-500ft. descents. At HPO-500ft, 1 4PO+500ft. Continue clim descend through test ban all key parameters), sev Notes Fest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Fask	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t Operational State II, III and m	nd start climb at test Airspeed and recording (Q, NR, KIAS, and scent at test airspeed through at several time increments dow o 3 noderate turbulence and crossy	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs
data (Q, NR, OAT, KIAS) Fest band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clim descend through test band all key parameters), sev Notes Fest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Fask Adequate	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t Operational State II, III and me	nd start climb at test Airspeed and recording (Q, NR, KIAS, and scent at test airspeed through at several time increments dow	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs
data (Q, NR, OAT, KIAS) Test band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clim descend through test ban (all kev parameters), sev Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t Operational State II, III and me	nd start climb at test Airspeed and recording (Q, NR, KIAS, and scent at test airspeed through at several time increments dow o 3 noderate turbulence and crosso Desired	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs
data (Q, NR, OAT, KIAS) Test band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clim descend through test band all key parameters), sev Notes Test Course Description Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Notes Notes Contemport	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t Operational State II, III and me	nd start climb at test Airspeed and recording (Q, NR, KIAS, and scent at test airspeed through at several time increments dow o 3 noderate turbulence and crossy	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs
data (Q, NR, OAT, KIAS) Fest band HPO +/-500ft. fest band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clim descend through test band all key parameters), sev Notes Fest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Fask Adequate Instrumentation Package Name Requirements	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t Operational State II, III and me	nd start climb at test Airspeed and recording (Q, NR, KIAS, and scent at test airspeed through at several time increments dow o 3 noderate turbulence and crosso Desired Resolution	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs
data (Q, NR, OAT, KIAS) Fest band HPO +/-500ft. fest band HPO +/-500ft. fescents. At HPO-500ft, 1 HPO+500ft. Continue clim descend through test band all key parameters), sev Notes Fest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Fask Adequate Instrumentation Package Name Requirements NASA POC	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t Operational State II, III and me	nd start climb at test Airspeed and recording (Q, NR, KIAS, and scent at test airspeed through at several time increments dow o 3 noderate turbulence and crosso Desired Resolution Email	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs
data (Q, NR, OAT, KIAS) Fest band HPO +/-500ft. fest band HPO +/-500ft. descents. At HPO-500ft. 1 HPO+500ft. Continue clim descend through test band all key parameters). sev Notes Fest Course Description Reference Guidance Adequate Criteria Instrumentation Package Fask Adequate Instrumentation Package NAME Requirements NASA POC Alternate NASA POC	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t Operational State II, III and me	o 3 Oesired Comparison	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs
data (Q, NR, OAT, KIAS) Test band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clim descend through test band all key parameters), sev Notes Test Course Description Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t Operational State II, III and me	o 3 Oesired Control Co	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs
data (Q, NR, OAT, KIAS) Fest band HPO +/-500ft. fest band HPO +/-500ft. descents. At HPO-500ft. 1 HPO+500ft. Continue clim descend through test band all key parameters). sev Notes Fest Course Description Reference Guidance Adequate Criteria Instrumentation Package Fask Adequate Instrumentation Package NASA POC Alternate NASA POC FAA FOCAL POC FAA POIcy POC	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t Operational State II, III and me	o 3 Oesired Control Co	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs
data (Q, NR, OAT, KIAS) Test band HPO +/-500ft. descents. At HPO-500ft, 1 HPO+500ft. Continue clim descend through test band all key parameters), sev Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate	Descend below test band ~200ft, an time hack and climb through test ba nb above test band ~200ft, start des nd recording (Q, NR, KIAS, and HP) a reral Gross Weights Operational State I: - CHR 1 t Operational State II, III and me	o 3 Oesired Control Co	, and maintain target NR for climbs and d HP) at several time increments up to the test band. At HPO+500ft, time hack a wn to HPO-500ft. Repeat at different airs

Title	Scenario 1		
Data Element Type	Dynamic		
Scenario	1,2,3	UTE	xx
Aetric Type	Vehicle	Maneuver	NA
hase of Flight	Inflight	Event	Range Flight
bjective			
A nominal flight of at least vaypoints throughout the rraffic will be visible on AT Prior engine start - Flight of he Airspace Data Exchang upproved, flight plan and r confirmed and recorded. A After engine start, Prior de leparture time, weather, a ecorded per the flight test Departure - Flight Crew will upproved flight plan. Fligh coroute – Flight Crew will uppreation volumes as well	flight. Up to 20 virtual aircraft with no p I tablet but no action is Adequate on the rew will verify flight test plan has been re e has occurred by confirming with Contro evisions are being received. Fuel State, eo iny subsequent flight test plans (e.g., a rel parture - flight crew will ensure any flight irspace constraits, departure and arriva card(s). I taxi to takeoff position (as Adequate) ar t Crew will continually report waypoints report lateral, altitude, airspeed, and ter as environmental conditions, range cons UAM Heliport, or UAM Vertiport, approa	lanned interference will part of the flight crew. ceived from PSU on the A ol Room/MOF that aircra spected fuel use, and exp turn flight test plan) shall t plan updates are entere al heliport/vertiport info ad perform takeoff at plan and any updates to ETA in poral deviations from ap traints, and Flight Test-,	ected reserves at destination shall be be verified. d in the vehicle navigation tool. Planned rmation and scheduled time of arrival will b nned departure time and execute the n accordance with the Flight Test Card(s). oproved 4-D flight plan and associated
est Conditions			
Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design	rence parameters		
Test Conditions Description Notes Detailed Flight Control Sp Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitation Test Course Description	rence parameters		
Description Notes Detailed Flight Control St Diceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio rest Course Description	rence parameters		
Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitation Reference Guidance	rence parameters		
Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio rest Course Description Reference Guidance	rence parameters	e turbulence and crosswi	ndsCHR 4 to 6
Description Notes Detailed Flight Control St Deceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio rest Course Description Reference Guidance Adequate Criteria Desired Criteria	ons Operational State I: - CHR 1 to 3	e turbulence and crosswi	nds–CHR 4 to 6
Description Interview of the second	ons Operational State I: - CHR 1 to 3	e turbulence and crossw	inds—CHR 4 to 6
Description Interview of the second	ons Operational State I: - CHR 1 to 3	e turbulence and crosswi	nds–CHR 4 to 6
Description lotes Detailed Flight Control Si Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio rest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Reference Guidance	ons Operational State I: - CHR 1 to 3		ndsCHR 4 to 6
Description Interview of the second	ons Operational State I: - CHR 1 to 3		ndsCHR 4 to 6
escription	ons Operational State I: - CHR 1 to 3	Desired	inds – CHR 4 to 6
Description Iotes Detailed Flight Control So Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio est Course Description Reference Guidance Adequate Criteria Instrumentation Package ask Requate Instrumentation Package Iame Requirements	ons Operational State I: - CHR 1 to 3	Desired	inds – CHR 4 to 6
Description Iotes Detailed Flight Control So Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio est Course Description Reference Guidance Adequate Criteria Instrumentation Package ask Requate Instrumentation Package Iame Requirements IASA POC	ons Operational State I: - CHR 1 to 3	Desired Resolution	inds – CHR 4 to 6
Description Notes Detailed Flight Control Si Deceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio rest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package rask Adequate Instrumentation Package Rask Requirements Rask POC Naternate NASA POC	ons Operational State I: - CHR 1 to 3	Desired Resolution Email	inds-CHR 4 to 6
Description Notes Detailed Flight Control Si Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio rest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Requirements IASA POC Nernate NASA POC Nernate NASA POC AA FOCAL POC	ons Operational State I: - CHR 1 to 3	Desired Resolution Email Email	inds – CHR 4 to 6
Description Notes Detailed Flight Control Si Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatic rest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package rask Adequate Instrumentation Package Requirements VASA POC Alternate NASA POC FAA FOCAL POC FAA POIcy POC	ons Operational State I: - CHR 1 to 3	Desired Resolution Email Email Email	inds – CHR 4 to 6
Votes • Detailed Flight Control S • Inceptor Design • Pilot Displays/Flight Refe • Flight Guidance Design • Flight Envelope/Limitatio	ons Operational State I: - CHR 1 to 3	Desired Resolution Email Email Email Email	Inds – CHR 4 to 6

	UTE	
Atric Type Vehicle thase of Flight Inflight Vbjective		
Vehicle Vehicle Phase of Flight Inflight Dbjective		300
Phase of Flight Inflight Objective	Maneuver	NA
Dbjective	Event	Range Flight
Scenario 2 – Inflight Ops Re-planning/Execution – A-B		
A flight of at least 15 NM will be planned and initiated from Heliport/Vertip flight, ground control will issue a route advisory, and a revised flight plan wi waypoints throughout the flight. Up to 50 virtual aircraft with no planned in be visible on ATI tablet but no action is Adequate on the part of the flight of Prior engine start - Flight crew will verify flight test plan has been received in Airspace Data Exchange has occurred by confirming with Control Room/MG plan and revisions are being received. Fuel State, expected fuel use, and ex- Any subsequent flight test plans (e.g., a return flight test plan) shall be veri After engine start, prior departure - Flight crew will ensure any flight plan up departure time, weather, airspace constraints, departure and arrival helipo recorded per the flight test card(s). Departure - Flight Crew will taxi to takeoff position (as Adequate) and perfor flight plan. Flight Crew will continually report waypoint passage and any up Enroute - Flight Crew will continually report waypoint passage and any up wolumes as well as environmental conditions, range constraints/instruction ground control, followed by a revised flight plan. Flight crew will acknowled will be confirmed and accepted by the flight crew, and the remainder of the state, ETA, expected fuel use, and expected reserves at destination shall be	ill be transmitted to nterference will be u rew. from PSU on the AT OF that aircraft stat xpected reserves at ified. updates are entered rt/vertiport informa orm takeoff at plani pdates to ETA in acc eviations from appro- ns. During this segm dge receipt of the are e flight will be flown e recorded and tran	the aircraft. Flight Crew shall announce all utilized as background traffic. Virtual Traffic will I' tablet. Flight crew will then confirm that the te information is valid, and the approved flight it destination shall be confirmed and recorded. In the vehicle navigation tool. Planned thon and scheduled time of arrival will be need departure time and execute the approved cordance with the Flight Test Card(s). oved 4-D flight plan and associated operation nent, a route advisory will be transmitted from divisory and the revised flight plan. Flight plan a gainst the revised flight plan. Revised fuel smitted to ground control.
ionfiguration lest Conditions Description		
Notes Detailed Flight Control System Design/Description Inceptor Design Pilot Displays/Flight Reference parameters Flight Guidance Design Flight Envelope/Limitations Fest Course Description		
Reference Guidance		
Adequate Criteria Operational State I: - CHR 1 to 3		
Desired Criteria Operational State II CHK 1 to 3 Operational State II CHK 1 to 3	ulance and concerni	nds CHR 4 to 6
	vulence and crossWi	nuə — cnit 4 tu u
Instrumentation Package Task		
Adequate	Desired	
Instrumentation Package	Lesired	-
Name	Resolution	
Requirements		
NASA POC	Email	
Alternate NASA POC	Email	
FAA FOCAL POC	Email	
FAA Policy POC	Email	
FAA Technical POC	Email	
	Email	
FAA Technical POC		

litle	Scenario 3a		
	Dynamic		
Data Element Type icenario	1,2,3	UTE	xx
Aetric Type	Vehicle	Maneuver	NA NA
hase of Flight	Inflight	Event	Range Flight
bjective			
cenario 3 – Deviations fro	m Flight Plans – A-B-C		
cenario 3a – Go-Around to	0		
-			rtiport B. During the final approach, a go-arour
	61		oach procedure. A revised flight plan will be
ransmitted to the aircraft. nterference will be utilized	Flight Crew shall announce all waypoints	throughout the flight. Up t	o 50 virtual aircraft with no planned
	-	eived from PSU on the AT	tablet. Flight crew will then confirm that the
			information is valid, and the approved flight
			destination shall be confirmed and recorded.
	plans (e.g., a return flight test plan) shall I	-	
fter engine start, prior dep	arture - Flight crew will ensure any flight	plan updates are entered i	n the vehicle navigation tool. Planned
leparture time, weather, a	rspace constraints, departure and arrival	heliport/vertiport information	ion and Scheduled time of arrival will be
ecorded per the test card(
			ed departure time and execute the approved
	continually report waypoint passage and		
-	port lateral, altitude, airspeed, and temp mental conditions, range constraints/inst		ved 4-D flight plan and associated operation
	JAM Heliport, or UAM Vertiport approach		ed missed approach point, and a go-
			d control, followed by a revised flight plan.
		-	be confirmed and accepted by the flight crew,
	lete holding pattern, and upon receipt an		
lirection of ground control,	if no message received) the remainder of	f the flight will be flown ag	ainst the revised flight plan. Revised fuel state
TA, expected fuel use, and	expected reserves at the destination sha	all be recorded and transm	tted to ground control. The approach will be re
lown and a vertical landing	expected reserves at the destination sha executed. Actual landing time and fuel s		itted to ground control. The approach will be re
			itted to ground control. The approach will be re
lown and a vertical landing			itted to ground control. The approach will be re
lown and a vertical landing			itted to ground control. The approach will be re
ilown and a vertical landing Configuration Fest Conditions			itted to ground control. The approach will be re
lown and a vertical landing Configuration			itted to ground control. The approach will be r
ilown and a vertical landing Configuration Fest Conditions			itted to ground control. The approach will be r
ilown and a vertical landing Configuration Fest Conditions Description Notes	executed. Actual landing time and fuel s		itted to ground control. The approach will be re
ilown and a vertical landing Configuration Fest Conditions Description Notes • Detailed Flight Control Sy	executed. Actual landing time and fuel s		itted to ground control. The approach will be re
iown and a vertical landing Configuration Fest Conditions Description Notes • Detailed Flight Control Sy • Inceptor Design	executed. Actual landing time and fuel s		itted to ground control. The approach will be re
ilown and a vertical landing Configuration Fest Conditions Description Votes • Detailed Flight Control Sy • Inceptor Design • Pilot Displays/Flight Refe	executed. Actual landing time and fuel s		itted to ground control. The approach will be re
ilown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design	sexecuted. Actual landing time and fuel s stem Design/Description rence parameters		itted to ground control. The approach will be re
ilown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio	sexecuted. Actual landing time and fuel s stem Design/Description rence parameters		itted to ground control. The approach will be re
ilown and a vertical landing Configuration Fest Conditions Description Votes • Detailed Flight Control Sy • Inceptor Design • Pilot Displays/Flight Refe	sexecuted. Actual landing time and fuel s stem Design/Description rence parameters		itted to ground control. The approach will be re
iown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Fest Course Description	sexecuted. Actual landing time and fuel s stem Design/Description rence parameters		itted to ground control. The approach will be re
ilown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio	sexecuted. Actual landing time and fuel s stem Design/Description rence parameters		itted to ground control. The approach will be re
Iown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Fest Course Description Reference Guidance	sexecuted. Actual landing time and fuel s stem Design/Description rence parameters		itted to ground control. The approach will be re
iown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Fest Course Description	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
iown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio rest Course Description Reference Guidance Adequate Criteria Desired Criteria	sexecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
ilown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Fest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
ilown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio rest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Fask	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
ilown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Fest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Fask Adequate	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
ilown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Fest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Fask Adequate Instrumentation Package	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
ilown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Fest Course Description Reference Guidance Ndequate Criteria Desired Criteria Instrumentation Package Fask Adequate Instrumentation Package Name	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
lown and a vertical landing Configuration Test Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Test Course Description Reference Guidance Ndequate Criteria Desired Criteria Instrumentation Package Task Nequate Instrumentation Package Name Requirements	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
Iown and a vertical landing Configuration Test Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Test Course Description Reference Guidance Ndequate Criteria Desired Criteria Instrumentation Package Task Naequate Instrumentation Package Name Requirements NASA POC	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
Iown and a vertical landing Configuration Test Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Test Course Description Reference Guidance Ndequate Criteria Desired Criteria Instrumentation Package Task Nacquate Instrumentation Package Name Requirements NASA POC Niternate NASA POC	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
Iown and a vertical landing Configuration Test Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Test Course Description Reference Guidance National Criteria Instrumentation Package Task Nate Conternia Instrumentation Package Name Requirements NASA POC Niternate NASA POC SA FOCAL POC	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
ilown and a vertical landing Configuration Fest Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Fest Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Fask Adequate Instrumentation Package Name Requirements NASA POC Niternate NASA POC FAA FOCAL POC FAA POIlcy POC	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
Iown and a vertical landing Configuration Test Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Test Course Description Reference Guidance Reference Guidance Ref	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	
Iown and a vertical landing Configuration Test Conditions Description Notes Detailed Flight Control Sy Inceptor Design Pilot Displays/Flight Refe Flight Guidance Design Flight Envelope/Limitatio Test Course Description Reference Guidance Nate Conternation Reference Guidance Sestred Criteria Instrumentation Package Task Nate Conternation Package Name Requirements NASA POC Niternate NASA POC SAA FOCAL POC SAA FOCAL POC	sevecuted. Actual landing time and fuel s stem Design/Description rence parameters ns	tate will be recorded.	

ïtle	ment Card		
oata Element Type	Dynamic 1,2,3	UTE	XX
Vetric Type	Vehicle	Maneuver	NA
hase of Flight	Inflight	Event	Range Flight
Objective	inlight	Event	Range Flight
Scenario 3 – Deviations from	Flight Plans - A-B-C		
Scenario 3b – Balked Landing A flight of at least 15 NM will ikid/wheel height a balked i revised flight plan will be trar with no planned interference Prior engine start - Flight crev Airspace Data Exchange has Jalan and revisions are being Any subsequent flight test pl After engine start, prior depa departure time, weather, airs recorded per the test card(s). Departure - Flight Crew will to flight plan. Flight Crew will co Enroute – Flight Crew will co flight plan to an alternate lan flight plan will be confirmed.	g to Holding I be planned and initiated from Heliport, anding will be executed, and the aircraft nsmitted to the aircraft. Flight Crew sha e will be utilized as background traffic. w will verify flight test plan has been rev occurred by confirming with Control Ro received. Fuel State, expected fuel use, lans (e.g., a return flight test plan) shall inture - Flight crew will ensure any flight space constraints, departure and arrival axi to takeoff position (as Adequate) an ontinually report waypoint passage and boort lateral, alitude, airspeed, and temp tental conditions, range constraints/inst AM Heliport, or UAM Vertiport approach a missed approach to holding. A route a and accepted by the flight crew, and up	t will transition to a missed II announce all waypoints to ceived from PSU on the AT om/MOF that aircraft statu , and expected reserves at be verified. Test missed ap plan updates are entered i heliport/vertiport informator any updates to ETA in acc soral deviations from appro- tructions. In will be flown to <10 feet so solvisory will be transmitter will acknowledge receips on receipt and acknowledge	in the vehicle navigation tool. Planned tion and Scheduled time of arrival will be ed departure time and execute the approved ordance with the Flight Test Card(s). wed 4-D flight plan and associated operation skid/wheel height, and a balked landing will be if from ground control, followed by a revised t of the advisory and the revised flight plan. gement of transmitted clearance from PSU (or
TA, expected fuel use, and e evised approach will be re-fi configuration		all be recorded and transm	ainst the revised flight plan. Revised fuel state, itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description	expected reserves at the destination sh	all be recorded and transm	itted to ground control if time allows. The
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes Detailed Flight Control Syst Inceptor Design • Pilot Displays/Flight Refere • Flight Guidance Design • Flight Envelope/Limitations	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters	all be recorded and transm	itted to ground control if time allows. The
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes Detailed Flight Control Syst Inceptor Design • Pilot Displays/Flight Refere • Flight Guidance Design • Flight Envelope/Limitations	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters	all be recorded and transm	itted to ground control if time allows. The
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes • Detailed Flight Control Syst • Inceptor Design • Pilot Displays/Flight Refere • Flight Guidance Design • Flight Envelope/Limitations Test Course Description	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters	all be recorded and transm	itted to ground control if time allows. The
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes • Detailed Flight Control Syst • Inceptor Design • Pilot Displays/Flight Refere • Flight Envelope/Limitations Test Course Description Reference Guidance	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm	itted to ground control if time allows. The
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes • Detailed Flight Control Syst • Inceptor Design • Flight Guidance Design • Flight Envelope/Limitations Test Course Description Reference Guidance Adequate Criteria	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes • Detailed Flight Control Syst • Inceptor Design • Flight Guidance Design • Flight Envelope/Limitations Test Course Description Reference Guidance Adequate Criteria	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes • Detailed Flight Control Syst • Diot Displays/Flight Refere • Flight Guidance Design • Flight Envelope/Limitations Test Course Description Reference Guidance Adequate Criteria Desired Criteria	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes • Detailed Flight Control Syst • Inceptor Design • Flight Guidance Design • Flight Envelope/Limitations Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes • Detailed Flight Control Syst • Inceptor Design • Flight Guidance Design • Flight Envelope/Limitations Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes • Detailed Flight Control Syst • Inceptor Design • Flight Envelope/Limitations Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes • Detailed Flight Control Syst • Inceptor Design • Pilot Displays/Flight Refere • Flight Guidance Design • Flight Guidance Design • Flight Envelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes Detailed Flight Control Syst Inceptor Design Flight Guidance Design Flight Guidance Design Flight Guidance Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes • Detailed Flight Control Syst • Inceptor Design • Pilot Displays/Flight Refere • Flight Guidance Design • Flight Guidance Design • Flight Envelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes Detailed Flight Control Syst Inceptor Design Pilot Displays/Flight Refere Flight Guidance Design Flight Fuvelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes Detailed Flight Control Syst Inceptor Design Pilot Displays/Flight Refere Flight Guidance Design Flight Envelope/Limitations Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes Detailed Flight Control Syst Inceptor Design Pilot Displays/Flight Refere Flight Guidance Design Flight Envelope/Limitations Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes Detailed Flight Control Syst Inceptor Design Pilot Displays/Flight Refere Flight Guidance Design Flight Envelope/Limitations Test Course Description Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA POLicy POC	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e revised approach will be re-fi Configuration Test Conditions Description Notes Detailed Flight Control Syst Inceptor Design Pilot Displays/Flight Refere Flight Guidance Design Flight Envelope/Limitations Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA FOCAL POC FAA Technical POC	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transm ctual landing time and fuel	itted to ground control if time allows. The state will be recorded.
ETA, expected fuel use, and e	expected reserves at the destination sh lown and a vertical landing executed. A tem Design/Description ence parameters s	all be recorded and transmictual landing time and fuel ctual landing time and fuel te turbulence and crosswir te turbulence and crosswir Desired Resolution Email Email Email Email Email	itted to ground control if time allows. The state will be recorded.

Title	Scenario 3c		
Data Element Type	Dynamic		
Scenario	1,2,3	UTE	xx
Metric Type	Vehicle	Maneuver	NA
Phase of Flight	Inflight	Event	Range Flight
Objective			
will be executed, and the aim UAM Heliport/Vertiport. A m Up to 50 virtual aircraft with Prior engine start - Flight cre Airspace Data Exchange has Jan and revisions are being Any subsequent flight test p After engine start, prior depa departure time, weather, air recorded per the test card(s) Departure - Flight Crew will re flight plan. Flight Crew will re volumes as well as environn Approach and Landing – a U executed and transition to ai transmitted from ground cor acknowledge receipt of the i and acknowledgement of tra approach at the alternate He	craft will immediately transition to a miss evised flight plan will be transmitted to the no planned interference will be utilized a will verify flight test plan has been reco- occurred by confirming with Control Roo received. Fuel State, expected fuel use, i lans (e.g., a return flight test plan) shall b inture - Flight crew will ensure any flight p space constraints, departure and arrival f axi to takeoff position (as Adequate) and portinually report waypoint passage and a port lateral, altitude, airspeed, and tempo hental conditions, range constraints/instr AM Heliport, or UAM Vertiport, approach in immediate approach and landing at the atovisory and the revised flight plan to a dovisory and the revised flight plan. Fligh ansmitted clearance from PSU (or directive eliport/Vertiport. Revised fuel state, ETA,	ed approach and request we aircraft. Flight Crew sha s background traffic. eived from PSU on the ATI m/MOF that aircraft state and expected reserves at e verified. Test missed ap plan updates are entered i heliport/vertiport informat l perform takeoff at plann my updates to ETA in accorral deviations from appro- uctions. will be flown to the misse nearest alternate LAMH fa- an alternate landing UAM ti plan will be confirmed a on of ground control, if no expected fuel use, and ex-	n the vehicle navigation tool. Planned tion and Scheduled time of arrival will be ed departure time and execute the approved ordance with the Flight Test Card(s). ved 4-D flight plan and associated operation ed approach point, and a go-around will be seliport/Vertiport. A route advisory will be
recorded.	ground control if time allows. A vertical i	anung wii be executed. 7	ucuarianuing time and ruer state will be
recorded. Configuration Test Conditions	ground control il time allows. A vertica i	anung win be executed. F	ucuan anoning unite and ruer state will be
recorded. Configuration	tem Design/Description	anding will be executed. <i>F</i>	
recorded. Configuration Test Conditions Description Notes • Detailed Flight Control Sys • Inceptor Design • Pilot Displays/Flight Refer • Flight Guidance Design	tem Design/Description		
recorded. Configuration Test Conditions Description Notes • Detailed Flight Control Sys • Inceptor Design • Pilot Displays/Flight Refere • Flight Guidance Design • Flight Envelope/Limitation Test Course Description	tem Design/Description		
recorded. Configuration Test Conditions Description Notes • Detailed Flight Control Sys • Inceptor Design • Pilot Displays/Flight Referen • Flight Guidance Design • Flight Guidance Design • Flight Guidance Design • Flight Guidance Design • Reference Guidance	tem Design/Description ence parameters s		
recorded. Configuration Test Conditions Description Notes • Detailed Flight Control Sys • Inceptor Design • Pilot Displays/Flight Refered • Flight Guidance Design • Flight Envelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria	tem Design/Description ence parameters s Operational State 1: - CHR 1 to 3		
recorded. Configuration Test Conditions Description Notes • Detailed Flight Control Sys • Inceptor Design • Flight Envelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	tem Design/Description ence parameters s Operational State 1: - CHR 1 to 3		
recorded. Configuration Test Conditions Description Notes • Detailed Flight Control Sys • Inceptor Design • Flight Envelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task	tem Design/Description ence parameters s Operational State 1: - CHR 1 to 3		
recorded. Configuration Test Conditions Description Notes • Detailed Flight Control Sys • Inceptor Design • Pilot Displays/Flight Refered • Flight Envelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	tem Design/Description ence parameters s Operational State 1: - CHR 1 to 3	e turbulence and crosswir	
recorded. Configuration Test Conditions Description Notes • Detailed Flight Control Sys • Inceptor Design • Pilot Displays/Flight Refere • Flight Guidance Design • Flight Guidance Design • Flight Guidance Design • Flight Guidance Design • Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate	tem Design/Description ence parameters s Operational State 1: - CHR 1 to 3	e turbulence and crosswir	
recorded. Configuration Test Conditions Description Notes • Detailed Flight Control Sys • Detailed Flight Control Sys • Detailed Flight Control Sys • Pilot Displays/Flight Refere • Flight Guidance Design • Flight Guidance Description Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name	tem Design/Description ence parameters s Operational State 1: - CHR 1 to 3	e turbulence and crosswir	
recorded. Configuration Test Conditions Description Notes Detailed Flight Control Sys Inceptor Design Pilot Displays/Flight Refere Flight Guidance Design Flight Envelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements	tem Design/Description ence parameters s Operational State 1: - CHR 1 to 3	e turbulence and crosswir	
recorded. Configuration Test Conditions Description Notes • Detailed Flight Control Sys • Inceptor Design • Flight Guidance Design • Flight Guidance Design • Flight Guidance Design • Flight Envelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	tem Design/Description ence parameters s Operational State 1: - CHR 1 to 3	e turbulence and crosswir	
recorded. Configuration Test Conditions Description Notes Detailed Flight Control Sys Detailed Flight Control Sys Inceptor Design Pilot Displays/Flight Refere Flight Guidance Design Flight Envelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	tem Design/Description ence parameters s Operational State 1: - CHR 1 to 3	e turbulence and crosswir Desired Resolution Email Email	
recorded. Configuration Test Conditions Description Notes Detailed Flight Control Sys Detailed Flight Control Sys Inceptor Design Pilot Displays/Flight Refere Flight Guidance Design Flight Envelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	tem Design/Description ence parameters s Operational State 1: - CHR 1 to 3	e turbulence and crosswir Desired Resolution Email Email Email	
recorded. Configuration Test Conditions Description Notes Detailed Flight Control Sys Detailed Flight Control Sys Detailed Flight Control Sys Flight Envelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA Policy POC	tem Design/Description ence parameters s Operational State 1: - CHR 1 to 3	e turbulence and crosswir Desired Resolution Email Email Email Email	
recorded. Configuration Test Conditions Description Notes Detailed Flight Control Sys Detailed Flight Control Sys Inceptor Design Pilot Displays/Flight Refere Flight Guidance Design Flight Envelope/Limitation Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	tem Design/Description ence parameters s Operational State 1: - CHR 1 to 3	e turbulence and crosswir Desired Resolution Email Email Email	

Title	Static Lateral/Directio	nal Stability	
Data Element Type	Dynamic	,	
Scenario	1,2,3	UTE	NA
Metric Type	Vehicle	Maneuver	NA
Phase of Flight	Inflight	Event	Range Flight
Objective	iningit	Lycin	Kangeringin
Lateral/Directional Stabi		a simple demonstration of severa be compared to UAM aircraft ch	l airspeeds conducted to demonstrate flig aracteristics.
comparation			
Test Conditions			
ref: Aft CG			
Test Limitations: little to	o no disturbance- small inputs		
Test Tolerances: KIAS +/	-1 kt, HP0 +/-1000ft, β +/-1°		
Knock it Off:			
Description			
Steady Heading Sideslip	(SHSS)		
	()		
		collective, vary β and balance wit	h cyclic (steady heading sideslip (SHSS)),
Stabilize at trim Airspee	d (Level, Climb and Descent), fix		h cyclic (steady heading sideslip (SHSS)), serve directional stability and dihedral ef
Stabilize at trim Airspee	d (Level, Climb and Descent), fix		
Stabilize at trim Airspee maintain airspeed (acce	d (Level, Climb and Descent), fix		
Stabilize at trim Airspee maintain airspeed (acce (lateral stability).	d (Level, Climb and Descent), fix		
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes	d (Level, Climb and Descent), fix		
Stabilize at trim Airspee maintain airspeed (acce (lateral stability).	d (Level, Climb and Descent), fix		
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description	d (Level, Climb and Descent), fix		
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description	d (Level, Climb and Descent), fix		
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance	d (Level, Climb and Descent), fix pt altitude variation), record cycli	ic positions and φ at varied β – of	
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR	ic positions and φ at varied β – of 1 to 3	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – of	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – of 1 to 3	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – ot 1 to 3 d moderate turbulence and crossy	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – of 1 to 3	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – ot 1 to 3 d moderate turbulence and crossy Desired	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – ot 1 to 3 d moderate turbulence and crossy	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – ot 1 to 3 d moderate turbulence and crossy Desired	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – ot 1 to 3 d moderate turbulence and crossy Desired	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – ot 1 to 3 d moderate turbulence and crossv Desired Resolution	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – ot 1 to 3 d moderate turbulence and crossv Desired Resolution Email	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – ot 1 to 3 d moderate turbulence and crossv Desired Resolution Email Email	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Packago Task Adequate Instrumentation Packago Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA Policy POC	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – ot 1 to 3 d moderate turbulence and crossw Desired Resolution Email Email Email	serve directional stability and dihedral ef
Stabilize at trim Airspee maintain airspeed (acce (lateral stability). Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	d (Level, Climb and Descent), fix pt altitude variation), record cycli Operational State I: - CHR Operational State II, III and	ic positions and φ at varied β – ot 1 to 3 d moderate turbulence and crossy Desired Resolution Email Email Email Email	serve directional stability and dihedral ef

Data Element Type Dynamic Scenario 1,2,3 UTE NA Metric Type Vehicle Maneuver NA Phase of Flight Inflight Event Range Flight Objective Event Range Flight Event Range Flight Statistic Type Vehicle Event Range Flight Objective Highly augmented, fly-by-wire aircraft may not yield definitive results if only classical longitudinal stability flight test methods a applied. However, in a general sense, the intent of these tests should be to investigate if the aircraft is perturbed from a trimm condition by a gust, with controls fixed or free, there is a tendency for the aircraft to return to the trimmed value. However, the shall not be so pronounced as to be unacceptable to either the pilot or the passengers in turbulence. For the OH-S8C, longitudinal stability characteristics will be evaluated around several trim arbience. For the OH-S8C, longitudinal stability characteristics will be evaluated. Configuration Test Conditions Event Statistical State Statistica	Title	Static Longitudinal Stabil	ity		
Metric Type Vehicle Maneuver NA Phase of Flight Inflight Event Range Flight Objective Event Range Flight Range Flight Objective inflight augmented, fly-by-wire aircraft may not yield definitive results if only classical longitudinal stability flight test methods a applied. However, in a general sense, the intent of these tests should be to investigate if the aircraft is perturbed from a trimmer condition by a gust, with controls fixed or free, there is a tendency for the aircraft to return to the trimmer value. However, the shall not be so pornounced as to be unacceptable to either the pilot or the passengers in turbulence. For the OH-S8C, longitudinal stability characteristics will be evaluated around several trim airspeeds that cover the normal oper envelope. Max continuous power, Power for level flight, and autorotation (power off) characteristics will be evaluated. Configuration Test Conditions Test Conditions Itte to no disturbance Test Tolerances: Knock It Off: none specified Description Stabilize at 5 knot increments), record cyclic position s at varied speeds – slowly release or measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position s airspeed, relate to instrument S&C requirements like VMIN-1 and relevance to instrument departures and approaches. Notes Test Course Description Reference Guidance Qperational State I: - CHR 1 to 3	Data Element Type	Dynamic			
Phase of Flight Inflight Event Range Flight Objective Highly augmented, fly-by-wire aircraft may not yield definitive results if only classical longitudinal stability flight test methods a applied. However, in a general sense, the intent of these tests should be to investigate if the aircraft is perturbed from a trimme condition by a gust, with controls fixed or free, there is a tendency for the aircraft to return to the trimmed value. However, the shall not be so pronounced as to be unacceptable to either the pilot or the passengers in turbulence. For the OH-582 (Iongitudinal stability thracteristics will be evaluated around several trim airspeeds that cover the normal oper envelope. Max continuous power, Power for level flight, and autorotation (power off) characteristics will be evaluated. Configuration Test Conditions Test Conditions Test Tolerances: Knock it Off: none specified Description Description Stabilize at S knot increments), record cyclic position vs airspeed +/-15 knots f trim, allow aircraft to climp/descend (stabilize at 5 knot increments), record cyclic position vs airspeed, relate to instrument S&C requirements like VMIN-1 and relevance to instrument departures and approaches. Notes Test Course Description Reference Guidance Qperational State I: - CHR 1 to 3 Operational State I: - CHR 1 to 3 Operational State I: - CHR 1 to 3 Operational State I: - CHR 1 to 3 Operational State I: - CHR 1 to 3	Scenario	1,2,3	UTE	NA	
Objective Image: Content of the second o	Metric Type	Vehicle	Maneuver	NA	
Highly augmented, fly-by-wire aircraft may not yield definitive results if only classical longitudinal stability flight test methods a applied. However, in a general sense, the intent of these tests should be to investigate if the aircraft is perturbed from a trimme condition by a gust, with controls fixed or free, there is a tendency for the aircraft to return to the trimmed value. However, the shall not be so pronounced as to be unacceptable to either the pilot or the passengers in turbulence. For the OH-S8C, longitudinal stability characteristics will be evaluated around several trim airspeeds that cover the normal oper envelope. Max continuous power, Power for level flight, and autorotation (power off) characteristics will be evaluated. Configuration Test Conditions Test Conditions: little to no disturbance Test Tolerances: Test Tolerances: Test Tolerances: Test Toin Airspeed, fix collective (record longitudinal cyclic position), use longitudinal cyclic to vary airspeed +/-15 knots fi trim, allow aircraft to climb/descend (stabilize at 5 knot increments), record cyclic position sa irspeed, relate to instrument S&C requirements like VMIN-I and relevance to instrument departures and approaches. Notes Test Course Description Reference Guidance Adequate Criteria Operational State I: - CHR 1 to 3 Operational State I: - CHR 1 to 3 Operational State II, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Task Adequate Criteria Operational State II, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Name Resolution Requirements NASA POC Email Email FAA FOCAL POC Email FAA POLIC POC Email FAA POLIC POC Email FAA POLIC POC Email FAA POLIC POC Email Course Course Description Package Policie P	Phase of Flight	Inflight	Event	Range Flight	
applied. However, in a general sense, the intent of these tests should be to investigate if the aircraft is perturbed from a trimme condition by a gust, with controls fixed or free, there is a tendency for the aircraft to return to the trimmed value. However, the shall not be so pernoounced as to be unacceptable to either the pilot or the passengers in turbulence. For the OH-58C, longitudinal stability characteristics will be evaluated around several trim airspeeds that cover the normal oper envelope. Max continuous power, Power for level flight, and autorotation (power off) characteristics will be evaluated. Configuration Test Conditions Test Conditions Test Limitations: little to no disturbance Test Collerances: Knock it Off: none specified Description Stabilize at trim Airspeed, fix collective (record longitudinal cyclic position), use longitudinal cyclic to vary airspeed +/-15 knots f trim, allow aircraft to climb/descend (stabilize at S knot increments), record cyclic positions at varied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGS – observe cyclic position varies at varied speeds – slowly release cy measure free return speed. Repeat at off freent airspeeds, CGS – observe cyclic position varies at varied speeds – slowly release cy measure free return speed. Repeat at off freent airspeeds, CGS – observe cyclic position varies at varied speeds – slowly release cy measure free return speed. Repeat at off freent airspeeds, CGS – observe cyclic position varies and approaches. Notes Test Course Description Reference Guidance Adequate Criteria Operational State I: - CHR 1 to 3 Desired Criteria Operational State I: - CHR 1 to 3 Desired Criteria Operational State II, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Name References Name References Adequate Name References Adequate Name References Adequate Name References Name References Name References Name Name Name	Objective				
Test Limitations: little to no disturbance Test Tolerances: Knock it Off: none specified Description Stabilize at trim Airspeed, fix collective (record longitudinal cyclic position), use longitudinal cyclic to vary airspeed +/-15 knots f trim, allow aircraft to climb/descend (stabilize at 5 knot increments), record cyclic positions at varied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position sa traied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position vs airspeed, relate to instrument S&C requirements like VMIN-I and relevance to instrument departures and approaches. Notes Test Course Description Reference Guidance Adequate Criteria Operational State I: - CHR 1 to 3 Operational State II, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Task Adequate Desired Instrumentation Package Name Requirements NASA POC Email Alternate NASA POC Email FAA FOCAL POC Email	condition by a gust, with shall not be so pronounce For the OH-58C, longitud envelope. Max continuou	controls fixed or free, there is a ten ed as to be unacceptable to either th inal stability characteristics will be	dency for the aircraft to retur ne pilot or the passengers in t evaluated around several trim	n to the trimmed value. However, the t urbulence. a airspeeds that cover the normal opera	tenden
Test Limitations: little to no disturbance Test Tolerances: Knock it Off: none specified Description Stabilize at trim Airspeed, fix collective (record longitudinal cyclic position), use longitudinal cyclic to vary airspeed +/-15 knots f trim, allow aircraft to climb/descend (stabilize at 5 knot increments), record cyclic position at varied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position variend speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position varied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position varied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position varied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position varied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position varied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position varies are speed, relate to instrument S&C requirements like VMIN-I and relevance to instrument departures and approaches. Notes Reference Guidance Reference Guidance Adequate Criteria Operational State I: - CHR 1 to 3 Operational State II, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Task Adequate Desired Instrumentation Package Name Resolution Requirements NASA POC Requirements NASA POC Email Alternate NASA POC Email FAA FOCAL POC Email FAA POLICY Email					
Test Tolerances: Knock it Off: none specified Description Stabilize at trim Airspeed, fix collective (record longitudinal cyclic position), use longitudinal cyclic to vary airspeed +/-15 knots f trim, allow aircraft to climb/descend (stabilize at 5 knot increments), record cyclic positions at varied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position vs airspeed, relate to instrument S&C requirements like VMIN-1 and relevance to instrument departures and approaches. Notes Test Course Description Reference Guidance Adequate Criteria Operational State 1: - CHR 1 to 3 Operational State 1: - CHR 1 to 3 Operational State 1!, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Task Adequate Instrumentation Package Name Requirements Name Requirements NASA POC ANA FOCAL POC FAA FOCAL POC FAA FOCAL POC FAA POICY POC					
Knock it Off: none specified Description Stabilize at trim Airspeed, fix collective (record longitudinal cyclic position), use longitudinal cyclic to vary airspeed +/-15 knots f trim, allow aircraft to climb/descend (stabilize at 5 knot increments), record cyclic positions at varied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position vs airspeed, relate to instrument S&C requirements like VMIN-1 and relevance to instrument departures and approaches. Notes Test Course Description Reference Guidance Adequate Criteria Operational State I: - CHR 1 to 3 Operational State II, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Task Adequate Desired Instrumentation Package Resolution Requirements Resolution Requirements Resolution Requirements Email Alternate NASA POC Email FAA FOCAL POC Email		no disturbance			
Description Stabilize at trim Airspeed, fix collective (record longitudinal cyclic position), use longitudinal cyclic to vary airspeed +/-15 knots f trim, allow aircraft to climb/descend (stabilize at 5 knot increments), record cyclic positions at varied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position vs airspeed, relate to instrument S&C requirements like VMIN-I and relevance to instrument departures and approaches. Notes Test Course Description Reference Guidance Adequate Criteria Operational State I: - CHR 1 to 3 Desired Criteria Operational State II, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Name Resolution Requirements NAME Resolution Adequate II, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Test Course Description Test Course Description Instrumentation Package Desired Instrumentation Package Name Requirements NASA POC Email					
Stabilize at trim Airspeed, fix collective (record longitudinal cyclic position), use longitudinal cyclic to vary airspeed +/-15 knots f trim, allow aircraft to climb/descend (stabilize at 5 knot increments), record cyclic positions at varied speeds – slowly release cy measure free return speed. Repeat at different airspeeds, CGs – observe cyclic position vs airspeed, relate to instrument S&C requirements like VMIN-I and relevance to instrument departures and approaches. Notes Test Course Description Reference Guidance Adequate Criteria Operational State I: - CHR 1 to 3 Operational State II: - CHR 1 to 3 Operational State II. III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Task Adequate Instrumentation Package Name Resolution Requirements NAMA POC Requirements NASA POC Email Alternate NASA POC Email Alternate NASA POC Email FAA FOCAL POC Email FAA POIcy POC					
Reference Guidance Adequate Criteria Operational State I: - CHR 1 to 3 Desired Criteria Operational State II, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Task Adequate Desired Instrumentation Package Name Requirements Resolution NASA POC Email Alternate NASA POC Email FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspee	d, fix collective (record longitudinal			
Adequate Criteria Operational State I: - CHR 1 to 3 Desired Criteria Operational State II, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Task Adequate Desired Instrumentation Package Instrumentation Package Name Resolution Requirements Resolution NASA POC Email Alternate NASA POC Email FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return sper requirements like VMIN-	d, fix collective (record longitudinal e mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, CO	ements), record cyclic positio Gs – observe cyclic position vs	ns at varied speeds – slowly release cy	
Desired Criteria Operational State II, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Desired Task Desired Adequate Desired Instrumentation Package Resolution Name Resolution Requirements Email NASA POC Email Alternate NASA POC Email FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spee requirements like VMIN- Notes	d, fix collective (record longitudinal e mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, CO	ements), record cyclic positio Gs – observe cyclic position vs	ns at varied speeds – slowly release cy	
Desired Criteria Operational State II, III and moderate turbulence and crosswinds – CHR 4 to 6 Instrumentation Package Desired Task Desired Adequate Desired Instrumentation Package Resolution Name Resolution Requirements Email NASA POC Email Alternate NASA POC Email FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spee requirements like VMIN- Notes Test Course Description	d, fix collective (record longitudinal e mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, CO	ements), record cyclic positio Gs – observe cyclic position vs	ns at varied speeds – slowly release cy	
Instrumentation Package Task Adequate Desired Instrumentation Package Resolution Name Resolution Requirements Instrumentation Package NASA POC Email Alternate NASA POC Email FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spee requirements like VMIN- Notes Test Course Description Reference Guidance	d, fix collective (record longitudinal mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, Co I and relevance to instrument depar	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches.	ns at varied speeds – slowly release cy	
Task Adequate Desired Instrumentation Package Resolution Name Resolution Requirements Email Alternate NASA POC Email FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spee requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria	d, fix collective (record longitudinal a mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, Co I and relevance to instrument depar Operational State I: - CHR 1 to	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches.	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	
Adequate Desired Instrumentation Package Resolution Name Resolution Requirements Email Alternate NASA POC Email FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spee requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria	d, fix collective (record longitudinal e mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, CG I and relevance to instrument depar Operational State I: - CHR 1 to Operational State II, III and m	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches.	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	
Instrumentation Package Resolution Name Resolution Requirements Email NASA POC Email Alternate NASA POC Email FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spee requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	d, fix collective (record longitudinal e mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, CG I and relevance to instrument depar Operational State I: - CHR 1 to Operational State II, III and m	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches.	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	
Name Resolution Requirements Email NASA POC Email Alternate NASA POC Email FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spee requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task	d, fix collective (record longitudinal e mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, CG I and relevance to instrument depar Operational State I: - CHR 1 to Operational State II, III and m	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches.	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	
Requirements NASA POC Email Alternate NASA POC Email FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spee requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate	d, fix collective (record longitudinal of mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, Co I and relevance to instrument depar Operational State I: - CHR 1 to Operational State II, III and mo	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches.	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	
NASA POC Email Alternate NASA POC Email FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spec- requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package	d, fix collective (record longitudinal of mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, Co I and relevance to instrument depar Operational State I: - CHR 1 to Operational State II, III and mo	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches.	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	
Alternate NASA POC Email FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spec requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name	d, fix collective (record longitudinal of mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, Co I and relevance to instrument depar Operational State I: - CHR 1 to Operational State II, III and mo	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches.	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	
FAA FOCAL POC Email FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spec- requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name	d, fix collective (record longitudinal of mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, Co I and relevance to instrument depar Operational State I: - CHR 1 to Operational State II, III and mo	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches.	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	
FAA Policy POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spee requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC	d, fix collective (record longitudinal of mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, Co I and relevance to instrument depar Operational State I: - CHR 1 to Operational State II, III and mo	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches. 3 3 oderate turbulence and cross Desired Resolution Email	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	
	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spee requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	d, fix collective (record longitudinal of mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, Co I and relevance to instrument depar Operational State I: - CHR 1 to Operational State II, III and mo	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches. 9 3 9 3 9 derate turbulence and crosse Desired Resolution Email Email	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	
	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spee requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	d, fix collective (record longitudinal of mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, Co I and relevance to instrument depar Operational State I: - CHR 1 to Operational State II, III and mo	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches. 9 3 9 3 9 derate turbulence and crosse Desired Resolution Email Email	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	
	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spec requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	d, fix collective (record longitudinal of mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, Co I and relevance to instrument depar Operational State I: - CHR 1 to Operational State II, III and mo	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches. 9 3 9 3 9 derate turbulence and crosse Desired Resolution Email Email Email	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	
FAA Technical POC Email	Description Stabilize at trim Airspeet trim, allow aircraft to cli measure free return spee requirements like VMIN- Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA Policy POC FAA Technical POC	d, fix collective (record longitudinal of mb/descend (stabilize at 5 knot incr ed. Repeat at different airspeeds, Co I and relevance to instrument depar Operational State I: - CHR 1 to Operational State II, III and mo	ements), record cyclic positio Ss – observe cyclic position vs tures and approaches. 9 3 9 3 9 derate turbulence and crosse Desired Resolution Email Email Email	ns at varied speeds – slowly release cy : airspeed, relate to instrument S&C	

Title	Climb/Descent/Glide		
Data Element Type	Dynamic		
Scenario	1,2,3	UTE	NA
Metric Type	Vehicle	Maneuver	Climb.Descent.Glide
Phase of Flight	Inflight	Event	Range Flight
Objective			
performance parameters angle). Record any enviro other).	nmental or system factors that affect the	in Rate of descent, Vfor r hese speeds (Altitude, Te) performance charts. Determine key min angle of descent, Vmax Glide, Glide mperature, battery health, failure scenario wk" numbers for performance at various
Configuration			
Test Conditions			
Test Limitations: little to	no turbulence		
Knock it Off:			
Knock it Off: Description			
Knock it Off: Description At test GW, TLOF height:		-	e a VTOSS for the OH-58C?) and climb at
Knock it Off: Description At test GW, TLOF height: constant airspeed at max	continuous power. At TLOF height +200	Oft, time hack and record	(Q, NR, OAT, HP and KIAS) - continue clim
constant airspeed at max		Oft, time hack and record	(Q, NR, OAT, HP and KIAS) - continue clim
Knock it Off: Description At test GW, TLOF height: constant airspeed at max	continuous power. At TLOF height +200	Oft, time hack and record	(Q, NR, OAT, HP and KIAS) - continue clim
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap	continuous power. At TLOF height +200	Oft, time hack and record	(Q, NR, OAT, HP and KIAS) - continue clim
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes	continuous power. At TLOF height +200	Oft, time hack and record	(Q, NR, OAT, HP and KIAS) - continue clim
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap	continuous power. At TLOF height +200	Oft, time hack and record	(Q, NR, OAT, HP and KIAS) - continue clim
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description	continuous power. At TLOF height +200	Oft, time hack and record	(Q, NR, OAT, HP and KIAS) - continue clim
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description	continuous power. At TLOF height +200	Oft, time hack and record	(Q, NR, OAT, HP and KIAS) - continue clim
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance	continuous power. At TLOF height +200 oplicable), take several time hacks/recor	Oft, time hack and record	(Q, NR, OAT, HP and KIAS) - continue clim
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance Adequate Criteria	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3	Oft, time hack and record	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3 Operational State II, III and moder	Oft, time hack and record	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3 Operational State II, III and moder	Oft, time hack and record	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3 Operational State II, III and moder	oft, time hack and record rdings, including TLOF +1	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3 Operational State II, III and moder	Oft, time hack and record	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3 Operational State II, III and moder	Oft, time hack and record rdings, including TLOF +10 ate turbulence and crosse Desired	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3 Operational State II, III and moder	oft, time hack and record rdings, including TLOF +1	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3 Operational State II, III and moder	Oft, time hack and record rdings, including TLOF +10 ate turbulence and crosse Desired Resolution	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3 Operational State II, III and moder	Oft, time hack and record rdings, including TLOF +10 ate turbulence and crosse Desired Resolution Email	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3 Operational State II, III and moder	Desired Resolution Email Email	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Fest Course Description Reference Guidance Adequate Criteria Desired Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3 Operational State II, III and moder	Desired Resolution Email Email Email	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name Requirements NASA POC Alternate NASA POC FAA FOCAL POC FAA FOCAL POC FAA Policy POC	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3 Operational State II, III and moder	Desired	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft
Knock it Off: Description At test GW, TLOF height: constant airspeed at max and transition to VY (if ap Notes Test Course Description Reference Guidance Adequate Criteria Desired Criteria Instrumentation Package Task Adequate Instrumentation Package Name	continuous power. At TLOF height +200 oplicable), take several time hacks/record Operational State I: - CHR 1 to 3 Operational State II, III and moder	Desired Resolution Email Email Email	(Q, NR, OAT, HP and KIAS) – continue clim 000ft, test complete at TLOF +1200ft

6.7 Experimental Route Coding

Apollo Route

ROUTE APOLLO

HDR APOLLO	(Scenario 1)	PA	USXVPT	SIAPCOPTER	VOR/DME 291		AMDT 2	W	20150130V18A
SUSAD	EDW K60104	920VTLW	N345856	51W117435739	N34585651W117435739W009001	0001	NARMILTON		0001020
SUSAEAENRT	INNIS K60	WL	N345721	65W117533159	E0012	NAR	INNIS		6663626
SUSAEAENRT	GORDO K60	WL	N345744	03W117521654	E0012	NAR	GORDO		0004020
USAEAENRT	BILLD K60	WL	N345651	37W117522442	E0012	NAR	BILLD		0005020
USAEAENRT	FREDD K60	WL	N345700	53W117522123	E0012	NAR	FREDD		0006020
USAEAENRT	GERDS K60	WL	N345804	78W117524578	E0012	NAR	GERDS		0007020
USAEAENRT	COOPR K60	W L	N345705	30W117523226	E0012	NAR	COOPR		0008020
USAEAENRT	LEWIS KOO	W L	N345641	13W117531364	E0012	NAR	LEWIS		8889828
USAEAENRT	MARTA K60	W L	N345743	25W117524295	E0012	NAR	MARTA		0010020
USAEAENRT	MILTT K60	W L	N345642	71W117524232	E0012	NAR	MILTT		8811826
USAEAENRT	ALLAZ K60	W L	N345739	53W117532175	E0012	NAR	ALLAZ		0012020
USAEAENRT	TERPS K60	WL	N345730	87W117520400	E0012	NAR	TERPS		0013020
USAEAENRT	SIDBR K60	WL	N345313	14W117410023	E0012	NAR	SIDBR		0014020
USAEAENRT	ANCHR K60	WL	N345841	44W117505879	E0012	NAR	ANCHR		0015020
USAEAENRT	EVOLV K60	WL	N345839	17W117493207	E0012	NAR	EVOLV		0016020
USAEAENRT	MRPHY K60	WL	N345739	63W117533310	E0012	NAR	MRPHY		0017020
USAEAENRT	ROBST K60	WL	N345807	82W117532655	E0012	NAR	ROBST		0018020
USAEAENRT	STARR K60	W L	N345211	64W117375009	E0012	NAR	STARR		001902
USAEAENRT	SHRMA K60	W L	N345844	46W117480540	E0012	NAR	SHRMA		002002
USAEAENRT	ERINW K60	WL	N345818	49W117524507	E0012	NAR	ERINW		0021020
USAEAENRT	GRAND K60	W L	N345759	65W117520790	E0012	NAR	GRAND		0022020
USAEAENRT	CHLNG K60	W L	N345713	71W117515601	E0012	NAR	CHLNG		0023020
USAEAENRT	WEBBD K60	WL	N345836	76W117531103	E0012	NAR	WEBBD		0024020
USAEAENRT	CMILL K60	WL	N345824	21W117530471	E0012	NAR	CMILL		0025020
USAEAENRT	HOMLA K60	WL	N345419	10W117460535	E0012	NAR	HOMLA		0026020
USAEAENRT	EGGMS K60	WL	N345302	61W117410157	E0012	NAR	EGGMS		0027020
USAEAENRT	MOHAG K60	WL	N345645	18W117480114	E0012	NAR	MOHAG		0028020
USAEAENRT	SPEDE K60	WL	N345718	82W117515353	E0012	NAR	SPEDE		0029020
USAEAENRT	FASST K60	WL	N345820	78W117521375	E0012	NAR	FASST		0030020
USAEAENRT	HACKN K60	W L	N345456	21W117420930	E0012	NAR	HACKN		003102
USAEAENRT	PNCHO K60	W L	N345804	68W117521240	E0012	NAR	PNCHO		0032020
USAEAENRT	CAPPS K60	WL	N345653	99W117515084	E0012	NAR	CAPPS		0033020
USAEAENRT	FIAPA K60	W L	N345805	64W117525434	E0012	NAR	FIAPA		003402
USAEAENRT	OLIVZ K60	WL	N345513	18W117464625	E0012	NAR	OLIVZ		0035020
USAEAENRT	GRICH K60	WL	N345544	95W117482254	E0012	NAR	GRICH		883682
USAEAENRT	FURRY K60	WL	N345238	61W117371489	E0012	NAR	FURRY		0037020
USAEAENRT	WGGNR K60	WL	N345619	79W117490583	E0012	NAR	WGGNR		0038020
USAEAENRT	DEEZR K60	WL	N345437	56W117473888	E0012	NAR	DEEZR		0039020
USAEAENRT	GOCKL K60	WL	N345758	85W117523936	E0012	NAR	GOCKL		0040020
USAEAENRT	POTTR K60	W L	N345240	23W117365483	E0012	NAR	POTTR		0041020
SUSAEAENRT	METRO K60	W L	N345803	36W117530756	E0012	NAR	METRO		0042020

Apollo Route Deproach

ROUTE APOLLO

Experimental "DEPROACH"

SUSAP	XVPTK6GRW19	0010	611892	N34571364	W1175	25772	+0217102279000056100I								106521804
SUSAP	XVPTK6GRW01	0010	610096	N34570389	W1175	30240	+02171022760000561001								106521804
SUSAH	XEDWK6A	0	NARY	N34573283	W1175	25412E01200227	6 1800018000P			M XED	W Nor	th			100102013
SUSAH	XVPTK6A	0	NARN	N34571364	W1175	25772E01200227	7 1800018000P			M XVP	T Nor	th			100202013
SUSAH	ХХЗЗК6А	0	NARN	N34523317	W1173	70408E01200227	7 1800018000P			м ххз	3				100202013
SUSAH	XEDWK6H01H	0500	060050	N34573273	W1175	25425HCONC1015	02276								200102013
SUSAH	XEDWK6H02H	0500	060050	N34572437	W1175	25772HCONC1015	02279								200202013
SUSAH	ХЕДЫК6Н03Н	8588	868858	N34572614	W1175	30312HCONC1015	82279								200302013
SUSAH	XVPTK6H04H	0500	060050	N34571326	W1175	25808HCONC1015	02276								200402013
SUSAH	XVPTK6H05H	0500	060050	N34578431	W1175	30227HCONC1015	02276								200502013
SUSAH	ХХЗЗК6Н06Н	0500	060050	N34523317	W1173	70408HCONC1015	02981								200502013
SUSAP	XVPTK6FR01	AEDW	010EDW	K6D ØV		IF				18	000		A	JS	300102013
SUSAP	XVPTK6FR01	AEDW	020MRP	HYKGEABE	R	TF	24880080	+	05000				A	35	300202013
SUSAP	XVPTK6FR01	R	010MRP	НҮКБЕАӨЕ		IF		+	05000	18	000		A	JS	300302013
SUSAP	XVPTK6FR01	R	020ROB	STK6EA0E	R	TF	35890005	+	04000				A	JS	300402013
SUSAP	XVPTK6FR01	R	Ø3ØWEB	BDK6EA0E	R	TF	01120005	+	03000				A	35	300502013
SUSAP	XVPTK6FR01	R	040ERI	NNK6EA0E	R	TF	01120005	+	03000				A	JS	300602013
SUSAP	XVPTK6FR01	R	050GRA	NDK6EA0E	R	TF	01120005	+	03000				A	35	300702013
SUSAP	XVPTK6FR01	R	060CHL	NGK6EA0E	IR	TF	13360008	+	03000				A	35	300802013
SUSAP	XVPTK6FR01	R	070BIL	LDK6EA0E	FL	TF	21070002	+	03000				A	JS	300902013
SUSAP	XVPTK6FR01	R	BSBRNB	1 K6PG8G	M	TF	35600014		01339			-988	A	JS	301002013
SUSAH	XEDWK6FR01H	AEDW	010EDW	K6D ØV		IF				18	666		A	JS	301102013
SUSAH	XEDWK6FR01H	AEDW	020BIL	LDK6EA0E	R	TF	24880080	+	05000				A	JS	301202013
SUSAH	XEDWK6FR01H	R	010BIL	LDK6EA0E		IF		+	05000	18	666		A	JS	301302013
SUSAH	XEDWK6FR01H	R	020CHL	NGK6EA0E	R	TF	35890005	+	04000				A	JS	301402013
SUSAH	XEDWK6FR01H	R	030GRA	NDK6EA0E	R	TF	01120005	+	03000				A	35	301502013
SUSAH	XEDWK6FR01H	R	040ERI	NWK6EA0E	R	TF	01120005	+	03000				A	35	301602013
SUSAH	XEDWK6FR01H	R	050WEB	BDK6EA0E	R	TF	01120005	+	03000				A	JS	301702013
SUSAH	XEDWK6FR01H	R	060ROB	STK6EA0E	IR	TF	13360008	+	03000				A	JS	301802013
SUSAH	XEDWK6FR01H	R	070MRP	HYK6EAØE	FL	TF	21070002	+	03000				A	JS	301902013
SUSAH	XEDWK6FR01H	R	08001H	K6HH0G	(M	TF	35600014		01339			-900	A	JS	302002013

Discovery Route

ROUTE DISCOVERY

HDR DISCOVER	Y (Sce	nario	1)	PAL	USXVPT	SIAPCOPTER	VOR/DME 291			AMDT 2	W	20150130V18A
SUSAD	EDW	K601	0920V1	TLW	N345856	51W117435739	N34585651W1174357	3900090010	0001	NARMILTON		000102013
SUSAEAENRT	INNIS	K60	W	L	N345721	65W117533159		E0012	NAR	INNIS		000302013
SUSAEAENRT	GORDO	K60	W	L	N3457446	03W117521654		E0012	NAR	GORDO		000402013
SUSAEAENRT	BILLD	K60	W	L	N345651	37W117522442		E0012	NAR	BILLD		000502013
SUSAEAENRT	FREDD	K60	W	L	N345700	53W117522123		E0012	NAR	FREDD		000602013
SUSAEAENRT	GERDS		W	L	N345804	78W117524578		E0012	NAR	GERDS		000702013
SUSAEAENRT	COOPR	K60	W	L	N345705	30W117523226		E0012	NAR	COOPR		000802013
SUSAEAENRT	LEWIS		ы			13W117531364		E0012	NAR	LEWIS		000902013
SUSAEAENRT	MARTA	K60	ы	L	N345743	25W117524295		E0012	NAR	MARTA		001002013
SUSAEAENRT	MILTT	K60	W	L	N3456423	71W117524232		E0012	NAR	MILTT		001102013
SUSAEAENRT	ALLAZ	K60	W	L	N345739	53W117532175		E0012	NAR	ALLAZ		001202013
SUSAEAENRT	TERPS	K60	W	L	N345730	87W117520400		E0012	NAR	TERPS		001302013
SUSAEAENRT	SIDBR	K60	W	L	N345313	14W117410023		E0012	NAR	SIDBR		001402013
SUSAEAENRT	ANCHR	K60	W	L	N345841/	44W117505879		E0012	NAR	ANCHR		001502013
SUSAEAENRT	EVOLV	K60	W	L	N3458393	17W117493207		E0012	NAR	EVOLV		001602013
SUSAEAENRT	MRPHY	K60	W	L	N3457396	63W117533310		E0012	NAR	MRPHY		001702013
SUSAEAENRT	ROBST	K60	W	L	N3458078	82W117532655		E0012	NAR	ROBST		001802013
SUSAEAENRT	STARR	K60	W	L	N3452116	64W117375009		E0012	NAR	STARR		001902013
SUSAEAENRT	SHRMA	K60	W	L	N3458444	46W117480540		E0012	NAR	SHRMA		002002013
SUSAEAENRT	ERINW	K60	W	L	N3458184	49W117524507		E0012	NAR	ERINW		002102013
SUSAEAENRT	GRAND	K60	ы	L	N3457596	65W117520790		E0012	NAR	GRAND		002202013
SUSAEAENRT	CHLNG	K60	W	L	N345713	71W117515601		E0012	NAR	CHLNG		002302013
SUSAEAENRT	WEBBD	K60	ы	L	N345836	76W117531103		E0012	NAR	WEBBD		002402013
SUSAEAENRT	CMILL	K60	W	L	N345824	21W117530471		E0012	NAR	CMILL		002502013
SUSAEAENRT	HOMLA	K60	W	L	N345419	10W117460535		E0012	NAR	HOMLA		002602013
SUSAEAENRT	EGGMS	K60	ы	L	N345302	61W117410157		E0012	NAR	EGGMS		002702013
SUSAEAENRT	MOHAG	K60	ы	L	N345645	18W117480114		E0012	NAR	MOHAG		002802013
SUSAEAENRT	SPEDE	K60	W	L	N345718	82W117515353		E0012	NAR	SPEDE		002902013
SUSAEAENRT	FASST	K60	W	L	N345820	78W117521375		E0012	NAR	FASST		003002013
SUSAEAENRT	HACKN	K60	14	L	N345456	21W117420930		E0012	NAR	HACKN		003102013
SUSAEAENRT	PNCHO	K60	W	L	N345804	68W117521240		E0012	NAR	PNCHO		003202013
SUSAEAENRT	CAPPS	K60	W	L	N345653	99W117515084		E0012	NAR	CAPPS		003302013
SUSAEAENRT	FIAPA	K60	ы	L	N345805	64W117525434		E0012	NAR	FIAPA		003402013
SUSAEAENRT	OLIVZ	K60	ы	L	N345513	18W117464625		E0012	NAR	OLIVZ		003502013
SUSAEAENRT	GRICH	K60	W	L	N345544	95W117482254		E0012	NAR	GRICH		003602013
SUSAEAENRT	FURRY	K60	W	L	N345238	61W117371489		E0012	NAR	FURRY		003702013
SUSAEAENRT	WGGNR	K60	W	L	N345619	79W117490583		E0012	NAR	WGGNR		003802013
SUSAEAENRT	DEEZR	K60	W	L	N345437	56W117473888		E0012	NAR	DEEZR		003902013
SUSAEAENRT	GOCKL	K60	W	L	N345758	85W117523936		E0012	NAR	GOCKL		004002013
SUSAEAENRT	POTTR	K60	W	L	N345240	23W117365483		E0012	NAR	POTTR		004102013
SUSAEAENRT	METRO	K60	W	L	N345803	36W117530756		E0012	NAR	METRO		004202013

Discovery Route Deproach

ROUTE DISCOVERY

Experimental "DEPROACH"

SUSAP	XVPTK6GRW19	0010	611892	N3457136	54W117	525772	2 .	+02171022	79000056100	I							106521804
SUSAP	XVPTK6GRW01	0010	610096	N3457038	9W117	530246		+02171022	7600056100	I							106521804
SUSAH	XEDWK6A	0	NARY	N3457328	3W117	525412	2E01200227	6	1800018000	P		M XEDW	North				100102013
SUSAH	XVPTK6A	0	NARN	N3457136	54W117	525772	2E01200227	7	1800018000	P		H XVPT	North				100202013
SUSAH	XX33K6A	0	NARN	N3452331	7W117	378488	BE01200227	7	1800018000	P		M XX33					100202013
SUSAH	XEDWK6H01H	0500	060050	N3457327	3W117	525425	SHCONC1015	022	76								200102013
SUSAH	XEDWK6H02H	0500	060050	N3457243	37W117	525772	HCONC1015	822	79								200202013
SUSAH	XEDWK6H03H	0500	060050	N3457261	41117	530312	2HCONC1015	022	79								200302013
SUSAH	XVPTK6H04H	0500	060050	N3457132	0W117	525808	BHCONC1015	022	76								200402013
SUSAH	XVPTK6H05H	0500	060050	N3457843	31W117	530227	7HCONC1015	822	76								200502013
SUSAH	XX33K6H06H	0500	060050	N3452331	7W117	370408	BHCONC1015	029	81								200502013
SUSAH	XEDWK6FR01H	AEDW	010EDW	K6D 8	/	IF						180	66		A	35	300102013
SUSAH	XEDWK6FR01H	AEDW	020MAR	RTAK6EA08	R	TF			24880080	+	05000				A	35	300202013
SUSAH	XEDWK6FR01H	R	010MAP	RTAK6EA0		IF				+	05000	180	00		A	JS	300302013
SUSAH	XEDWK6FR01H	R	020GOF	RDOK6EA08	R	TF			35890005	+	84888				A	35	300402013
SUSAH	XEDWK6FR01H	R	030WEE	BDK6EA08	R	TF			01120005	+	03000				A	35	300502013
SUSAH	XEDWK6FR01H	R	040ROE	BSTK6EA08	IR	TF			13360008	+	03000				A	JS	300602013
SUSAH	XEDWK6FR01H	R	050MRF	PHYK6EABB	FL	TF			21878882	+	03000				A	35	300702013
SUSAH	XEDWK6FR01H	R	06001	K6HH00	N YG	TF			35600014		01339		-9	00	A	JS	300802013
SUSAP	XVPTK6FR19	AEDW	010EDW	K6D 0	1	IF						180	00		A	35	300902013
SUSAP	XVPTK6FR19	AEDW	020MRF	PHYK6EA08	R	TF			24880080	٠	05000				A	JS	301002013
SUSAP	XVPTK6FR19	R	010MRF	PHYK6EA08		IF				+	05000	180	00		A	35	301102013
SUSAP	XVPTK6FR19	R	020ROE	STK6EA08	R	TF			35890005	+	84888				A	35	301202013
SUSAP	XVPTK6FR19	R	030WEE	BDK6EA08	R	TF			01120005	+	03000				A	35	301302013
SUSAP	XVPTK6FR19	R	848GOF	RDOKGEA0	IR	TF			13360008	+	03000				A	35	301402013
SUSAP	XVPTK6FR19	R	OSOMAR	RTAK6EA08	FL	TF			21070002		03000				A	35	301502013
SUSAP	XVPTK6FR19	R	060RW1	19 K6PG00	SY M	TF			35600014		01339		-9	00	A	JS	301602013

Galileo Route

ROUTE GALILEO

	(Scenario 1)		PAUSXVPT		VOR/DME 291		AMDT 2	W	20150130V18A
SUSAD				1W117435739	N34585651W117435739W0096		NARMILTON		000102013
SUSAEAENRT	INNIS K60	W		5W117533159	E0012		INNIS		000302013
SUSAEAENRT	GORDO K60	W		3W117521654	E0012		GORDO		000402013
SUSAEAENRT	BILLD K60	14		7W117522442	E0012		BILLD		000502013
SUSAEAENRT	FREDD K60	W		3W117522123	E0012		FREDD		000602013
SUSAEAENRT	GERDS K60	ы		8W117524578	E0012		GERDS		888782813
SUSAEAENRT	COOPR K60	W		0W117523226	E0012		COOPR		000802013
SUSAEAENRT	LEWIS K60	W		3W117531364	E0012		LEWIS		000902013
SUSAEAENRT	MARTA K60	ы		5W117524295	E0012		MARTA		881882813
SUSAEAENRT	MILTT K60	ы	-	1W117524232	E0012		MILTT		001102013
SUSAEAENRT	ALLAZ K60	W		3W117532175	E0012		ALLAZ		001202013
SUSAEAENRT	TERPS K60	W	L N3457308	7W117520400	E0012		TERPS		001302013
SUSAEAENRT	SIDBR K60	14		4W117410023	E0012		SIDBR		001402013
SUSAEAENRT	ANCHR K60	W		4W117505879	E0012		ANCHR		001502013
SUSAEAENRT	EVOLV K60	W	L N3458391	7W117493207	E0012		EVOLV		001602013
SUSAEAENRT	MRPHY K60	14	L N3457396	3W117533310	E0012		MRPHY		001702013
SUSAEAENRT	ROBST K60	ы	L N3458078	2W117532655	E0012		ROBST		001802013
SUSAEAENRT	STARR K60	W	L N3452116	4W117375009	E0012		STARR		001902013
SUSAEAENRT	SHRMA K60	W	L N3458444	6W117480540	E0012		SHRMA		002002013
SUSAEAENRT	ERINW K60	W	L N3458184	9W117524507	E0012		ERINW		002102013
SUSAEAENRT	GRAND K60	W	L N3457596	5W117520790	E0012	2 NAR	GRAND		002202013
SUSAEAENRT	CHLNG K60	W	L N3457137	1W117515601	E0012	NAR NAR	CHLNG		002302013
SUSAEAENRT	WEBBD K60	ы	L N3458367	6W117531103	E0012		WEBBD		002402013
SUSAEAENRT	CMILL K60	W	L N3458242	1W117530471	E0012	2 NAR	CMILL		002502013
SUSAEAENRT	HOMLA K60	W	L N3454191	0W117460535	E0012	2 NAR	HOMLA		002602013
SUSAEAENRT	EGGMS K60	W	L N3453026	1W117410157	E0012		EGGMS		882782813
SUSAEAENRT	MOHAG K60	14	L N3456451	8W117480114	E0012		MOHAG		002802013
SUSAEAENRT	SPEDE K60	W	L N3457188	2W117515353	E0012	2 NAR	SPEDE		002902013
SUSAEAENRT	FASST K60	W	L N3458207	8W117521375	E0012		FASST		003002013
SUSAEAENRT	HACKN K60	W	L N3454562	1W117420930	E0012		HACKN		003102013
SUSAEAENRT	PNCHO K60	W	L N3458046	8W117521240	E0012		PNCHO		003202013
SUSAEAENRT	CAPPS K60	14	L N3456539	9W117515084	E0012	2 NAR	CAPPS		003302013
SUSAEAENRT	FIAPA K60	ы	L N3458056	4W117525434	E0012	NAR NAR	FIAPA		003402013
SUSAEAENRT	OLIVZ K60	W	L N3455131	8W117464625	E0012	2 NAR	OLIVZ		003502013
SUSAEAENRT	GRICH K60	ы	L N3455449	5W117482254	E0012	2 NAR	GRICH		003602013
SUSAEAENRT	FURRY K60	W	L N3452386	1W117371489	E0012	NAR	FURRY		883782813
SUSAEAENRT	WGGNR K60	24	L N3456197	9W117490583	E0012	2 NAR	WGGNR		003802013
SUSAEAENRT	DEEZR K60	w	L N3454375	6W117473888	E0012	2 NAR	DEEZR		003902013
SUSAEAENRT	GOCKL K60	W	L N3457588	5W117523936	E0012	NAR	GOCKL		004002013
SUSAEAENRT	POTTR K60	bd.	L N3452402	3W117365483	E0012	NAR	POTTR		004102013
SUSAEAENRT	METRO K60	W	L N3458033	6W117530756	E0012	2 NAR	METRO		004202013

Galileo Route Deproach

ROUTE GALILEO

Experimental "DEPROACH"

SUSAP	XVPTK6GRW19	00106118	92 N34571364	4W11752	5772	+02171022790000561001							106521804
SUSAP	XVPTK6GRW01	00106100	96 N3457038	9W11753	0240	+02171022760000561001							106521804
SUSAH	XEDWK6A	0 NAI	RY N34573283	3W11752	5412E0120022	76 1800018000P	•	1	4 XEDW	North			100102013
SUSAH	XVPTK6A	0 NAI	RN N34571364	4W11752	5772E0120022	77 1800018000P		1	4 XVPT	North			100202013
SUSAH	XX33K6A	0 NAI	RN N3452331	7W11737	0408E0120022	77 1800018000P	•		4 XX33				100202013
SUSAH	XEDWK6H01H	05000600	50 N3457327	3W11752	5425HCONC101	S 02276							200102013
SUSAH	XEDWK6H02H	05000600	50 N3457243	7W11752	5772HCONC101	S 02279							200202013
SUSAH	XEDWK6H03H	05000600	50 N34572614	4W11753	0312HCONC101	5 02279							200302013
SUSAH	XVPTK6H04H	05000600	50 N3457132	BW11752	5808HCONC101	S 02276							200402013
SUSAH	XVPTK6H05H	05000600	50 N3457043	1W11753	0227HCONC101	S 02276							200502013
SUSAH	ХХЗЗК6Н06Н	05000600	50 N3452331	7W11737	0408HCONC101	5 02981							200502013
SUSAH	XVPTK6FR04H	AEDW 010	EDW K6D ØV		IF				1800	0	A	JS	301102013
SUSAH	XVPTK6FR04H	AEDW 020	ARTAK6EA0E	R	TF	24880080	+	05000			A	JS	301202013
SUSAH	XVPTK6FR04H	R 010	ARTAK6EA0E		IF		+	05000	1800	0	A	JS	301302013
SUSAH	XVPTK6FR04H	R 020	GERDSK6EA0E	R	TF	35890005	+	84888			A	JS	301402013
SUSAH	XVPTK6FR04H	R 030	CMILLK6EA0E	R	TF	01120005	+	03000			A	JS	301502013
SUSAH	XVPTK6FR04H	R 040	FASSTK6EA0E	R	TF	01120005	+	03000			A	JS	301602013
SUSAH	XVPTK6FR04H	R 050	SPEDEK6EA0E	IR	TF	13360008	+	03000			A	JS	301802013
SUSAH	XVPTK6FR04H	R 060	FREDDK6EA0E	FL	TF	21070002	+	03000			A	JS	301902013
SUSAH	XVPTK6FR04H	R 070	ачн кеннос	YM	TF	35600014		01339		-988	A A	JS	302002013

Orion Route

ROUTE ORION

	(Scenario				JSXVPT		VOR/DME 291			AMDT 2	W	20150130V18A
USAD				-		W117435739	N34585651W117435739			NARMILTON		0001020
USAEAENRT	INNIS K		W	-		W117533159		E0012	NAR	INNIS		8883828
USAEAENRT	GORDO K		w	L		W117521654		E0012	NAR	GORDO		8884828
USAEAENRT	BILLD K		W	L		W117522442		E0012	NAR	BILLD		0005020
USAEAENRT	FREDD K		W	L		W117522123		E0012	NAR	FREDD		0006020
USAEAENRT	GERDS K		W	L		W117524578		E0012	NAR	GERDS		0007020
USAEAENRT	COOPR K		W	_		W117523226		E0012	NAR	COOPR		0008020
USAEAENRT	LEWIS K		W			W117531364		E0012	NAR	LEWIS		0009020
USAEAENRT	MARTA K		W	L		W117524295		E0012	NAR	MARTA		0010020
USAEAENRT	MILTT K		W	L		W117524232		E0012	NAR	MILTT		0011020
USAEAENRT	ALLAZ K		W	L		W117532175		E0012	NAR	ALLAZ		0012020
USAEAENRT	TERPS K		w	L		W117520400		E0012	NAR	TERPS		0013020
USAEAENRT	SIDBR K		W	L		W117410023		E0012	NAR	SIDBR		0014020
USAEAENRT	ANCHR K	60	W	L	N34584144	W117505879		E0012	NAR	ANCHR		0015020
USAEAENRT	EVOLV K	60	W	L	N34583917	W117493207		E0012	NAR	EVOLV		00160203
USAEAENRT	MRPHY K	60	W	L	N34573963	W117533310		E0012	NAR	MRPHY		0017020
USAEAENRT	ROBST K	60	W	L	N34580782	W117532655		E0012	NAR	ROBST		0018020
USAEAENRT	STARR K	60	w	L	N34521164	W117375009		E0012	NAR	STARR		8819828
JSAEAENRT	SHRMA K	60	W	L	N34584446	W117480540		E0012	NAR	SHRMA		0020020
USAEAENRT	ERINW K	60	W	L	N34581849	W117524507		E0012	NAR	ERINW		0021020
USAEAENRT	GRAND K	60	W	L	N34575965	W117520790		E0012	NAR	GRAND		0022020
USAEAENRT	CHLNG K	60	84	L	N34571371	W117515601		E0012	NAR	CHLNG		0023020
USAEAENRT	WEBBD K	60	W	L	N34583670	W117531103		E0012	NAR	WEBBD		0024020
USAEAENRT	CMILL K	60	W	L	N34582421	W117530471		E0012	NAR	CMILL		0025020
USAEAENRT	HOMLA K	60	W	L	N34541916	W117460535		E0012	NAR	HOMLA		0026020
USAEAENRT	EGGMS K	60	W	L	N34530261	W117410157		E0012	NAR	EGGMS		0027020
USAEAENRT	MOHAG K	60	W	L	N34564518	W117480114		E0012	NAR	MOHAG		0028020
USAEAENRT	SPEDE K	60	54	L	N34571882	W117515353		E0012	NAR	SPEDE		0029020
USAEAENRT	FASST K	60	54	L	N34582078	W117521375		E0012	NAR	FASST		0030020
USAEAENRT	HACKN K	60	w	L	N34545621	W117420930		E0012	NAR	HACKN		0031020
USAEAENRT	PNCHO K	60	w	L	N34580468	W117521240		E0012	NAR	PNCHO		0032020
USAEAENRT	CAPPS K	60	W	L	N34565399	W117515084		E0012	NAR	CAPPS		0033020
USAEAENRT	FIAPA K	60	W	L	N34580564	W117525434		E0012	NAR	FIAPA		0034020
USAEAENRT	OLIVZ K	60	W	L	N34551318	W117464625		E0012	NAR	OLIVZ		0035020
USAEAENRT	GRICH K	60	W	L	N34554495	W117482254		E0012	NAR	GRICH		0036020
USAEAENRT	FURRY K	60	14	L	N34523861	W117371489		E0012	NAR	FURRY		0037020
USAEAENRT	WGGNR K		W	L		W117490583		E0012	NAR	WGGNR		0038020
USAEAENRT	DEEZR K		W	L		W117473888		E0012	NAR	DEEZR		0039020
USAEAENRT	GOCKL K		w	L		W117523936		E0012	NAR	GOCKL		0040020
USAEAENRT	POTTR K		W	L		W117365483		E0012	NAR	POTTR		0041020
USAEAENRT	METRO K		W	-		W117530756		E0012	NAR	METRO		0042020

Orion Route Deproach

ROUTE ORION

Experimental "DEPROACH"

SUSAP	XVPTK6GRW19	0010	611892	34571364	W1175	25772	+02171022790000561001								106521804
SUSAP	XVPTK6GRW01	0010	610096 1	134570389	W1175	30240	+02171022760000561001								106521804
SUSAH	XEDWK6A	0	NARY M	134573283	W1175	25412E01200223	76 1800018000P			M XED	W Nor	th			100102013
SUSAH	XVPTK6A	0	NARN N	34571364	W1175	25772E01200223	77 1800018000P			M XVP	T Nor	th			100202013
SUSAH	XX33K6A	0	NARN N	134523317	W1173	70408E01200298	1800018000P			M XX3	3				100202013
SUSAH	XEDWK6H01H	0500	0060050 1	134573273	W1175	25425HCONC101	6 82276								200102013
SUSAH	XEDWK6H02H	0500	0000050 1	134572437	W1175	25772HCONC101	62279								200202013
SUSAH	XEDWK6H03H	0500	0660050 1	134572614	W1175	30312HCONC1015	62279								200302013
SUSAH	XVPTK6H04H	0500	0060050 1	34571320	W1175	25808HCONC1015	82276								200402013
SUSAH	XVPTK6H05H	0500	000050	134570431	W1175	30227HCONC1015	92276								200502013
SUSAH	ХХЗЗК6Н06Н	0500	0060050 1	134523317	W1173	70408HCONC1015	62981								200502013
SUSAH	XEDWK6FR01H	AEDW	010EDW	K6D ØV		IF				18	000		A	JS	301102013
SUSAH	XEDWK6FR01H	AEDW	020STAR	RRK6EAØE	R	TF	24880080	+	05000				A	35	301202013
SUSAH	XEDWK6FR01H	R	010STAR	RRKGEAØE		IF		+	05000	18	000		A	35	301302013
SUSAH	XEDWK6FR01H	R	020EGGN	ISK6EA0E	R	TF	35890005	+	04000				A	35	301402013
SUSAH	XEDWK6FR01H	R	030HOML	AK6EA0E	R	TF	01120005	+	03000				A	35	301502013
SUSAH	XEDWK6FR01H	R	0400LI	ZK6EA0E	R	TF	01120005	+	03000				A	35	301602013
SUSAH	XEDWK6FR01H	R	050MOH4	AGK6EAØE	R	TF	01120005	+	03000				A	35	301602013
SUSAH	XEDWK6FR01H	R	060EVOL	VK6EA0E	R	TF	01120005	+	03000				A	35	301602013
SUSAH	XEDWK6FR01H	R	070ANCH	RK6EA0E	R	TF	01120005	+	03000				A	35	301602013
SUSAH	XEDWK6FR01H	R	080PNCH	HOK6EA0E	IR	TF	13360008	+	03000				A	35	301802013
SUSAH	XEDWK6FR01H	R	090MART	TAK6EA0E	FL	TF	21070002	+	83888				A	35	301902013
SUSAH	XEDWK6FR01H	R	10001H	K6HH0GY	м	TF	35600014		01339			-900	A	35	302002013
SUSAH	XX33K6FR06H	AEDW	010EDW	K6D ØV		IF				18	888		A	JS	301102013
SUSAH	XX33K6FR06H	AEDW	020MAR1	TAKGEA0E	R	TF	24880080	+	05000				A	35	301202013
SUSAH	XX33K6FR06H	R	010MART	TAKGEAØE		IF		+	05000	18	000		A	JS	301302013
SUSAH	XX33K6FR06H	R	020PNCH	HOK6EA0E	R	TF	35890005	+	04000				A	35	301402013
SUSAH	XX33K6FR06H	R	030ANCH	IRK6EA0E	R	TF	01120005	+	03000				A	JS	301502013
SUSAH	XX33K6FR06H	R	040EVOL	VK6EA0E	R	TF	01120005	+	03000				A	JS	301602013
SUSAH	XX33K6FR06H	R	050MOH/	AGK6EA0E	R	TF	01120005	+	03000				A	JS	301602013
SUSAH	XX33K6FR06H	R	0600LI\	ZK6EA0E	R	TF	01120005	+	03000				A	35	301602013
SUSAH	XX33K6FR06H	R	070HOML	AK6EA0E	R	TF	01120005	+	03000				A	35	301602013
SUSAH	XX33K6FR06H	R	080EGGN	ISK6EA0E	IR	TF	13360008	+	03000				A	35	301802013
SUSAH	XX33K6FR06H	R	090STAP	RK6EAØE	FL	TF	21070002	+	03000				A	JS	301902013
SUSAH	XX33K6FR06H	R	10006H	K6HH0GY	M	TF	35600014		01339			-966	A	35	302002013

Waypoint Subset List (1 of 2)

NASA		Wayp	oint Subset List		
INNIS	34°58'3.36"N 117°53'7.56"W	MANKE	34°57'52.23"N 117°52'35.75"W	GRND1	34°56'28.65"N 117°52'57.97"V
GORDO	34°57'44.03"N 117°52'16.54"W	WALKR	34°57'6.82"N 117°52'23.47"W	CHLNG	34°57'13.71"N 117°51'56.01"V
BILLD	34°56'51.37"N 117°52'24.42"W	MORAN	34°56'51.92"N 117°52'48.26"W	WEBBD	34°58'34.47"N 117°53'21.36"V
FREDD	34°57'0.53"N 117°52'21.23"W	FERRY	34°57'56.61"N 117°53'16.46"W	CMILL	34°58'51.60"N 117°52'56.66"V
GERDS	34°58'4.78"N 117°52'45.78"W	ALLAZ	34°57'39.53"N 117°53'21.75"W	HOMLA	34°54'19.10"N 117°46'5.35"W
COOPR	34°57'5.30"N 117°52'32.26"W	TERPS	34°57'30.87"N 117°52'4.00"W	EGGMS	34°53'2.61"N 117°41'1.57"W
LEWIS 12°	' 34°56'41.13"N 117°53'13.64"W	SIDBR	34°53'13.14"N 117°41'0.23"W	MOHAG	34°56'45.18"N 117°48'1.14"W
LEWIS 9°	34°56'33.09"N 117°53'17.63"W	ANCHR	34°58'41.44"N 117°50'58.79"W	SPEDE	34°57'28.91"N 117°50'22.62"V
MARTA	34°57'43.25"N 117°52'42.95"W	EVOLV	34°58'39.17"N 117°49'32.07"W	FASST	34°58'5.30"N 117°52'13.36"W
MILTT	34°56'42.71"N 117°52'42.32"W	MRPHY	34°56'40.50"N 117°52'12.36"W	HACKN	34°56'20.44"N 117°44'20.32"V
MCKAY	34°59'56.66"N 117°50'38.49"W	ROBST	34°58'7.82"N 117°53'26.55"W	PNCHO	34°57'55.33"N 117°51'38.41"W
BRUCE	34°52'21.27"N 117°36'24.59"W	STARR	34°54'8.15"N 117°40'53.54"W	CAPPS	34°56'53.99"N 117°51'50.84"W
BLOOM	34°57'32.48"N 117°46'12.80"W	SHRMA	34°58'44.46"N 117°48'5.40"W		
DRURY	34°53'7.70"N 117°37'4.06"W	ERINW	34°58'39.86"N 117°52'21.51"W		

Document No. AAM-NC-069-001 Document Name: National Campaign Development of Airspace Operations, Infrastructure and Data

Waypoint Subset List (2 of 2)

NASA		Wayp	oint Subset List
FIAPA	34°56'32.68"N 117°52'24.80"W	WLCOX	35* 0'8.90"N 117*50'37.57"W
OUVZ	34*55'13.18"N 117*46'46.25"W	SMPLO	35° 0'4.34"N 117°49'37.02"W
GRICH	34*55'44.95"N 117*48'22.54"W	JAFFE	34°59'58.16"N 117°48'8.07"W
FURRY	34°49'59.87"N 117°37'50.27"W	TEERA	34*58'20.72"N 117*50'12.32"W
WGGNR	34*56'19.79 "N 117*49'5.83"W	PAULD	34*58'58.66"N 117*51'7.41"W
DEEZR	34°54'37.56"N 117°47'38.88"W	01H	34*57'32.88"N 117*52'54.07"W
GOCKL	34°58'29.40"N 117°51'41.53"W	04H-R19	34°57'13.24"N 117°52'57.99"W
POTTR	34*50'36.56"N 117*35'57.51"W	05H-R01	34°57'4.10"N 117°53'2.21"W
METRO	34°57'21.65"N 117°53'31.59"W	X-33	34*52'33.19"N 117*37'4.13"W
FALCN	34*58'0.82"N 117*49'1.83"W	02H	34°57'24.61"N 117*52'57.48"W
LGTHA	34*53'54.83"N 117*36'59.67"W	03H	34*57'25.95"N 117*53'2.64"W
RGNAR	34°54'14.15"N 117°33'24.07"W		
BJORN	34*52'9.06"N 117*33'31.38"W		
FLOKI	34°51'41.78"N 117°35'43.45"W		
CHIPP	34*56'56.22"N 117*51'45.32"W		

GRND2 34°55'42.56"N 117°52'49.96"W