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NASA Computational Capability

Bring materials into the design cycle -- Boeing’s “atoms to airplanes” program

Vehicle 

Steve Arnold, NASA 2



NASA Vision 2040

NASA Vision 2040 Goal: Enable the rapid, low cost design, development, 
certification and deployment of application specific advanced aerospace materials
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NASA Ames Computational Materials

Metals

Anti-Icing CoatingsBiosciences

Batteries
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• Zero emissions
• Low noise
• Energy efficient

Batteries are a critical 
enabler

 for electric aircraft

NASA Strategic Plan for Green Aviation

Strategic Thrust 4: 
Transition to Alternative  
Propulsion and Energy

Alternate Propulsion 
Demonstrators

Li-Air Battery
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Green Aviation Battery Requirements

Other requirements are rechargeable, safety, power, recharge time, cost, etc.

Major requirement is: High Energy Density

Energy 
Density
(Wh/kg)180 300 400 500 750

SOA Limit Gen. Aviation Regional Jets 

Li Ion Technology “Beyond Li Ion”

Green 
Aviation

SOA All Size Aircraft 

750+

X-57: 1 Person; 50 
Miles
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Electric aircraft have the most extreme requirements of any battery application



Energy Storage Research at NASA Ames

Polymer Structural Electrolytes

Li-Air Batteries (LiON) Ionic Liquid Electrolytes for Li Metal

All Solid-State Batteries (SABERS)

Li-Air Batteries for Electric Aircraft

Convergent Approach

• Materials science

• Fundamental chemistry 

• Computational materials

• Battery engineering

• Electric aircraft design
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Multiscale Battery Designer

Chemical Design

Microstructure 

Cell Design

Cell Simulation

NASA Electric Aircraft

Multiscale modeling from chemistry to materials to cell design and 
simulation for application specific battery systems 
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Battery Modeling Briefs

I. Sulfur-selenium cathode electrical conductivity

II. Solid-state electrolytes machine learning screening

III. Battery thermal anomaly prognostics
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I. Sulfur-Selenium Cathodes: 
Electrical Conductivity Computations

• Li-S batteries have high energy density 
needed for electric aircraft

• Sulfur cathodes are poor electrical 
conductors

 → Selenium additives to boost 
conductivity
• Electron transport in S-Se is poorly 

understood
• Mobility: how mobile a single electron is
• Conductivity = mobility x carrier density 

• Electron transport mechanisms:
 1) band transport (wave) 
 2) hopping (particle)

Sulfur
Lithium

Electron transport in sulfur cathode

High energy density Li-S battery
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S-Se Cathodes: Electron Transport Mechanisms

11

• Band (delocalized waves):

• Hopping (localized particles):

- Transition Rates: 

- Mobility is obtained using Monte Carlo

- Band mobility:

→ need to calculate scattering rates for each mechanism

ex) silicon

Electron hopping

Electron band transport



S-Se Cathodes: Electrical Conductivity

Intrinsic:
• σ increases due to decreasing band gap
• 1~2 order improvement over 50% Se

Doped:
• Pure S could have highest σ, if band transport
• If not, 1 order improvement over 25% Se 12
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All Solid-State Batteries with Li Anode
• higher safety
• higher energy density
• higher charging rates

Solid-State Electrolyte Requirements
• high ionic conductivity
• low electronic conductivity
• good electrochemical stability
• inertness to air, water
• abundance, low cost, manufacturability 

etc.

II. High-throughput Screening with Machine 
Learning

Honrao, S.J., et al. Discovery of novel Li SSE and anode coatings using interpretable 
machine learning and high-throughput multi-property screening. Sci Rep 11, 16484 (2021) 13



Materials Informatics Approach

• Generate a database of battery-related material properties

• High-throughput Screening through the database for 
candidates with low Li+ migration barriers, good 
thermodynamic and electrochemical stabilities

• Train Machine Learning models to predict migration barriers 
and oxidation and reduction potentials 

• Explain individual predictions and provide model-level 
interpretation of feature importance
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High-throughput Screening & Machine Learning

ML model predictions

• Goal: identify materials with low migration barriers and good stability
• Machine learning lets us interpolate and extrapolate across available data and make rapid predictions for 

new candidates
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Model Interpretation and Analysis

We can interrogate the machine learning models to better understand why certain materials 
have better transport or stability than others
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III. Battery Prognostics For Thermal Anomalies

Problem: Thermal runaway is a major safety concern for certification for electric aircraft

Possible solutions: 

1. Containment: Bulky packaging - a poor 
solution for airspace applications: extra 
weight!

2. Prevention: Detecting early warning 
signals for the TR using a BMS.

Battery Management System

Vn(t)

In(t)

Tn(t)    

Outcome: The ability to predict thermal runaway will increase safety and reduce battery weight

Physics-based 

model
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Battery State Variables vs Parameters

Hybrid Equivalent Circuit Model Lumped Thermal Model
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▪ State variables (blue) change during a cycle: fast dynamics (charging/discharging)
▪ Battery parameters (red) evolve over many cycles: slow dynamics (aging , degradation)  
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Simulated Flight Profiles (SFP)

Real Flight Profile Simulated Flight Profile

• Battery parameter estimation is usually done from lab data.

• Goal: battery parameter estimation approach from available field data.

• We use Simulated Flight Profile (SFP) as a proxy to real flight data.
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Battery Temperature Prognostics with 2pTROM

~50 flights ~50 flights ~50 flights ~50 flights ~50 flights ~50 flights
1 2 3 21 22 23

Model identification (Training) Prediction (Testing)



Summary

• NASA has a vast range of materials issues that can benefit from 
computation

• Electric aircraft need significant advances in batteries

• We have a multiscale, multi-pronged set of activities including

• First principles

• Data science

• Multiphysics modeling

• Prognostics
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