

ICME for NASA Aerospace Applications: Batteries for Electric Aviation

John Lawson NASA Ames Research Center

ICME for NASA Aerospace Applications

Bring *materials* into the *design cycle* -- Boeing's "*atoms to airplanes*" program

NASA Vision 2040

NASA Vision 2040 Goal: Enable the <u>rapid</u>, <u>low cost</u> design, development, certification and deployment of application specific advanced aerospace materials

NASA Ames Computational Materials

Biosciences

Anti-Icing Coatings

NASA Strategic Plan for Green Aviation

5

Green Aviation Battery Requirements

Major requirement is: High Energy Density

Other requirements are **rechargeable**, **safety**, power, recharge time, cost, etc.

Electric aircraft have the most extreme requirements of any battery application

Energy Storage Research at NASA Ames

Li-Air Batteries (LiON)

Polymer Structural Electrolytes

Ionic Liquid Electrolytes for Li Metal

All Solid-State Batteries (SABERS)

Multiscale modeling from chemistry to materials to cell design and simulation for application specific battery systems

Battery Modeling Briefs

- I. Sulfur-selenium cathode electrical conductivity
- II. Solid-state electrolytes machine learning screening
- III. Battery thermal anomaly prognostics

I. Sulfur-Selenium Cathodes: Electrical Conductivity Computations

- Li-S batteries have high energy density needed for electric aircraft
- Sulfur cathodes are poor electrical conductors

→ *Selenium additives* to boost conductivity

- Electron transport in S-Se is poorly understood
 - *Mobility*: how mobile a single electron is
 - <u>Conductivity</u> = mobility x carrier density
- Electron transport mechanisms:
 - 1) band transport (wave)
 - 2) hopping (particle)

High energy density Li-S battery

S-Se Cathodes: Electron Transport Mechanisms

Electron band transport

 \rightarrow need to calculate scattering rates for each mechanism

• Hopping (localized particles):

- Band mobility:

- Transition Rates:

$$\tau_{ab}^{-1} = \frac{\left|\mathcal{V}_{ab}\right|^2}{\hbar^2} \int_{-\infty}^{\infty} \exp\left[i\frac{\left(E_a - E_b\right)}{\hbar}t - \sum_{\lambda} S_{\lambda}\left((2n_{\lambda} + 1) - n_{\lambda}e^{-i\omega_{\lambda}t} - (n_{\lambda} + 1)e^{i\omega_{\lambda}t}\right)\right] dt$$

- Mobility is obtained using Monte Carlo

Electron hopping

S-Se Cathodes: Electrical Conductivity

Intrinsic:

- σ increases due to decreasing band gap
- 1~2 order improvement over 50% Se

Doped:

- Pure S could have highest *σ*, if band transport
- If not, 1 order improvement over 25% Se $^{\scriptscriptstyle \perp}$

II. High-throughput Screening with Machine Learning

All Solid-State Batteries with Li Anode

- higher safety
- higher energy density
- higher charging rates

Solid-State Electrolyte Requirements

- high ionic conductivity
- low electronic conductivity
- good electrochemical stability
- inertness to air, water
- abundance, low cost, manufacturability etc.

Materials Informatics Approach

- Generate a **database** of battery-related material properties
- **High-throughput Screening** through the database for candidates with low Li⁺ migration barriers, good thermodynamic and electrochemical stabilities
- Train **Machine Learning** models to predict migration barriers and oxidation and reduction potentials
- **Explain** individual predictions and provide **model**-level **interpretation** of feature importance

High-throughput Screening & Machine Learning

- **Goal**: identify materials with low migration barriers and good stability
- Machine learning lets us interpolate and extrapolate across available data and make rapid predictions for new candidates

Model Interpretation and Analysis

We can interrogate the machine learning models to better understand why certain materials have better transport or stability than others

III. Battery Prognostics For Thermal Anomalies

Problem: Thermal runaway is a major safety concern for certification for electric aircraft

Anomaly detection

<u>Outcome</u>: The ability¹ to predict thermal runaway will increase safety and reduce battery weight

Battery State Variables vs Parameters

Lumped Thermal Model

 $\frac{dT}{dt} = \frac{I(t)}{C_b} \left(U - T \frac{dU}{dT} - V(t) \right) - \frac{T - T_a}{\tau}$ $\frac{dT}{dt} = \frac{I(t)}{C_b} \left(V_0 - V(t) \right) + \frac{T - T_a}{\tau}$

- State variables (blue) change during a cycle: fast dynamics (charging/discharging)
- Battery parameters (red) evolve over many cycles: slow dynamics (aging , degradation)

Simulated Flight Profiles (SFP)

- Battery parameter estimation is usually done from lab data.
- **Goal:** battery parameter estimation approach from available field data.
- We use Simulated Flight Profile (SFP) as a proxy to real flight data.

Battery Temperature Prognostics with 2pTROM

Summary

- NASA has a vast range of materials issues that can benefit from computation
- Electric aircraft need significant advances in batteries
- We have a multiscale, multi-pronged set of activities including
- First principles
- Data science
- Multiphysics modeling
- Prognostics