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e Overview of LENR Products and Lattice Confinement Fusion (LCF)

* Gas Cycling Experiments
* Observed anomalous behavior when cycling deuterium with Pd/Ag tube
e Suspected Pd fission from high energy neutrons from LCF

* Bremsstrahlung Irradiation Experiments

* Neutron spectroscopy showed evidence of dd fusion and higher energy neutrons
« Gamma spectroscopy showed evidence of uranium fission products

 Electrolytic Wet Cell Experiments
e Evidence of dd fusion and higher energy neutrons
* Observed transmutation products on outer co-deposition layer

* Transmutation Theories
* Electron Screened Fusion
e Possible Fission Pairs
e Hybrid Fusion Fission

* Summary
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Overview of LENR Products and Lattice Confinement Fusion

Fusion Useful particle
Reaction energy (MeV)

D(d,n)3He primary ~ 50% n=2.45
D(d,p)T 3.25 primary = 50% p=3.00
D(3He,p)a. 18.30 secondary p=15.00
D(t,n)a 17.60 secondary n=14.10 r
T(t,0)2n 11.30 low probability n=1to 9 f' y
3He(3He,a)2p low probability

p=1to 10

Part A:

Part B:
A + B + Trigger =Viable Fusion

Electron Screening

(increases fusion probability)

High Fuel Density

(billion times more dense than traditional fusion)
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Lattice electron screening (i.e., cloud
of electrons make the D look like a
— neutral particle and no repulsion exists)
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https://www1.grc.nasa.gov/space/science/lattice-confinement-fusion/



Gas Cycling Experiments: Description s prraes s @/
High flux of D through Pd/Ag hydride system: Pd/Ag Purifier Coll pressure “Can”
K
* Test Article: Johnson-Matthey (JM) hydrogen purifier I _F'
upply/
* Inspired by electrolytic wet cell experiments and LENR claims, Euae.” I T
Gustave Fralick (1989) used JM purifier to load Pd with D, e Ultra pure H2 exi
 Easier than loading D, during a wet cell experiment \
e Very little neutrons above background observed =

JM Purifier

* Observed temp rise of 17 °Cin 15 sec unloading D, but not with H,

* Experiments in 2014 & 2018: pressurized cycling of D, gas produces
heat & surface transmutations on PdAg tubing; evidence of LENRY?
-:. ! T Ny

Repeat of temperature rise during D, gas
unloading

*1989:17°Ctemprisein 15s

*2009: 5°C temp rise

*2012: 25 °C temp rise

*2014: 25°Ctemp risein4s

*2018:12 °Ctemprisein45s

D, Supply Evacuated K-Bottle
(Control Gas Expt. Reacted Gas

Photo of 1989 experimental
setup showing the JM Purifier

1G. Fralick, et al, “Transmutations observed from pressure cycling palladium silver metals with (Center) with 2 SNOOPY neutron
deuterium gas”, International Journal of Hydrogen Energy, vol. 45, no. 56, pp. 32320-32330, 2020. detectors (one on either side of
2B. Liu, et al, “Nuclear transmutation on a thin Pd film in a gas-loading D/Pd system,” J. of Condensed the purifier).
Matter Nuclear Science, 13, pp. 311-318, 2014.




Gas Cycling Experiments: Bulk Analysis
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* Inductively Coupled Plasma Atomic Emission Spectroscopy

* Elemental bulk analysis of PdAg tubing

&

* Elevated levels of Cr, Cu, Fe, Mn and Zn detected in exposed PdAg tubing

Element Pd25Ag Bulk Results Units
Control/Unexposed Exposed A
Ag 25.0 24.9 —0.1 wt%
Pd 75.0 75.1 +0.1 wt%
Al 30 30 0 ppm
Cr Not detected 2 +2 ppm
Cu 20 140 +120 ppm
Fe 20 40 +20 ppm
Mg 1 1 0 ppm
Mn Not detected 0.5 +0.5 ppm
Na 2 2 0 ppm
Pt 105 105 0 ppm
Si 40 30 -10 ppm
Zn Not detected 285 +285 ppm




Gas Cycling Experiments: Surface Analysis Comparison
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* Unexposed PdAg tube: mostly Pd, Ag with trace of Fe, Si, & Al.

Element Line Type| Wit% | Wt% o fmmmmm
b2

Pd L series 72.47 0.04 .

rg | seres [ 2051 [0 (4 * Exposed PdAg tube: Fe, Cr & Cu spots with overall spread of Zn
Si K series 0:08 O:OO a . . .

Fe [ Kseries | 0.04 T 001 * Created a ‘trench’ with Ga ions to identify area for ToF-SIMS
Total analysis

Pd L series N Ag L series \ Zn K series

Element | Line Type W1t% Wit% o
Pd L series 62.95 0.14 : e ‘ L ;
N W Toopm Toopm Soopm
0 K series 3.44 012 Fe K series Cr K series Cu K series
Cu K series 3.10 0.04
Fe K series 1.34 0.03
Ni K series 0.53 0.03
Cr K series

Total:

100pm



ToF SIM Spectroscopy: Isotopic Surface Analysis

Isotopic distribution of Pd and Ag

Note: TOF-SIMS is qualitative
though very sensitive.




ToF SIM Spectroscopy: Isotopic Surface Analysis
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Bremsstrahlung Irradiation Experiments: Description

Objective

Investigate volumetric screening of
deuterated targets exposed to
gamma-ray photons at sub-threshold
(<2.226 MV D-photo-dissociation) and
higher energies up to 3 MV.

114.3 mm

Cooling channel water l
(2 mm thick)—<

Stainless
cooling

channel wall S o
(2 mm thick)— P

Air gap~/
6 mm

v

,— Tantalum braking

-
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Bear7n tube ~— Titanium window :
(10-" torr) 7™~40 um thick) oA — .. T
/1 Beanrspot size 14 mm e
| 28 B A
/ %
e—beam—»\\ ! ; Beam control area |} _+—e-beam, evacuated
T J ‘ ——— 7/ beam tube and
\ ! scanning magnet
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Air gap

target (1.2 mm thick)

. ”?rﬁf”?%f"?ﬁi | ™
I "ET&:MT T} | 0.

0.61m !

Beam room dimension

—20 mi glass sample 5.8 m wide, 3.1 m high, 8.1 m long

vial (2.5 cm diam.,
5 cm high)

oss-sectional view.

Sample vials
(16 ea) —.

\
\

Instruments
a. EJ309, b. stilbene, c. LaBr3

>

,—CR-39
/' (cave face)

046 m

0.76 m

o
000000000000000q
(w 16°0) ueoS weag

Lead cave + instruments +
external borated polyethylene

5

(b) Top view. Sample tray—~

Steinetz et al, 2020, Phys Rev C 101, 044610



Bremsstrahlung Irradiation Experiments: Neutron Spectroscopy

Findings

* Exposure of TiD, and ErD; to a 2.9MV
beam resulted in dd fusion and higher
energy neutrons

* Energetic neutrons transfer KE to stationary
deuterons; energize deuterons and with
electron screening, fuse with stationary
deuterons in metal lattice (dd fusion)

e Subsequent fusion reactions take place due
to boosted or Oppenheimer-Phillips
neutrons as evidenced by neutron
spectroscopy data
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Steinetz et al, 2020, Phys Rev C 101, 044610
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Bremsstrahlung Irradiation Experiments: Gamma Spectroscopy s s
Findings

PeakEasy Ver. 4.97 PGL128 DUD3 PdAg tube 2.554g 4hrs 8mv 1hr postscan on marinelli 4-7-16.Spc + PGL128 DUD3 in PdAg tube on marinelli 2.55

Livetime: 3600.0 sec Deadtime: 1.89 % Neutrons: NA
* Exposure of DUD; to 6MV beam o O3 S e
. . . Libran
resulted in fission products i
* Energetic neutrons from dd fusion
reactions and subsequent reactions i,
create boosted or Oppenheimer- E SR
Phillips neutrons © 1
* Those higher energy neutrons then
fiSSion the irradiated DU aS PGL128 DUD3 PdAg tube 2.554g 4hrs 6mv 1hr postscan on marinelli 4-7-16.Spc + PGL128 DUD3 in PdAg tube on marinelli 2.55
evidenced by gamma spectroscopy " Livetime: 3600.0 sec  Deadtime: 1.89%  Neurons: NA
e : e, e, 228 kev 523 kev RN
* Fission products include: P | Sionges
° 14OBa , 140La 104
° 135| : 134|’ 133| ; 132|’ 132Te
o 135 135mye 103_'j
? " m
° 925[’, 915[’, 92Y, 91mY *g
° 87Kr 8 102
10"
1001
0_I o I1C|)0I L I2(IJOI L IC‘a(IJOI L I4-CIJOI L ISCIJOI o IGCIJOI o I'/CIJOI
Energy (keV)
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Electrolytic Wet Cell Experiments: Description
Objective

* Evaluate bubble detectors as real-time dosimeters monitoring
the co-deposition process3, install neutron spectroscopy to
evaluate the neutron product energies, and determine if there
are neutron emissions above background levels £

Findings

* Exposure to low electric currents (< 500mA) resulted in dd
fusion (2.45 MeV) and higher energy neutrons

Resulting co-dep layers
MCNP Model of Experiment from previous experiments_

[

3p. J. Smith et al, “Electrolytic co-deposition neutron production measured by bubble detectors”, J. Electroanal. Chem. 882 (2021) 115024. 12



Electrolytic Experiments: Neutron Detection

Space Administration

Fusion Scaling:
Periodically Rebuild

hn_Q2 _ch0 the Nuclear Active Environment
hn_Q2 cho0
60 L Entries 6483
- 2.45 MeV Mean 726 15t 2 hours
- Std Dev 413.7
50: Blue: Experimental Data %
@ - Red: Background/Control Data = > Boosted fusion
5 40 S
o - a /\
o r 4""9V maybe?? o f— \f TR T ]
s 30 H
% E DD fusion < 3rd 9 h
Z 20__ ours
- h ||l \ |
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Electrolytic Experiments: SEM Analysis s ppmec
* SEM/EDS of Cathode

* Interesting Calcium Peroxide spots on surface of co-dep layer

Pd L series Ca K series

Cl K series O K series

I Map Sum Spectrum
Wt% o
Pd 827 0.1
(o] 8.0 0.0
C 5.2 0.1
Ca 13 0.0
Pt 12 0.0
Au 0.8 0.0
(@] 0.5 0.0
Fe 0.1 0.0
Na 01 0.0
0.0 0.0

Powered by Tru-Q®

S e L I L e e e
0 5 10 15 keV




Electrolytic Experiments: SEM Analysis
* SEM/EDS of Cathode

* Interesting Calcium Peroxide spots on surface of co-dep layer

Pd L series
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Ca K series

; O K series
Cl K series B Map Sum Spectrum

Wt% [
Pd 80.4 0.1
(o} 9.2 0.0
C 4.2 0.1
Ca 27 0.0
Au 20 0.0
Pt 0.7 0.0
cl 0.6 0.0

01 0.0
Na 01 0.0

0.0 0.0

cps/eV

Powered by Tru-Q®
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Pt| PtJ
0_IIIII|IIIIIIIII|IIIIIIIII|IIII|IIII|IIIIIIIII|IIII
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Transmutation Theories: Fissioning of Resulting Unstable Isotopes

» Takahasi>: Photofissioning of Pd
e Pairs such as Fe+Ca and Ti+Cr
* Nuclear excitation by low-energy, high-flux photons
* Electrolysis experiments

* Fissioning of fused d-Pd or d-Ag; unstable Ag or Cd

* Many pairs are possible with one of the pairs undergoing beta
decay often many times to a stable isotope

* These isotope pairs have been observed on post-test PdAg alloy
samples as well as others.

* Fe+Ti; Mn+Cr; Fe+Cr

°A. Takahasi, M. Ohta, and T. Mizuno, “Production of stable isotopes by selective channel photofission of Pd,” Jpn. J. Appl.
Phys. 40, pp. 7031-7046, 2001.
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Transmutation Theories: Fission Parameter

* Non-actinide palladium deuteride (Z=46) has a fission threshold® < 10 MeV
despite expected 50 MeV fission barrier height

* The electrostatic Coulomb to strong force “fissility” relationship’ (which
was initially derived for characterizing spontaneous fission), Z?/A>17, holds
as low a Z as strontium (34Sr,,, =38, 7%/A=17.2)

* However, parameter was based upon the “liquid drop” nuclear model
developed for actinides.

* Fissility relationship Z°/A>17; for 1%Pd,, = 20.15 and for 1°’Ag,, = 20.65,
hence are both potentially fissile.

®R. Wisniewski, et al., “Deuteron Disintegration, Thermonuclear and Nuclear Fission Reactions Induced by y Quanta in D-
Saturated Palladium and Dense Deuterium Gas with Synthesis of New Structures”, Journal of Surface Investigation. X-ray,
Synchrotron and Neutron Techniques, 7 (2) (2013) 239-247.

’K.N. Mukhin, “Experimental Nuclear Physics: Volume |, Physics of Atomic Nucleus”, Mir Publishers, (Moscow) (1987)
467. Translated from the 1983 Russian version.
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Transmutation Theories: How Do We Fission Pd?

&

e Actinides: Traditional Fission

* Thermal neutron fission for odd A nuclei (*3°U, 23°Pu) and fast neutron fission for
even and odd A nuclei (23°U, 23°Pu, %32Th, 238U)

e PdD system

 Fission is possible via absorption of a nucleon

* Neutron absorption result in release of ~8 MeV of binding energy is shared as KE
amongst nucleons

* O-P reaction: 2M,(D,p)n+°*IM ; KE of p > 6MeV
Certain fusion reactions generate 14MeV neutrons and 15MeV protons
Pd fission barrier is near the top, requiring ~40-50 MeV to fission
However, 1%°Pd has oblate nucleus with Jp=5/2+
Gamma excitation enables sub-threshold fission
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Transmutation Theories: Fissioning of Unstable Isotope Ag

&

e 547n and #4Ca
° 106Pd + ZD -> 108Ag* -> 64Zn + 44C|
» 4C| beta decays to stable 44Ca

* 65Cu and 43Ca
° 106Pd + 2D -> 1°8Ag* -> 65Cu + 43AI"
» 3Ar beta decays to stable #3Ca

 >2Cr and ~2Ni (observed in ToF-SIMS data)
e 108pq 4 2D > 110Ag* _> 52K 4 56\
» 52K beta decays to 52Ca -> 52Sc -> 52Tj -> 52V
and then to stable >2Cr
* >2Cr and °Fe (observed in ToF-SIMS data)
° 106Pd + 2D -> 108Ag* -> 52Cr + 56V
* 2%V beta decays to stable °°Fe

19
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Transmutation Theories: Fissioning of Unstable Isotope Cd

* 49Tj and ®OFe
o 107Ag + 2D -> 109Cd* -> 60Fe + 49T
e %0Fe has a 2.62E6 year % life

* >4Cr and °’Fe (observed in ToF-SIMS data; 2 pathways possible)
» 10Ag + 2D -> H1Cd* -> >4Cr + >’Cr
* >/Cr beta decays (% life of 21.1 s) to >’Mn (% life of 85 s) and then stable >’Fe
o 109Ag + 2D -> 111Cd* -> >4Ti + >7Fe
 >4Tj beta decays (% life of 2.1 s) to >*V (% life of 49 s) and then stable >4Cr

* >3Cr and >%Fe (2 pathways possible)
° 109Ag + 2D -> 111Cd* -> 53Cr + 58Cf‘
 >8Cr beta decays (% life of 7 s) to °Mn (% life of 3 s) and then stable °3Fe
o« 109Ag + 2D -> 111Cd* -> 53Ti + >8Fe
* >3Tj beta decays (% life of 33 s) to *3V (% life of 1.5 min) and then stable >3Cr



Transmutation Theories: Hybrid Fusion-Fast Fission

* Takes advantage of both processes

* Fusion reactions provide the neutrons to fission non-

fissile material
* Require ~2MeV neutrons to fission Th and natural U

* Fusion reactions can provide up to 14.1 MeV neutrons

J neutron
a fission
product

14.1 MeV
d neutron /
> ,)l
fission
D nudeus product

) neutron

National Aeronautics and
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Fusion Useful particle
Reaction energy (MeV)

D(d,n)3He primary ~ 50% n=2.45
D(d,p)T 3.25 primary = 50% p=3.00
D(3He,p)a 18.30 secondary p=15.00
D(t,n)a 17.60 secondary n=14.10
T(t,a)2n 11.30 low probability n=1to9
3He(3He,a)2p 12.86 low probability p=1to 10

Fission Useful particle
Reaction energy (MeV)

232Th(n,y)f high probability n=1to 9
22Th(p,y)f 200 some probability p=1to 10
238Y(n,y)f 200 high probability n=1to 9
238U(p,y)f 200 some probability p=1to 10

&

21
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* Transmutations observed with deuterium gas cycling of PdAg alloy with
various material analysis techniques

* Fusion and higher energy neutrons and fission products detected with
bremsstrahlung irradiation experiments

* Transmutations observed with electrolytic wet cell co-deposition of
PdCl,/LiCl on cathode wires

* Electron screening greatly reduces Coulomb barrier facilitating
deuteron/proton capture by Pd or Ag isotope

* Capture causes resulting isotope to be unstable
e Unstable enough to cause fissioning?
* Possibly another yet unknown vehicle assists with fissioning of the unstable
iIsotope
* Many fission pair possibilities exist

. Ahdditional experiments are needed to confirm the working fusion/fission
theory
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Transmutation Theories: Electron Screening gz | (@

* Electron screening results in a more 165 e
Ly s Lt ao i
transparent Coulomb Barrier, shifting the o =T
. w 1e-10 . ]
Gamow Factor, as if deuterons were at far 2 o Screening enhances
c - 3 d-d reaction rates by
h|gher energ|es. _5 1e-15] Over 10 orders of magnitude
8
* This exponentially increases fusion rates. “é 1e-20] Lattice screening potential oV
o
» Laboratory astrophysics using accelerated te2s) | g Bare | T o 310
- g ———p=—= 1900
deuteron beams across the Periodic Table (oso =i 3500
show lattice and plasma screening provide up S T

to 3+ keV screening. Kinetic Energy, keV

. Electron Screened Enhanced Cross Sections
* From LCF Theory development?, a higher

probability of large angle scattering of
screened charged particles results on
screened deuterons.

S(E
Opare (£) = (E ) exp [—G(E)]

4V. Pines, et al, “Nuclear fusion reactions in deuterated materials,” Phys Rev C, 101, 044609, 2020.
25
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Additional area with transmutations (2018)

Electron Image 4

B Map Sum Spectrum

Wt% o
Pd 483 03
Ag 155 0.1
Zn 120 01
Cu 52 0.0
Fe 48 01
6] 42 0.0
C 42

38
Na 15
Si 03

01

I R

| oo~y ]
OKal 2%m
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Ga - 68.91 (512x512)
Cts: 2519497; Max: 137; Scale: 100um



ToF SIM Spectroscopy: Isotopic Surface Analysis
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Electrolytic Experiments: Tritium Detection

* Run #5 started on July 8
* Bubble detectors added
* EXP: 20 bubbles vs CNTRL: 10 bubbles
* LBS Data indicates tritium present
* 10 min scan & 30 min scan

CIF5 Cell #4 Net Counts, 0 - 25 keV, Electrolytic Wet Cell
LBS Scan, Lumex: 0.44, 10 min scan on 8-22-22

Counts
w

14

12

10

Counts

LA |

Energy ( keV )

20

——CIF5 Cell #4
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CIF5 Cell #4 Net Counts, 0 - 25 keV, Electrolytic Wet Cell
LBS Scan, Lumex: 0.25, 30 min scan on 8-22-22

Energy ( keV)

, \ , ——CIF5 Cell #4 ——Blank D20 CIF5 Cell4 Gross Count

25
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Transmutation Theory: Electron Screened d-Ag or d-Pd Fusion @

Nuclear Three-Body Particle Model

Zuppero & Dolan
* Heavy electrons and 3-body interactions
Pines & Pines (NASA GRC work)

Coulomb potential + nuclear binding

e Electron screening theory (described in previous slide) NRPdtTtR l/R\ e [F)“Fuel'f: HD,TL.
e Possible for deuteron to be completely ‘consumed’ by s B2, W, " etectron attracts
either Pd or Ag with enough electron screening to x fend R
overcome the Coulomb barrier
* d-Pd and d-Ag reactions that follow conservation laws: @

o 105pd + 2D -> 198Ag* (Q=10.83 MeV) g ; , g
e 108pd 4 2D -> 110Ag* (Q=11.08 MeV) A, ot ssses s
e 105pd 4+ 2D -> 107mAg (Q=13.13 MeV) TR R

» 104pq 4+ 2D -> 196Ag* (Q=10.86 MeV) 5 o
e 107Ag + 2D -> 109Cd* (Q=13.24 MeV) 5 flond
4 “ . screening

« 109Ag + 2D -> 11Cd* (Q=13.67 MeV) N



Inert Gas as Insight to Pd Fission Paths et
Neon or Krypton Unstable with too Many neutrons

1 2 3 4 5 i} T 8 9 10 1" 12 13 14 15 16 17 18
1H ‘g;% o Selected) - Al ;a L’
1
Higosen hame 44 g a | Alpha decay B~| Beta decay Helum
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2 Ll ——
" ' . |
A S . n [Neutonemission K+, Electron capture ~ feer Gseer - fesen - Quisen - Shome ) e
TR TR e . M 13 114 45 i1 Iq giBeta
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Nl i Beta Decay Rl [ el
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» Materials: SEM/EDS saw Na, Mg, Al, Si, + Sr others in J-M Tube bundle;

Beta Decays are all milli-sec to at most hours with very few showing gamma radiation (nature hides her tracks)
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