
Seeing is Believing: Monitoring
Future-Time Temporal Logic

Max Fan

Summer 2023

Mentor: Ivan Perez Dominguez

A simplified example: skydiving

A simplified example: skydiving

The point of runtime monitoring

"after jumping out the plane, the parachute will open within three

After jumping out the plane, the
parachute will finally open within
three seconds.

Trigger backup parachute

Globally, if the parachute is
deployed, the person must
decelerate.

Trigger backup parachute

Globally, the person should not
decelerate too fast.

Trigger call to 911 📞

What would make this system robust?

You can jump out of a plane with it . . .

• Can reliably detect failures

• Can handle failures safely and immediately

• Can provide formal guarantees about error handling

• Practical for real-world use

Runtime monitoring is a PL problem

High-level
property

Intermediate
representation

High-performance
monitor

Optimizations

C99, FPGA, etc.

Copilot, LOLA, R2U2, etc.

Temporal Properties

Globally(x) = x is globally always true, in the future

 Ex: G(if parachute_open() then decelerating())

Finally(x) = x will finally be true, in the future

 Ex: F(parachute_open())

neXt(x) = x will be true at the next time step

 Ex: X(parachute_deployed())

x Until y = x will be true until y becomes true

 Ex: parachute_not_deployed() U parachute_is_released()

"The parachute will finally open"
F(parachute_open())

"The parachute will finally open
in three seconds"
F[0,3](parachute_open())

Target

• Monitor systems online at runtime

• Support unbounded and bounded future-time formulae

• Actionable verdicts at every point

• Performant and practical

Monitor construction

High-level
property

Intermediate
representation

High-performance
monitor

A language that preserves the semantics

A language that is obviously monitorable

A future-time unbounded temporal
logic

Intuition: "Seeing is Believing"

Consider: G(a)

Consider the trace:

If we evaluate the formula, we get:

0 1 2 3 4 5

a

0 1 2 3 4 5

True so far

Intuition: "Seeing is Believing"

Consider: G(a)

Consider the trace:

If we evaluate the formula, we get:

0 1 2 3 4 5

a a

0 1 2 3 4 5

True so far True so far

Intuition: "Seeing is Believing"

Consider: G(a)

Consider the trace:

If we evaluate the formula, we get:

0 1 2 3 4 5

a a a a a a

0 1 2 3 4 5

True so far True so far True so far True so far True so far True so far

Intuition: "Seeing is Believing"

Consider: G(a)

Consider the trace:

If we evaluate the formula, we get:

0 1 2 3 4 5

a a not a a a a

0 1 2 3 4 5

True so far True so far False False False False

Semantics overview

True = we have seen the evidence that the formula is true

True so far = if the stream stops now, the formula is true

False so far = if the stream stops now, the formula is false

False = we have seen the evidence that the formula is false

Making things more formal

For n <= m, we can recursively define the evaluation of a formula at n
with trace length m+1:

Monitor construction

Temporal formula

Quantifier representation

Quantifier representation

Monitorable expression

Compiler passes

What is a monitorable expression?

The form of a monitorable expression:

 "current verdict := f(previous verdict, current values)"

Monitor construction

Temporal formula

Quantifier representation

Quantifier representation

Monitorable expression

Compiler passes

Example 1

Example 1

Example 1

Example 2

Example 2

Example 2

Other approaches in the literature

• RVLTL (theoretical)
• Expressivity: Unbounded future-time

• Verdicts: Four-valued verdict, online

• Performance: Monitors take double-exponential space

• R2U2 (applied)
• Expressivity: Only bounded future-time

• Verdict: True/false verdict, with delays

• Performance: Monitors are efficient

Primary Contributions

It is possible to:

• Use a future-time, unbounded temporal logic
(previously with R2U2, only bounded)

• Monitor in poly(?) space and time in size of the property
(previously with RVLTL, 2-EXP space, NP-hard and PSPACE-hard)

• Produce an actionable verdict at every point in time
(previously with R2U2, verdicts can be delayed)

Unbounded
temporal
operators

Worst-case
Monitor Space
Complexity*

Always produces
actionable verdict

RVLTL ✅ O(2^2^N) ✅

R2U2 ❌ O(N*M)? ❌

Mine ✅ POLY? ✅

* Space complexity is denoted in size of the formula, N. For R2U2, M denotes the maximum time bound in the
formula. All three runtime monitoring systems are constant in size of the input stream).

Comparison

Intuition: RVLTL

Consider: X((a and b and c) or (a and (not b)) or …)

RVLTL's semantics demand that the monitor perform LTL satisfiability
checking.

The monitor returns True iff the formula is TAUT.

The monitor returns False iff the formula is UNSAT.

The monitor returns other values iff the formula is SAT.

Intuition: "Seeing is Believing"

Consider: X((a and b and c) or (a and (not b)) or …)

Consider the trace:

If we evaluate the formula, we get:

0 1 2 3 4 5

a, b, not c a, b, c a, b, c a, b, c a, b, c a, b, c

0 1 2 3 4 5

? True True True True True

Intuition: "Seeing is Believing"

Consider: X((a and b and c) or (a and (not b)) or …)

Consider the trace:

If we evaluate the formula, we get:

0 1 2 3 4 5

a, b, not c a, b, c a, b, c a, b, c a, b, c a, b, c

0 1 2 3 4 5

False so far True True True True True

Soundness for temporal logic on infinite
streams

True => Formula is True on infinite continuations of the stream

True so far => N/A

False so far => N/A

False => Formula is False on infinite continuations of the stream

Idea: Verifying the compiler

Temporal formula

Quantifier representation

Quantifier representation

Monitorable expression

Compiler passes SMT solver

Note: This is NOT implemented yet. Just an idea . . .

Ideas for Future Work

• Finish the monitoring algorithm in Copilot

• Explore connection with polyhedral compilation and geometry

• Mechanize correctness and soundness proofs, perhaps in Coq

• Evaluate real-world performance against competitors

What else was I up to this summer?

• Discovered and fixed a soundness bug in the Copilot compiler

• Extended the Copilot interpreter and compiler to be able to modify
streams of arrays in-place

• Discovered and wrote patches for performance issues in the Copilot
interpreter

• Implemented a future-time bounded temporal logic

• Wrote monitors for UAV flights

• Wrote cute, miscellaneous proofs about Copilot

• Developed a future-time unbounded temporal logic that improves on prior
work in the literature, paper in progress

Thanks

Thanks to Ivan, Tom, and Esther for supporting me on this project.

Thanks to Gricel, Karan, Luisa, Steven, Beverly, Jonathan, Mari, Elle,
Aiden, Rachel, and Morgan for being awesome interns!

Extra slides!

Idea: Compiling For Unreliable Hardware

Modern compilers assume reliable hardware.

This is not suitable for space.

Can we bootstrap reliable software from unreliable hardware?

Idea: Compiling For Unreliable Hardware

• Observation: Checking results different ways tends to increase error
detection and reliability.

• Idea: A sufficiently clever compiler can force the program control flow
and hardware to take different paths. The chances of the same failure
occurring are quite low. EQSAT!

Small example

• Suppose our ALU is unreliable, but we don't know how.

• Consider:
• let x = ((a + b) + c) + d;

• let x = (b + c) + a + d;
• let x = a + (b + (c + d) - 1) + 1;

• What are the chances that these all fail the same way?

• Our compiler can automatically derive these types of
equivalences (and more complex ones) via EQSAT!

Example

Opportunities in the compiler for diversity

• Repurposing existing optimization passes:
• Reordering of arithmetic expressions
• Register allocation
• LICM
• Peephole optimization
• Constant proprogation
• CSE

• Other strategies:
• EQSAT
• Rewrite rules automatically derived from program semantics
• Program synthesis

How do we validate?

• Simulate failures in space by running on FPGA and pinning gates high
(thanks Brian!)

• Put stuff in space and collect data

• Bombard physical hardware with radiation on earth

Soundness and completeness sketch

Lecture on whiteboard:

- Introduce proof system for reasoning on traces

- Give precise notions of soundness and completeness

- Gesture at inductive proofs, maybe try to derive it live

Implementation in Copilot

Show live demo

	Slide 1: Seeing is Believing: Monitoring Future-Time Temporal Logic
	Slide 3: A simplified example: skydiving
	Slide 4: A simplified example: skydiving
	Slide 5: The point of runtime monitoring
	Slide 6: What would make this system robust?
	Slide 7: Runtime monitoring is a PL problem
	Slide 8: Temporal Properties
	Slide 9: "The parachute will finally open"
	Slide 10: "The parachute will finally open in three seconds"
	Slide 11: Target
	Slide 12: Monitor construction
	Slide 13: Intuition: "Seeing is Believing"
	Slide 14: Intuition: "Seeing is Believing"
	Slide 15: Intuition: "Seeing is Believing"
	Slide 16: Intuition: "Seeing is Believing"
	Slide 17: Semantics overview
	Slide 18: Making things more formal
	Slide 19: Monitor construction
	Slide 20: What is a monitorable expression?
	Slide 21: Monitor construction
	Slide 22: Example 1
	Slide 23: Example 1
	Slide 24: Example 1
	Slide 25: Example 2
	Slide 26: Example 2
	Slide 27: Example 2
	Slide 28: Other approaches in the literature
	Slide 29: Primary Contributions
	Slide 30
	Slide 31: Intuition: RVLTL
	Slide 32: Intuition: "Seeing is Believing"
	Slide 33: Intuition: "Seeing is Believing"
	Slide 34: Soundness for temporal logic on infinite streams
	Slide 36
	Slide 37: Idea: Verifying the compiler
	Slide 38: Ideas for Future Work
	Slide 39: What else was I up to this summer?
	Slide 40: Thanks
	Slide 41: Extra slides!
	Slide 42: Idea: Compiling For Unreliable Hardware
	Slide 43: Idea: Compiling For Unreliable Hardware
	Slide 44: Small example
	Slide 45: Example
	Slide 46: Opportunities in the compiler for diversity
	Slide 47: How do we validate?
	Slide 48: Soundness and completeness sketch
	Slide 49: Implementation in Copilot

