

LENR Products: Lattice Confinement Fusion (LCF), Fission, or Both?

International Conference on Condensed Matter Nuclear Science ICCF-25

August 31, 2023

Theresa L. Benyo¹: Principal Investigator, Lattice Confinement Fusion Project Pamela Mosier-Boss², Lawrence Forsley², Wayne Jennings³, Bruce Steinetz¹, Gus Fralick¹, Robert Hendricks¹

¹NASA Glenn Research Center, Cleveland, OH ²Global Energy Corporation, Annandale, VA ³HX5, LLC, Cleveland, OH

Outline of Talk

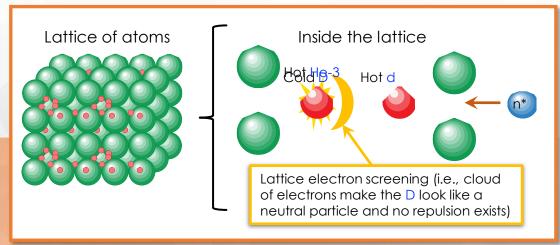
- Overview of LENR Products and Lattice Confinement Fusion (LCF)
- Gas Cycling Experiments
 - Observed anomalous behavior when cycling deuterium with Pd/Ag tube
 - Suspected Pd fission from high energy neutrons from LCF
- Bremsstrahlung Irradiation Experiments
 - Neutron spectroscopy showed evidence of dd fusion and higher energy neutrons
 - Gamma spectroscopy showed evidence of uranium fission products
- Electrolytic Wet Cell Experiments
 - Evidence of dd fusion and higher energy neutrons
 - Observed transmutation products on outer co-deposition layer
- Transmutation Theories
 - Electron Screened Fusion
 - Possible Fission Pairs
 - Hybrid Fusion Fission
- Summary

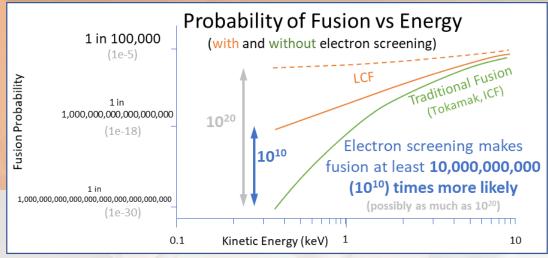
Overview of LENR Products and Lattice Confinement Fusion

Fusion Reaction	MeV	Occurrence	Useful particle energy (MeV)
D(d,n) ³ He	4.00	primary ≈ 50%	n=2.45
D(d,p)T	3.25	primary ≈ 50%	p=3.00
$D(^3He,p)\alpha$	18.30	secondary	p=15.00
D(t,n) α	17.60	secondary	n=14.10
T(t,α)2n	11.30	low probability	n=1 to 9
³He(³He,α)2p	12.86	low probability	p=1 to 10

Part A:

Electron Screening


(increases fusion probability)

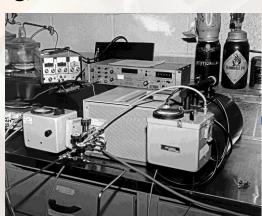

Part B:

High Fuel Density

(billion times more dense than traditional fusion)

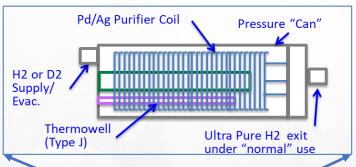
A + B + Trigger = Viable Fusion

Gas Cycling Experiments: Description


National Aeronautics and Space Administration

High flux of D through Pd/Ag hydride system:

- Test Article: Johnson-Matthey (JM) hydrogen purifier
- Inspired by electrolytic wet cell experiments and LENR claims,
 Gustave Fralick (1989) used JM purifier to load Pd with D₂
 - Easier than loading D₂ during a wet cell experiment
 - Very little neutrons above background observed
 - Observed temp rise of 17 °C in 15 sec unloading D₂ but not with H₂
- Experiments in 2014 & 2018: pressurized cycling of D₂ gas produces heat & surface transmutations on PdAg tubing; evidence of LENR^{1,2}


Repeat of temperature rise during D₂ gas unloading

- 1989: 17°C temp rise in 15 s
- 2009: 5°C temp rise
- 2012: 25 °C temp rise
- 2014: 25°C temp rise in 4 s
- 2018: 12 °C temp rise in 45 s

¹G. Fralick, et al, "Transmutations observed from pressure cycling palladium silver metals with deuterium gas", International Journal of Hydrogen Energy, vol. 45, no. 56, pp. 32320-32330, 2020.

²B. Liu, et al, "Nuclear transmutation on a thin Pd film in a gas-loading D/Pd system," J. of Condensed Matter Nuclear Science, 13, pp. 311–318, 2014.

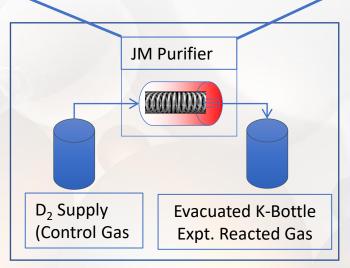
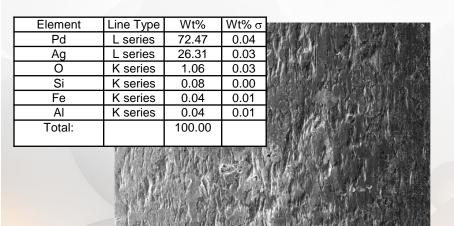
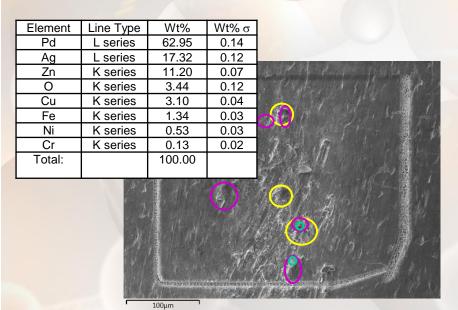


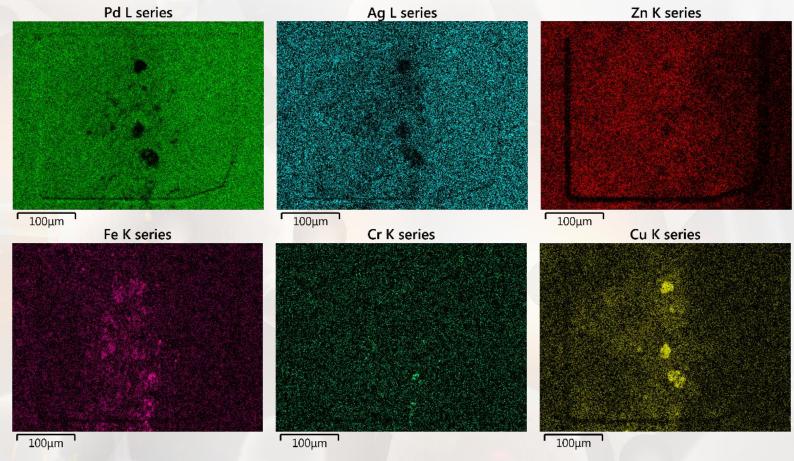
Photo of 1989 experimental setup showing the JM Purifier (center) with 2 SNOOPY neutron detectors (one on either side of the purifier).

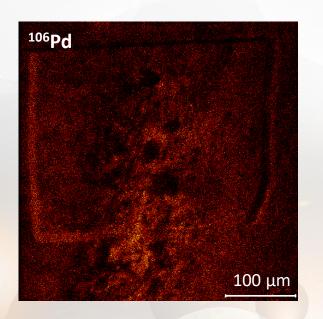
Gas Cycling Experiments: Bulk Analysis

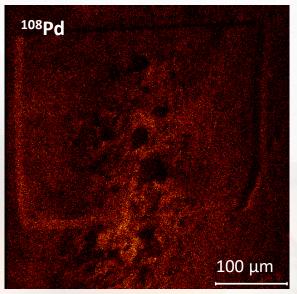


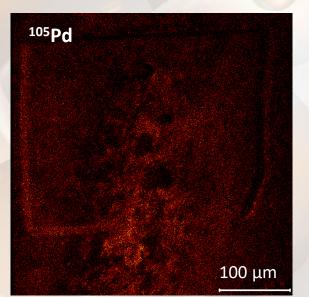

- Inductively Coupled Plasma Atomic Emission Spectroscopy
 - Elemental bulk analysis of PdAg tubing
 - Elevated levels of Cr, Cu, Fe, Mn and Zn detected in exposed PdAg tubing

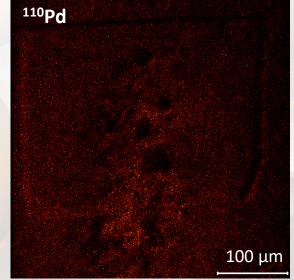
Element	Pd25Ag B	Units		
5 N P	Control/Unexposed	Exposed	Δ	
Ag	25.0	24.9	-0.1	wt%
Pd	75.0	75.1	+0.1	wt%
Al	30	30	0	ppm
Cr	Not detected	2	+2	ppm
Cu	20	140	+120	ppm
Fe	20	40	+20	ppm
Mg	1	1	0	ppm
Mn	Not detected	0.5	+0.5	ppm
Na	2	2	0	ppm
Pt	105	105	0	ppm
Si	40	30	-10	ppm
Zn	Not detected	285	+285	ppm

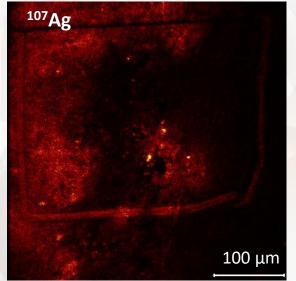

Gas Cycling Experiments: Surface Analysis Comparison

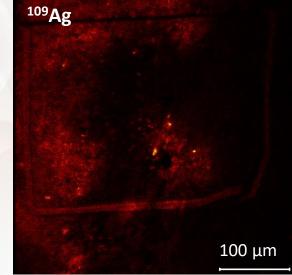



- Unexposed PdAg tube: mostly Pd, Ag with trace of Fe, Si, & Al.
- Exposed PdAg tube: Fe, Cr & Cu spots with overall spread of Zn
- Created a 'trench' with Ga ions to identify area for ToF-SIMS analysis

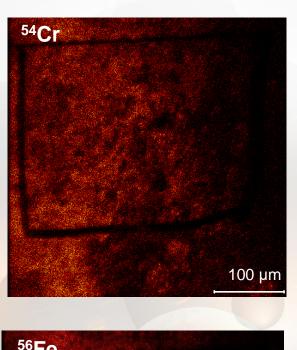


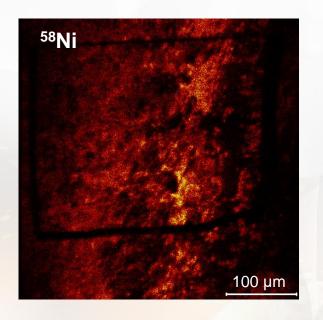

ToF SIM Spectroscopy: Isotopic Surface Analysis

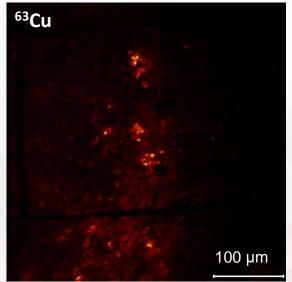


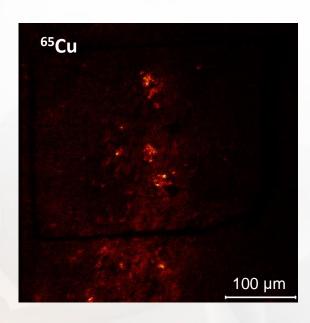


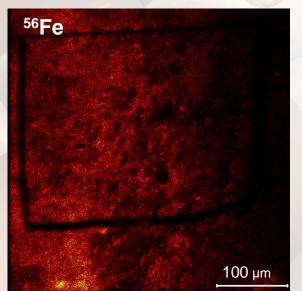
Isotopic distribution of Pd and Ag

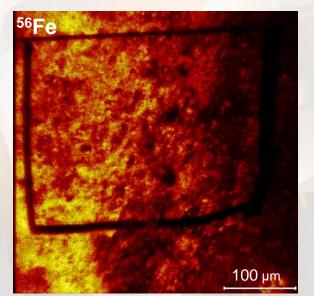


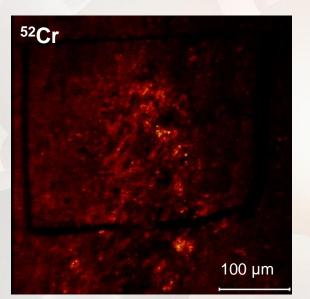


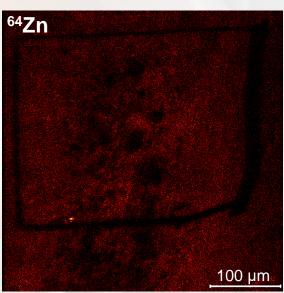

Note: TOF-SIMS is qualitative though very sensitive.

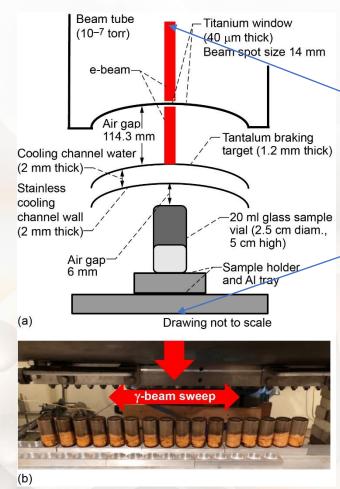

ToF SIM Spectroscopy: Isotopic Surface Analysis

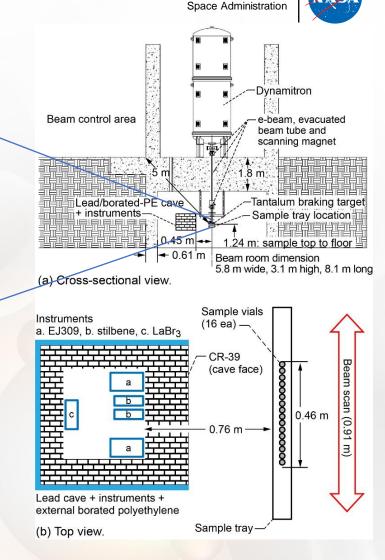






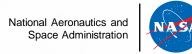




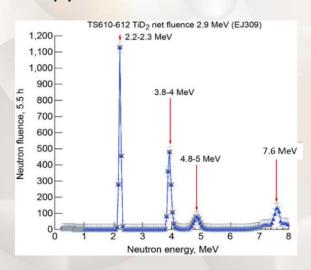

Bremsstrahlung Irradiation Experiments: Description

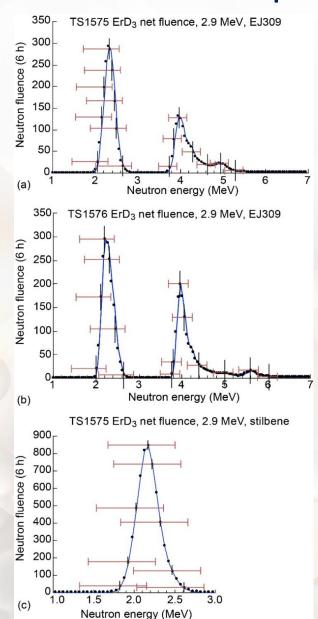
Objective

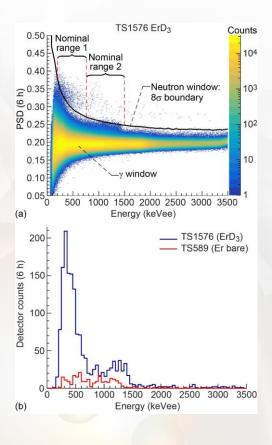
 Investigate volumetric screening of deuterated targets exposed to gamma-ray photons at sub-threshold (<2.226 MV D-photo-dissociation) and higher energies up to 3 MV.



National Aeronautics and

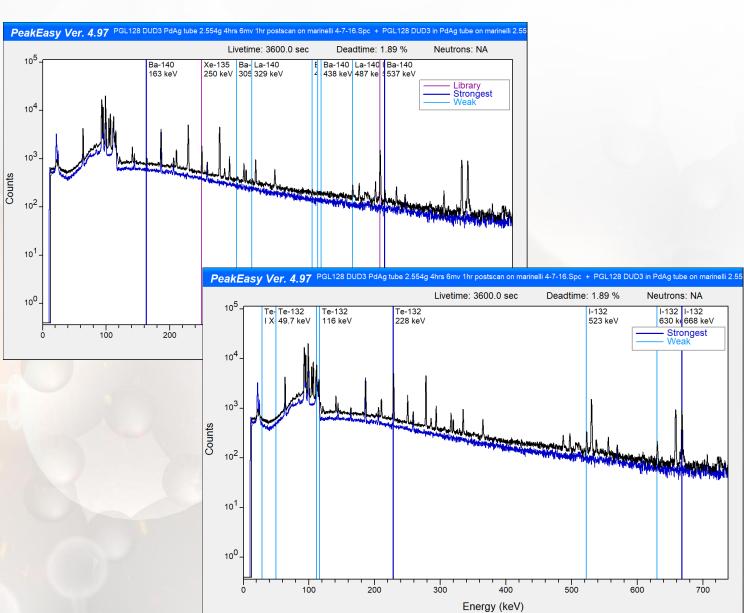

Steinetz et al, 2020, Phys Rev C 101, 044610


Bremsstrahlung Irradiation Experiments: Neutron Spectroscopy



Findings

- Exposure of TiD₂ and ErD₃ to a 2.9MV beam resulted in dd fusion and higher energy neutrons
 - Energetic neutrons transfer KE to stationary deuterons; energize deuterons and with electron screening, fuse with stationary deuterons in metal lattice (dd fusion)
 - Subsequent fusion reactions take place due to boosted or Oppenheimer-Phillips neutrons as evidenced by neutron spectroscopy data

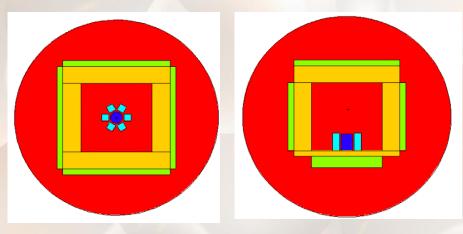

Steinetz et al, 2020, Phys Rev C 101, 044610

Bremsstrahlung Irradiation Experiments: Gamma Spectroscopy

Findings

- Exposure of DUD₃ to 6MV beam resulted in fission products
 - Energetic neutrons from dd fusion reactions and subsequent reactions create boosted or Oppenheimer-Phillips neutrons
 - Those higher energy neutrons then fission the irradiated DU as evidenced by gamma spectroscopy
 - Fission products include:
 - ¹⁴⁰Ba , ¹⁴⁰La
 - 135|, 134|, 133|, 132|, 132Te
 - ¹³⁵Xe, ^{135m}Xe
 - ⁹²Sr, ⁹¹Sr, ⁹²Y, ⁹¹mY
 - 87Kr

Electrolytic Wet Cell Experiments: Description


Objective

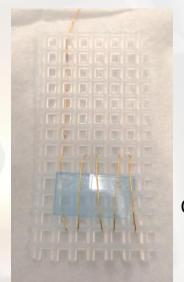
• Evaluate bubble detectors as real-time dosimeters monitoring the co-deposition process³, install neutron spectroscopy to evaluate the neutron product energies, and determine if there are neutron emissions above background levels

Findings

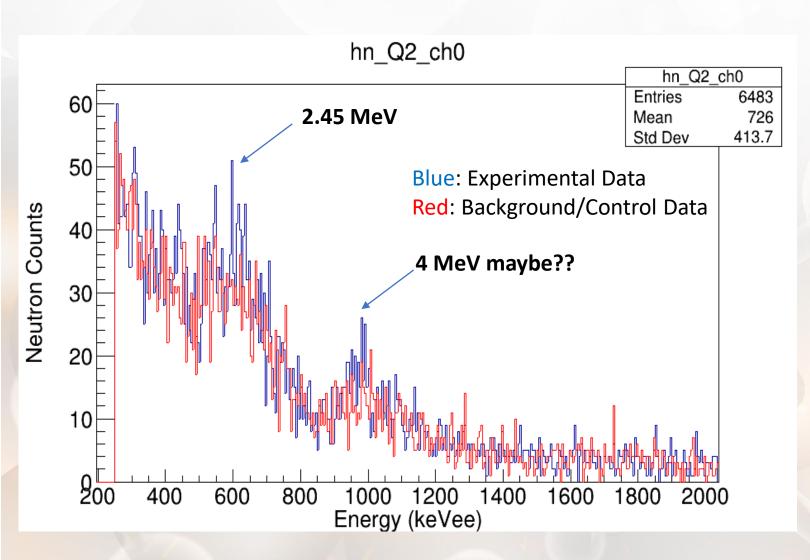
 Exposure to low electric currents (< 500mA) resulted in dd fusion (2.45 MeV) and higher energy neutrons

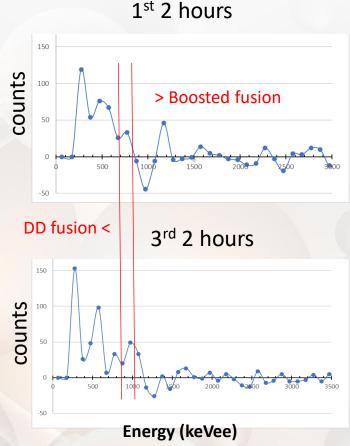
MCNP Model of Experiment

Resulting co-dep layers from previous experiments

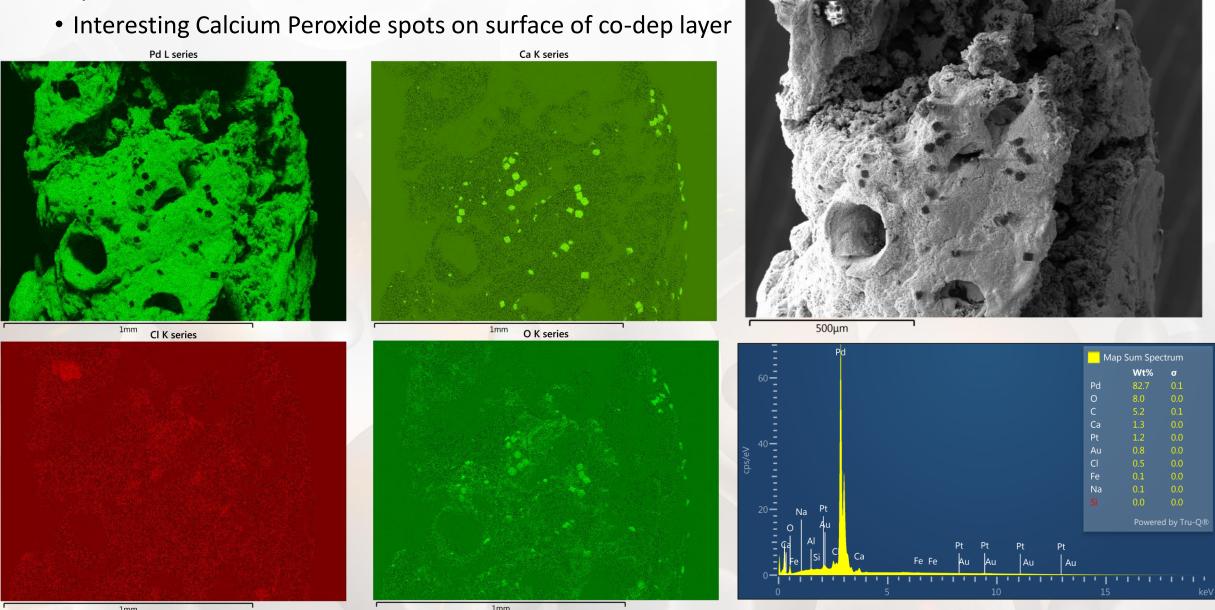


Cell Prep

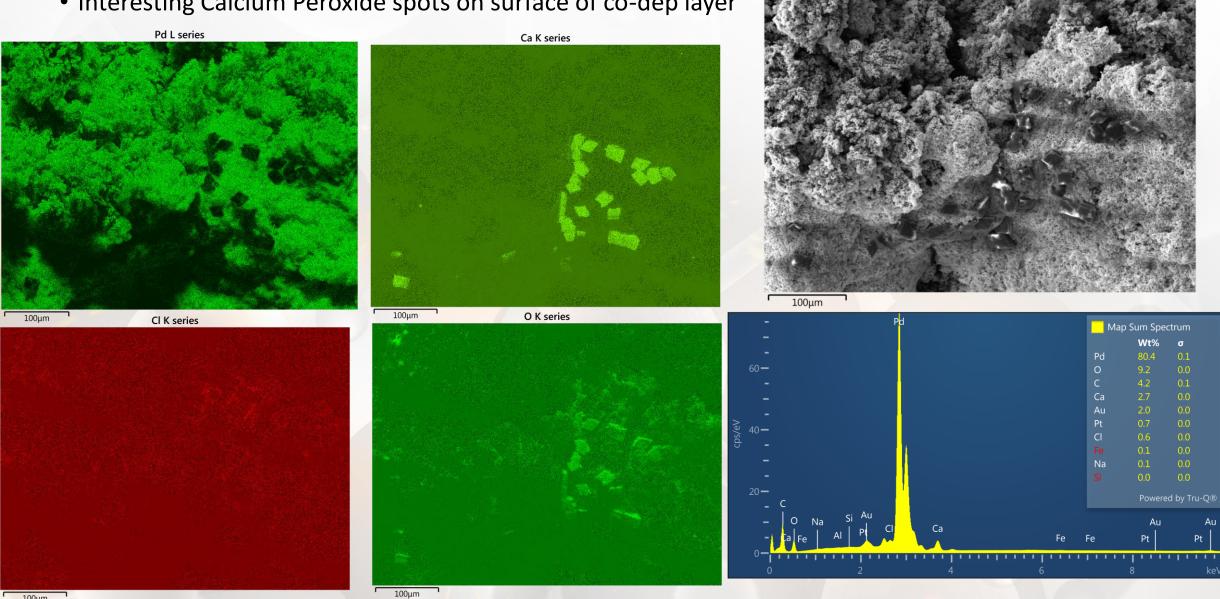

Aug 14


CR39

Electrolytic Experiments: Neutron Detection


Fusion Scaling: Periodically Rebuild the Nuclear Active Environment

Electrolytic Experiments: SEM Analysis


SEM/EDS of Cathode

Electrolytic Experiments: SEM Analysis

SEM/EDS of Cathode

• Interesting Calcium Peroxide spots on surface of co-dep layer

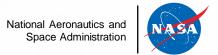
National Aeronautics and Space Administration

Transmutation Theories: Fissioning of Resulting Unstable Isotopes

- Takahasi⁵: Photofissioning of Pd
 - Pairs such as Fe+Ca and Ti+Cr
 - Nuclear excitation by low-energy, high-flux photons
 - Electrolysis experiments
- Fissioning of fused d-Pd or d-Ag; unstable Ag or Cd
 - Many pairs are possible with one of the pairs undergoing beta decay often many times to a stable isotope
 - These isotope pairs have been observed on post-test PdAg alloy samples as well as others.
 - Fe+Ti; Mn+Cr; Fe+Cr

⁵A. Takahasi, M. Ohta, and T. Mizuno, "Production of stable isotopes by selective channel photofission of Pd," Jpn. J. Appl. Phys. 40, pp. 7031-7046, 2001.

National Aeronautics and Space Administration

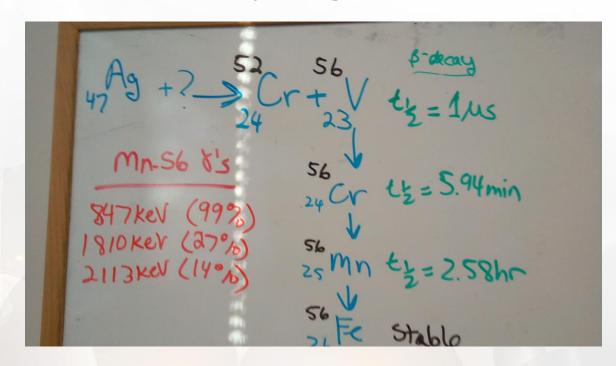

Transmutation Theories: Fission Parameter

- Non-actinide palladium deuteride (Z=46) has a fission threshold⁶ < 10 MeV despite expected 50 MeV fission barrier height
- The electrostatic Coulomb to strong force "fissility" relationship⁷ (which was initially derived for characterizing spontaneous fission), Z²/A>17, holds as low a Z as strontium (84Sr₃₈, Z=38, Z²/A=17.2)
- However, parameter was based upon the "liquid drop" nuclear model developed for actinides.
- Fissility relationship $Z^2/A>17$; for $^{105}Pd_{46}=20.15$ and for $^{107}Ag_{47}=20.65$, hence are both potentially fissile.

⁶R. Wisniewski, et al., "Deuteron Disintegration, Thermonuclear and Nuclear Fission Reactions Induced by γ Quanta in D-Saturated Palladium and Dense Deuterium Gas with Synthesis of New Structures", Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 7 (2) (2013) 239–247.

⁷K.N. Mukhin, "Experimental Nuclear Physics: Volume I, Physics of Atomic Nucleus", Mir Publishers, (Moscow) (1987) 467. Translated from the 1983 Russian version.

Transmutation Theories: How Do We Fission Pd?

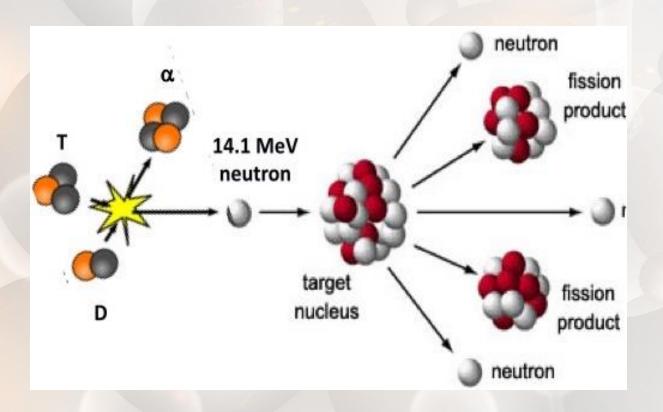


- Actinides: Traditional Fission
 - Thermal neutron fission for odd A nuclei (²³⁵U, ²³⁹Pu) and fast neutron fission for even and odd A nuclei (²³⁵U, ²³⁹Pu, ²³²Th, ²³⁸U)
- PdD system
 - Fission is possible via absorption of a nucleon
 - Neutron absorption result in release of ~8 MeV of binding energy is shared as KE amongst nucleons
 - O-P reaction: ${}^{a}M_{z}(D,p)n+{}^{a+1}M_{z}$; KE of p > 6MeV
 - Certain fusion reactions generate 14MeV neutrons and 15MeV protons
 - Pd fission barrier is near the top, requiring ~40-50 MeV to fission
 - However, ^{105}Pd has oblate nucleus with Jp=5/2+
 - Gamma excitation enables sub-threshold fission

Transmutation Theories: Fissioning of Unstable Isotope Ag

- 64Zn and 44Ca
 - $^{106}Pd + ^{2}D -> ^{108}Ag* -> ^{64}Zn + ^{44}Cl$
 - ⁴⁴Cl beta decays to stable ⁴⁴Ca
- 65Cu and 43Ca
 - ${}^{106}\text{Pd} + {}^{2}\text{D} -> {}^{108}\text{Ag*} -> {}^{65}\text{Cu} + {}^{43}\text{Ar}$
 - ⁴³Ar beta decays to stable ⁴³Ca
- 52Cr and 58Ni (observed in ToF-SIMS data)
 - ${}^{108}\text{Pd} + {}^{2}\text{D} -> {}^{110}\text{Ag}^* -> {}^{52}\text{K} + {}^{56}\text{Ni}$
 - ⁵²K beta decays to ⁵²Ca -> ⁵²Sc -> ⁵²Ti -> ⁵²V and then to stable ⁵²Cr
- 52Cr and 56Fe (observed in ToF-SIMS data)
 - $^{106}Pd + ^{2}D -> ^{108}Ag^* -> ^{52}Cr + ^{56}V$
 - ⁵⁶V beta decays to stable ⁵⁶Fe

National Aeronautics and Space Administration


Transmutation Theories: Fissioning of Unstable Isotope Cd

- ⁴⁹Ti and ⁶⁰Fe
 - $^{107}Ag + ^{2}D -> ^{109}Cd* -> ^{60}Fe + ^{49}Ti$
 - 60 Fe has a 2.62 E6 year ½ life
- ⁵⁴Cr and ⁵⁷Fe (observed in ToF-SIMS data; 2 pathways possible)
 - $^{109}Ag + ^{2}D -> ^{111}Cd* -> ^{54}Cr + ^{57}Cr$
 - 57Cr beta decays (½ life of 21.1 s) to 57Mn (½ life of 85 s) and then stable 57Fe
 - 109 Ag + 2 D -> 111 Cd* -> 54 Ti + 57 Fe
 - 54Ti beta decays (½ life of 2.1 s) to 54V (½ life of 49 s) and then stable 54Cr
- 53Cr and 58Fe (2 pathways possible)
 - $^{109}Ag + ^{2}D -> ^{111}Cd* -> ^{53}Cr + ^{58}Cr$
 - 58Cr beta decays (½ life of 7 s) to 58Mn (½ life of 3 s) and then stable 58Fe
 - 109 Ag + 2 D -> 111 Cd* -> 53 Ti + 58 Fe
 - 53Ti beta decays (½ life of 33 s) to 53V (½ life of 1.5 min) and then stable 53Cr

Transmutation Theories: Hybrid Fusion-Fast Fission

- Takes advantage of both processes
 - Fusion reactions provide the neutrons to fission nonfissile material
 - Require ~2MeV neutrons to fission Th and natural U
 - Fusion reactions can provide up to 14.1 MeV neutrons

Fusion Reaction	MeV	Occurrence	Useful particle energy (MeV)
D(d,n) ³ He	4.00	primary ≈ 50%	n=2.45
D(d,p)T	3.25	primary ≈ 50%	p=3.00
$D(^3He,p)\alpha$	18.30	secondary	p=15.00
D(t,n) α	17.60	secondary	n=14.10
T(t,α)2n	11.30	low probability	n=1 to 9
³ He(³ He,α)2p	12.86	low probability	p=1 to 10
Fission Reaction	MeV	Occurrence	Useful particle energy (MeV)
²³² Th(n, γ) <i>f</i>	200	high probability	n=1 to 9
²³² Th(p, γ) <i>f</i>	200	some probability	p=1 to 10
²³⁸ U(n, γ)f	200	high probability	n=1 to 9
²³⁸ U(p, γ) <i>f</i>	200	some probability	p=1 to 10

Summary

- Transmutations observed with deuterium gas cycling of PdAg alloy with various material analysis techniques
- Fusion and higher energy neutrons and fission products detected with bremsstrahlung irradiation experiments
- Transmutations observed with electrolytic wet cell co-deposition of PdCl₂/LiCl on cathode wires
- Electron screening greatly reduces Coulomb barrier facilitating deuteron/proton capture by Pd or Ag isotope
- Capture causes resulting isotope to be unstable
 - Unstable enough to cause fissioning?
 - Possibly another yet unknown vehicle assists with fissioning of the unstable isotope
- Many fission pair possibilities exist
- Additional experiments are needed to confirm the working fusion/fission theory

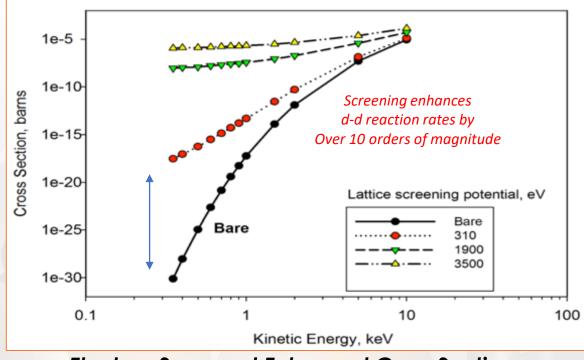
Acknowledgement

Special thanks to Bayar Baramsai (HX5 at NASA GRC) and Philip Ugorowski (HX5 at NASA GRC) for analyzing the neutron spectroscopy data.

LCF Research Funding Provided by:

NASA HQ Space Technology Mission Directorate: NASA Advanced Innovative Concepts (NIAC)

NASA HQ Science Mission Directorate: Planetary Science Division (PSD) and Planetary Exploration Science Technology Office (PESTO)

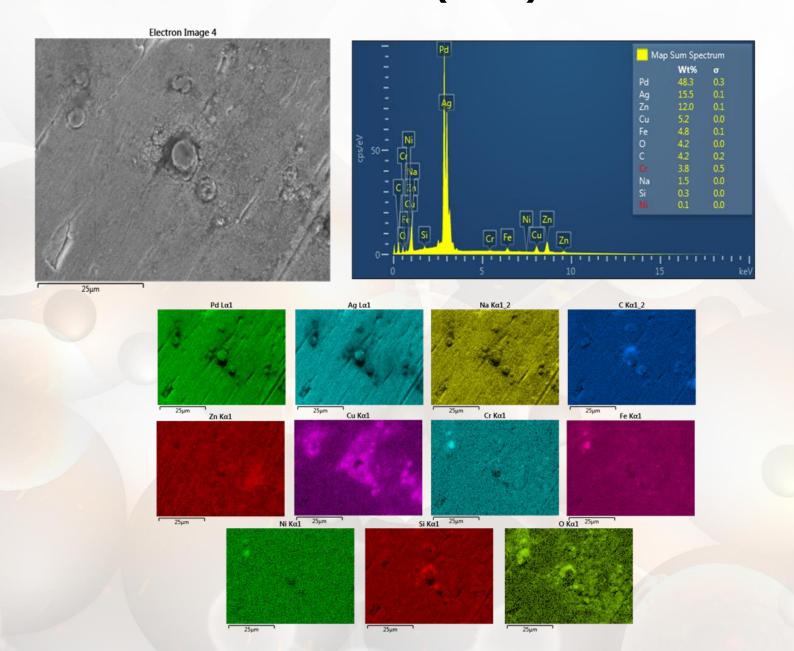


Backup

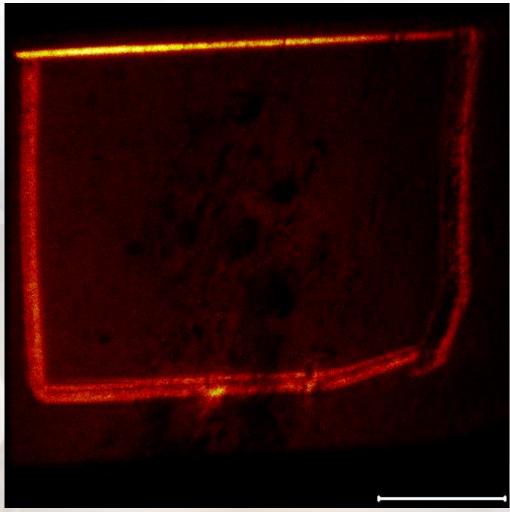
Transmutation Theories: Electron Screening

- Electron screening results in a more transparent Coulomb Barrier, shifting the Gamow Factor, as if deuterons were at far higher energies.
- This exponentially increases fusion rates.
- Laboratory astrophysics using accelerated deuteron beams across the Periodic Table show lattice and plasma screening provide up to 3+ keV screening.
- From LCF Theory development⁴, a higher probability of large angle scattering of screened charged particles results on screened deuterons.

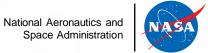
Electron Screened Enhanced Cross Sections

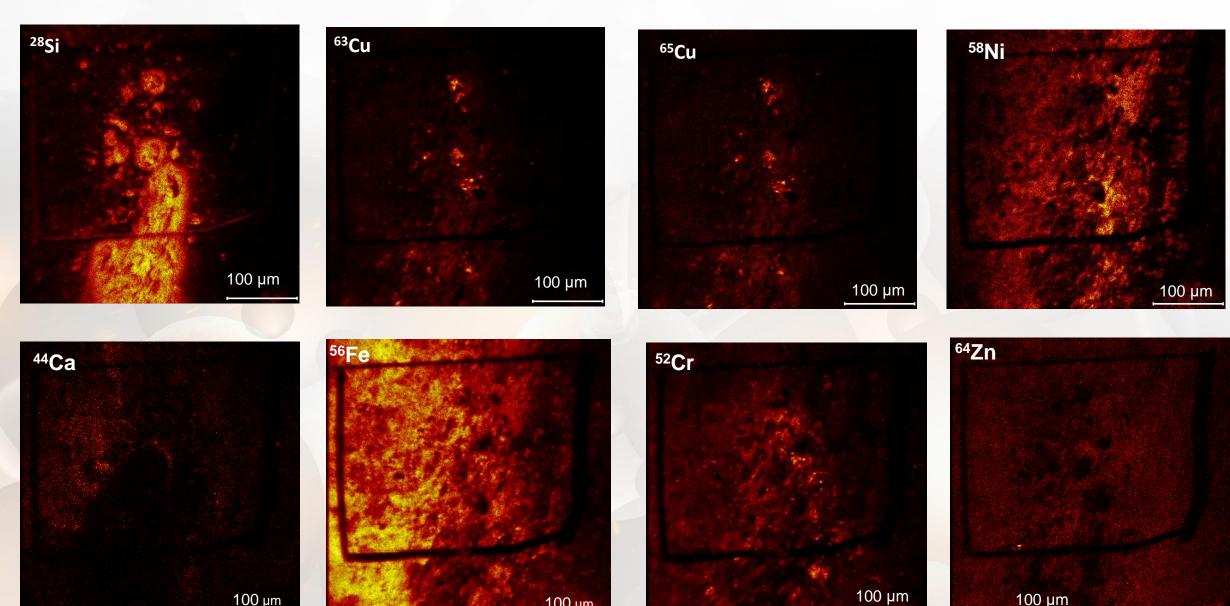

However, screening is only effective below 10 keV.

$$\sigma_{\text{bare}}(E) = \frac{S(E)}{E} \exp\left[-G(E)\right]$$


⁴V. Pines, et al, "Nuclear fusion reactions in deuterated materials," Phys Rev C, 101, 044609, 2020.

Additional area with transmutations (2018)

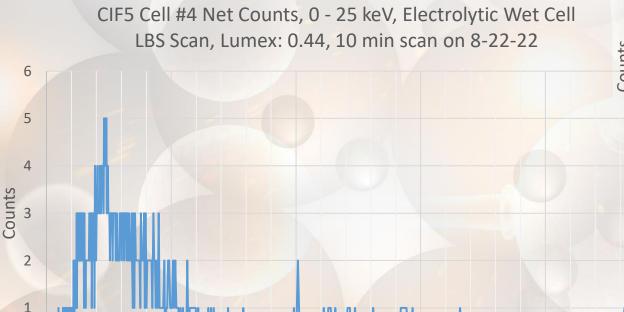



Ga - 68.91 (512x512)

Cts: 2519497; Max: 137; Scale: 100µm

ToF SIM Spectroscopy: Isotopic Surface Analysis

100 µm

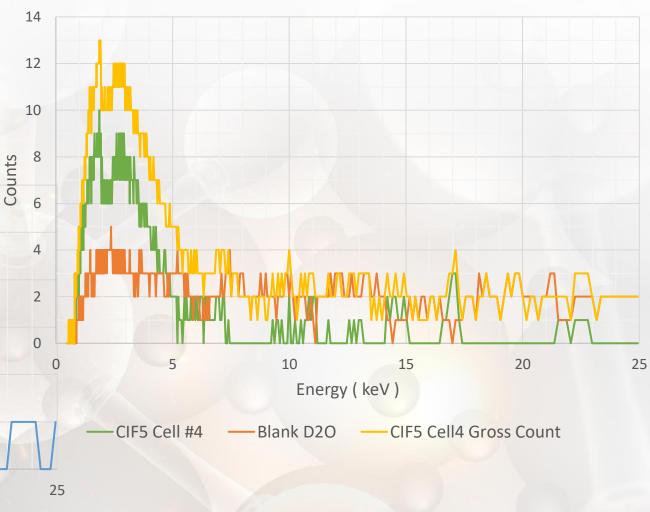

100 µm

100 µm

Electrolytic Experiments: Tritium Detection

- Run #5 started on July 8
 - Bubble detectors added
 - EXP: 20 bubbles vs CNTRL: 10 bubbles
 - LBS Data indicates tritium present
 - 10 min scan & 30 min scan

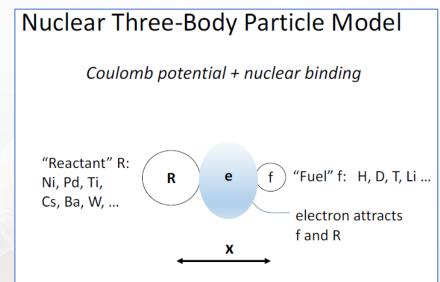
10

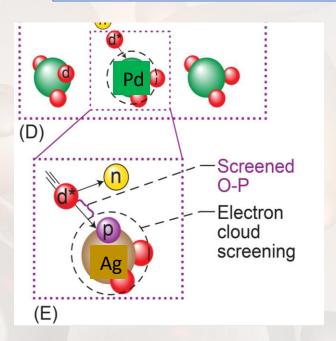

15

Energy (keV)

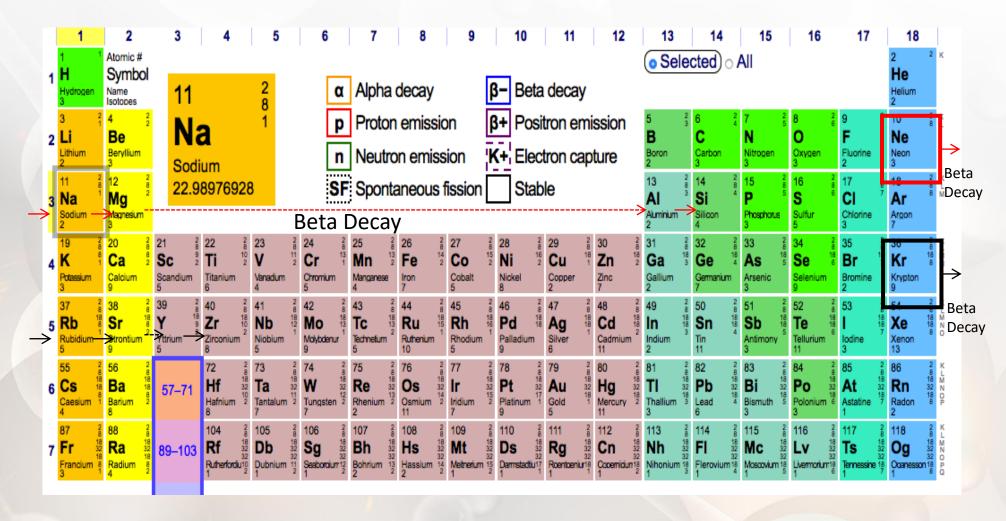
-CIF5 Cell #4

20


CIF5 Cell #4 Net Counts, 0 - 25 keV, Electrolytic Wet Cell LBS Scan, Lumex: 0.25, 30 min scan on 8-22-22



Transmutation Theory: Electron Screened d-Ag or d-Pd Fusion


- Zuppero & Dolan
 - Heavy electrons and 3-body interactions
- Pines & Pines (NASA GRC work)
 - Electron screening theory (described in previous slide)
- Possible for deuteron to be completely 'consumed' by either Pd or Ag with enough electron screening to overcome the Coulomb barrier
- d-Pd and d-Ag reactions that follow conservation laws:
 - $^{106}Pd + ^{2}D \rightarrow ^{108}Ag* (Q=10.83 MeV)$
 - $^{108}Pd + ^{2}D \rightarrow ^{110}Ag* (Q=11.08 MeV)$
 - 105 Pd + 2 D -> 107 mAg (Q=13.13 MeV)
 - $^{104}Pd + ^{2}D \rightarrow ^{106}Ag^{*} (Q=10.86 MeV)$
 - 107 Ag + 2 D -> 109 Cd* (Q=13.24 MeV)
 - 109 Ag + 2 D -> 111 Cd* (Q=13.67 MeV)

Inert Gas as Insight to Pd Fission Paths Neon or Krypton Unstable with too Many neutrons

- Beta Decays are all milli-sec to at most hours with very few showing gamma radiation (nature hides her tracks)
- Materials: SEM/EDS saw Na, Mg, Al, Si, + Sr others in J-M Tube bundle;