

National Aeronautics and Space Administration

Characterizing Microstructure and Properties of a Niobium Alloy Subject to Various Heat-Treatments Carter J. Fietek

GEM 2023 Annual Conference September 14th, 2023

Introduction

- Nb alloy, C-103, with 10 wt.% Hf, and 1 wt.% Ti
 - Nb-10Hf-1Ti
- Has relatively high strength, good ductility, and maintains a density less than 9 g/cc

Used to make the apollo command service module, reaction control system R-4D thruster.¹

 Omar Mireles, "Refractory Alloy Additive Manufacture Build Optimization (RAAMBO) - NASA Technical Reports Server (NTRS)," NASA, June 14, 2022, accessed August 11, 2023, https://ntrs.nasa.gov/citations/20220008787.

Fabrication of Specimens

- Specimens fabricated by laser powder-bed fusion.
- Fabricated in build (vertical) and transverse (horizontal) directions.

Schematic of laser-powder bed fusion.²

2. Paul Gradl, Omar Mireles, and Nathan Andrews, "Introduction to Additive Manufacturing for Propulsion and Energy Systems - NASA Technical Reports Server (NTRS)," NASA, n.d., accessed August 11, 2023, https://ntrs.nasa.gov/citations/20210019758.

Powder Material

- Spherical powder was used in manufacturing
- Analysis of the powders was conducted to verify shape and chemistry:
 - Powder size distribution was conducted using laser-scattering

D ₁₀ , (μm)	D ₅₀ , (μm)	D ₉₀ , (μm)	Density, (g/cm³)	Hall Flow, (sec/50)		
15.4	28.6	49.5	8.83	11		

- Inductively Coupled Plasma mass spectrometry for metals
- LECO combustion analysis for other elements

Element	Nb (wt.%)	Hf (wt.%)	Ti (wt.%)	O (ppm)	N (ppm)	C (ppm)	Zr (ppm)	W (ppm)
Powder	Bal.	9.77	0.97	430	52	50	320	2800
ASTM B654	Bal.	9-11	0.7-1.3	<250	<100	<150	<7000	<5000

High-Vacuum Annealing (HVA)

- High vacuum (10⁻⁶ torr) furnace was used to heat specimens.
- Specimens were wrapped in Ta foil to prevent oxidation.

Hot Isostatic Pressing (HIP)

- HIP is a process of heating and pressurizing inert gas around a specimen.
- This is used to collapse surface pores, close cracks, and initiate recrystallization.
- Often used to obtain better microstructure and more isotropic properties in AM parts.

Microstructure Characterization - EBSD

5**6**1

stem.nasa.gov

Pole-Figures (Texture Identification)

Growth of Precipitates

Increasing Temperature

As-Printed

1200°C

1500°C

Precipitates grow exponentially with temperature.

Evaluation of Precipitates

Micro-Hardness Measurements

- Conducted micro-hardness testing on all specimens in both build and transverse directions.
- Used 1 kg load and followed ASTM Standard B721

Anisotropy Quantification

- Anisotropy is the difference in material properties with direction.
- Anisotropy in hardness correlates well with granular aspect ratio (geometric anisotropy of grains) for
 - As-printed
 - HIPed
 - Wrought
- Large change in HVA from 900° to 1000°C.
- Anisotropy for HVA is driven by an anisotropic growth of oxides weakening TD more than the BD

Temperature (°C) \longrightarrow

Conclusions

- 1. Recrystallization and texture change did not occur during high-vacuum annealing, but did occur in hot isostatic pressing.
- 2. HfO₂ formed in all specimens and grew exponentially with temperature until saturated. Oxide formation showed a strong negative correlation with hardness.
- 3. Anisotropy of the AP and HIPed specimens was driven by grain aspect ratio, while anisotropy in HVAed specimens depended on oxide growth.
- 4. Overall, HVA and HIP cannot be used interchangeably but both may serve as viable options for future material engineering endeavors.

Thank you for your attention.

Questions?