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Key Points: 8 

● Updating the baseline period from 1981-2010 to 1991-2020 leads to significant changes 9 
in percentile-based extreme climate indices in the US 10 

● Temperature indices show generally increased cold extremes and decreased warm 11 
extremes across the US when the baseline period is updated 12 

● For precipitation indices, the later baseline period indicates fewer but more intense 13 
extreme events in the south and central US  14 



manuscript submitted to Geophysical Research Letters 

 

Abstract 15 

Extreme climate events are societally harmful and have increased in frequency and intensity in 16 
recent decades.  Indices based on temperature and precipitation are a valuable way to quantify 17 
climate extremes.  Certain indices are defined relative to percentiles, which are dependent on a 18 
climatological baseline period.  In this study, indices computed using temperature and 19 
precipitation from the Modern Era Retrospective Analysis for Research and Applications, 20 
Version 2 (MERRA-2) are calculated using percentiles from three baseline periods: 1981-2010, 21 
1991-2020 and 1981-2020. Updating the baseline period from 1981-2010 to 1991-2020 leads to 22 
significant changes in the quantification of temperature and precipitation extremes over the 23 
United States over 1980-2021.  Using the later baseline period indicates more cold extremes, 24 
fewer warm extremes, and fewer but more intense precipitation extremes throughout the US, 25 
with regional variation. Changing the baseline period can mislead the public and decision 26 
makers, potentially undermining the appropriate response to climate-related health risks. 27 

 28 

Plain Language Summary 29 

Indices computed using 2-meter air temperature and precipitation are used to represent extreme 30 
climate events such as heat waves, cold waves, heavy precipitation, and drought.  Some indices 31 
are defined relative to percentile-based thresholds, which are computed using a baseline 32 
climatology period. The baseline climatology is typically a thirty-year period and is updated 33 
every ten years. This study examines how updating the baseline climatology period from 1981-34 
2010 to 1991-2020 affects the quantification of climate extremes in the United States over 1980-35 
2021.  In general, since the 1991-2020 period is warmer than 1981-2010 throughout the United 36 
States, there are fewer warm extremes detected and more cold extremes detected when it is used 37 
as the baseline.  The differences are most notable in the southwest and northeast United States.  38 
The changes in the precipitation indices vary throughout the country, but in certain parts of the 39 
southern and central United States, updating the baseline period leads to the detection of fewer 40 
but heavier extreme precipitation events. It is important to communicate the choice of baseline 41 
climatology period to prevent misinterpretation of the extreme climate indices and the 42 
comparison of different studies. 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 
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1 Introduction 51 

Extreme climate events, including heatwaves, heavy precipitation, and drought, have a 52 
large impact on society through human health, destruction of infrastructure, ecological change, 53 
and economic losses.  Indices where daily temperature or precipitation is compared to a threshold 54 
are a valuable tool for the monitoring and quantification of extremes across different regions 55 
(Zhang et al., 2011; Alexander et al., 2019; Dunn et al., 2022).  Some indices use a percentile-56 
based threshold, and thus are dependent on the choice of baseline period used to define the 57 
percentiles (Zhang et al., 2005; Dunn & Morice, 2022). As global and regional climate continues 58 
to change, the interpretation of extreme events is increasingly reliant on this baseline period, and 59 
this can be a source of confusion and ambiguity for the policy making community.  60 

To have the best representation of the current climate, operational centers typically use a 61 
30-year climate baseline period that shifts in time every ten years (Arguez et al., 2012), also known 62 
as a normal.  However, due to the non-stationarity of climate, alternatives to the 30-year climate 63 
normal have been suggested (Livezey et al., 2007; Wilks, 2013; Wilks & Livezey, 2013). The 64 
World Meteorological Organization (WMO) suggests that the maximum amount of data should be 65 
included for the detection of extreme events due to their rare occurrence (Trewin, 2007). The 66 
appropriate baseline period may differ based on the application (i.e., Schreck et al., 2021).    67 

The climate changes between long-term means (e.g., Kendon et al., 2020), so the shifting 68 
of the baseline period can affect the magnitude and interpretation of climate anomalies (Scherrer 69 
et al., 2006; Arguez & Vose, 2011). This issue has the potential to be exacerbated in the situation 70 
of climate extremes. Previous studies have shown linear trends in percentile-based extreme 71 
temperature indices to vary significantly with different baseline periods (Yosef et al., 2020; Dunn 72 
& Morice, 2022). Conversely, the transition to a new baseline was found to affect a drought index 73 
only marginally (Cammalleri et al., 2021).  74 

In this study, we examine how updating the baseline period from 1981-2010 to either 1981-75 
2020 or 1991-2020 affects the quantification and classification of climate extremes across the 76 
continental United States.  We employ indices defined using 2-m temperature and precipitation 77 
from NASA’s Modern Era Retrospective Analysis for Research and Applications, version 2 78 
(MERRA-2; Gelaro et al., 2017).  Changing the baseline period can affect the perception of the 79 
public and decision makers, so it is crucial to understand and communicate how to interpret this 80 
change.  This evaluation expands on the above-mentioned studies by focusing on distinct regions 81 
within the United States, including heatwave and precipitation indices, and examining seasonal 82 
variability of changes in the indices. This manuscript also serves to document differences between 83 
Version 1 (GMAO, 2020) and Version 2 (GMAO, 2022) of the MERRA-2 Monthly Extremes 84 
Detection Indices dataset. Data and methods are described in section 2, while section 3 outlines 85 
the changes in temperature and precipitation extreme climate indices with the updated baseline.  86 
Conclusions follow in section 4. 87 

 88 

2 Data and Methods 89 

2.1 MERRA-2 90 

Data used in this study is from the MERRA-2 reanalysis (Gelaro et al., 2017) and is akin to the 91 
extremes detection indices file collection (Collow et al., 2022; GMAO 2020; GMAO 2022).  Daily 92 
2-m temperature and precipitation data from MERRA-2 are available at a spatial resolution of 93 
0.625° longitude by 0.5° latitude from January 1980 to present (GMAO 2015a, b), though the 94 



manuscript submitted to Geophysical Research Letters 

 

current analysis is for 1980-2021.  Precipitation used to generate the climate statistics is the model 95 
generated output, and not the observation corrected land-forcing precipitation (Reichle et al., 96 
2017).  An evaluation of the climate of MERRA-2 can be found in Bosilovich et al. (2015).  97 

2.2 Percentile Calculation 98 

Percentiles and extreme indices were derived using daily mean fields of precipitation and 99 
2-m temperature, as well as daily minimum and maximum 2-m temperature from MERRA-2. 100 
Percentiles for each calendar day of the year were computed with the multi-year daily running 101 
percentile values (ydrunpctl) function from the Climate Data Operators toolbox (Schulzweida, 102 
2022) with a 15-day running window. This differs from the 5-day window recommended by the 103 
Expert Team on Climate Change Detection and Indices (ETCCDI), because this shorter window 104 
resulted in too much day-to-day variability in the percentiles across the United States. The 15-day 105 
window has been utilized in the past by Collow et al. (2016) and Thomas et al. (2020). Depending 106 
on the location, this may result in additional exceedances of warm extreme thresholds during the 107 
summer and fewer exceedances during the winter. There is minimal influence during the shoulder 108 
seasons. Zhang et al. (2005) evaluated differences between a 5-day and 25-day window and 109 
demonstrated that the 25-day window results in a smaller bias within the baseline period but could 110 
complicate the interpretation of more intense extreme events. Only days with at least 1 mm of 111 
precipitation were included in the percentile calculation for precipitation. Three baseline periods, 112 
1981-2010, 1981-2020, and 1991-2020, were used for the percentile calculations to determine the 113 
dependency on the climatology period used.   114 

2.3 Indices Calculation 115 

Daily exceedances of the percentiles were detected in the MERRA-2 dataset for the years 116 
of 1980 through 2021 using the three sets of percentiles and aggregated into monthly indices 117 
representing extreme temperature and precipitation events, as well as heatwaves. These indices are 118 
analogous to those included in the MERRA-2 monthly extremes detection indices file collection 119 
(GMAO 2020; GMAO 2022), and most have been recommended for use by the ETCCDI 120 
(Alexander et al., 2006). More specific details pertaining to the extreme indices are given in Table 121 
1. The selected indices are included in the MERRA-2 extremes detection indices data product and 122 
are also available for visualization on the Global Modeling and Assimilation Office’s Framework 123 
for Live User-Invoked Data (FLUID) webpage, 124 
https://fluid.nccs.nasa.gov/reanalysis/extreme_merra2/.  The heatwave related indices (HWD, 125 
HWF, and HWM) are based on Perkins and Alexander (2013) in which a heatwave occurs if the 126 
mean 2-meter temperature exceeds the calendar day 90th percentile for at least three consecutive 127 
days. The frequency of extreme precipitation events, R90d, R95d, and R99d, are given as a count 128 
of the number of events as opposed to the percentage of the total precipitation that is considered 129 
extreme as included in the Climpact list of indices (https://climpact-sci.org/indices/). The 130 
frequency of 99th percentile precipitation events was previously used to evaluate the underlying 131 
general circulation in MERRA-2 with respect to teleconnection patterns (Collow et al., 2017). The 132 
dependence on baseline period is assessed using the difference between a given index computed 133 
using two baseline periods over the entire MERRA-2 period (1980-2021).   Significance of 134 
differences is assessed using a two-sample student’s t-test at the 90% confidence level.   135 

 136 

https://climpact-sci.org/indices/
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Table 1. Percentile-based indices included in this study. *Recommended by the Expert Team on 137 
Sector-Specific Climate Indices (ET-SCI; https://climpact-sci.org/indices/). 138 
Index  Name  Calculation  Units 
HWD*  Heat wave duration  Maximum length of consecutive days that satisfy heat wave 

criteria (daily mean 2 m temperature exceeds the 90th percentile 
for at least three consecutive days) 

days 

HWF*  Heat wave frequency  Count of days that satisfy heat wave criteria (see HWD)   count 
HWM*  Heat wave magnitude  Mean temperature anomaly on days that satisfy heat wave 

criteria (see HWD) 
K 

R90p  Wet day precipitation  Mean precipitation on days that exceed the 90th percentile of 
precipitation  

mm day-1 

R90d  Wet days  Count of days that exceed the 90th percentile of precipitation  count 
R95p*  Very wet precipitation  Mean precipitation on days that exceed the 95th percentile of 

precipitation  
mm day-1 

R95d  Very wet days  Count of days that exceed the 95th percentile of precipitation  count 
R99p*  Extremely wet precipitation  Mean precipitation on days that exceed the 99th percentile of 

precipitation  
mm day-1 

R99d  Extremely wet days  Count of days that exceed the 99th percentile of precipitation  count 
 

TN10p*
  

Cold Nights Percent of days with a minimum temperature below the 10th 
percentile  

% 

TX10p*
  

Cold Days  Percent of days with a maximum temperature below the 10th 
percentile  

% 

TN90p*
  

Warm Nights  Percent of days with a minimum temperature above the 90th 
percentile  

% 

TX90p*
  

Warm Days  Percent of days with a maximum temperature above the 90th 
percentile  

% 

  139 

3 Results 140 

 3.1 Percentile changes with changing baseline period 141 

The average over all calendar days of the 90th percentile of daily mean 2-meter temperature 142 
and precipitation is shown in Fig. 1.  During the 1981-2010 period, the 90th percentile of 2-meter 143 
temperature is greatest in the Southern Great Plains and smallest in the high-elevation areas in the 144 
Rocky Mountain range (Fig. 1a).  When the baseline period is updated to 1991-2020 (Fig. 1c), the 145 
90th percentile of 2-meter temperature increases throughout the US, with largest differences in the 146 
Southwest.  Differences are significant everywhere except for a small region in the Northern Great 147 
Plains. The spatial pattern is similar to the differences in 30-year normals produced by the National 148 
Centers for Environmental Information (NCEI 2021). The differences when the baseline period is 149 
1981-2020 are smaller, but still statistically significant throughout the continental US (Fig. 1e).   150 

For precipitation, the 90th percentile averaged over all calendar days over the 1981-2010 151 
period (Fig. 1b) shows higher values in the south-central US, eastern US, and Pacific Northwest, 152 
and lower values in the intermountain west.  With the updated baseline period of 1991-2020, 153 
changes in the percentiles for precipitation are less spatially consistent than for temperature, but 154 
still significant in many regions.  Parts of the Southern Great Plains through the Midwest and 155 
Southwest US show significantly larger precipitation percentiles with the updated climatology 156 
(Fig. 1d).  This differs from the change in the NCEI precipitation normals, which shows a decrease 157 
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over the Southwest US with the later period (NCEI 2021). With the 1981-2020 baseline period, 158 
the changes are more muted, but still significantly positive in these regions (Fig. 1f).  159 

160 
Figure 1. (a) Average of all calendar-day 90th percentiles of 2-m temperature computed using 161 
1981-2010, (c) average difference over all calendar days between percentiles computed using 162 
1991-2020 and 1981-2010, (e) average difference over all calendar days between percentiles 163 
computed using 1981-2020 and 1981-2010.  (b,d,f) as in (a,c,e) but for the 90th percentile of 164 
precipitation.  Grey hatching indicates where differences are significant at the 90% confidence 165 
level.  Labels in (a) denote the regions used in Figure 2.  166 

 167 

 3.2 Changes in extreme climate indices 168 

The identified changes in the temperature and precipitation percentiles will lead to changes 169 
in the extreme climate indices that are defined relative to them.  Fig. 2 shows a summary of each 170 
of the percentile-dependent indices and how they change, on average, when the baseline period for 171 
percentiles is changed.  Fig. 2 separates the percent differences relative to the 1981-2010 172 
climatology period for each index into the regions of the US used in the National Climate 173 
Assessment (NCA; Wuebbles et al., 2017) and denoted in Fig. 1.  In general, changes with baseline 174 
period are largest for the temperature indices using the 1991-2020 climatology (Fig. 175 
2a).  Temperature extremes defined using the 10th percentile (TN10p and TX10p) are more 176 
frequent with the updated climatology – with the later climatology period, there are more days and 177 
nights identified below the 10th percentile.  The opposite is true for indices defined using the 90th 178 
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percentile (TN90p and TX90p) - the 1991-2020 climatology results in fewer identified extreme 179 
warm days and nights. Changes in heat wave frequency (HWF) indicate that the 1991-2020 180 
climatology leads to fewer heat wave days on average in most regions, except in the Northern 181 
Great Plains, where changes in the 90th percentile of temperature were weak and insignificant when 182 
updating the baseline period (Fig. 1c).  In general, the changes when using the 1981-2020 183 
climatology (Fig. 2b) result in the same sign, but weaker in magnitude and significance, as is 184 
expected under a warming climate when moving to a longer reference period that includes more 185 
recent years (i.e., Fig. 1c, e).  186 

For the precipitation indices, in general the updated climatology periods result in fewer 187 
days with extreme precipitation (R99d, R95d, R90d) but more precipitation on extreme days 188 
(R99p, R95p, R90p), with differences most significant for the 99th percentile indices (Fig. 2c-189 
d).  Unlike the temperature indices, the differences for R99d and R99p are larger when using the 190 
1981-2020 climatology rather than the 1991-2020, likely due to the very rare nature of these 191 
events.   192 

While the focus here is on the annual changes, variations across the seasonal cycle are also 193 
an important consideration and are included in the supplementary material (Figs. S1-S4).  In 194 
general, changes in the minimum temperature indices (TN10p and TN90p) are stronger and more 195 
significant in summer (Fig. S3a) while the maximum temperature indices (TX10p and TX90p) are 196 
stronger and more significant in winter (Fig. S1a). The increase in detected heat wave frequency 197 
(HWF) in the Northern Great Plains is primarily a spring phenomenon (Fig. S2a).  For precipitation 198 
indices, there are no significant changes during the winter or spring seasons when updating to the 199 
climatology period of 1991-2020 (Figs. S1c, S2c).   Changes are most significant during summer, 200 
when the Southeast and Southwest regions show a decrease in the frequency of extreme 201 
precipitation events and increase in the amount of precipitation from an event (Figure S3c).   202 

 203 



manuscript submitted to Geophysical Research Letters 

 

 204 
Figure 2.  Average percent difference relative to the baseline climatology of 1981-2010 in area 205 
averaged over regions of the United States for (a) temperature indices using a baseline climatology 206 
of 1991-2020, (b) temperature indices using a baseline climatology of 1981-2020, (c) precipitation 207 
indices using a baseline climatology of 1991-2020, and (d) precipitation indices using a baseline 208 
climatology of 1981-2020. Hatching denotes the two climatologies result in statistically significant 209 
differences at 90% confidence.   210 
 211 
 212 

Based on the regionally area-averaged changes shown in Fig. 2, spatial variability of 213 
changes in selected indices are shown in Fig. 3 (the other indices are shown in Figs. S5-S8).  Here, 214 
differences between indices defined with the two baseline periods are averaged over all months in 215 
1980-2021.  Figure 3a shows the spatial variability of warm nights (TN90p) averaged over all 216 
months in 1980-2021 using the 1981-2010 climatology period.  On average, there are relatively 217 
more warm nights detected in the Southwest US and fewer in the Northern Great Plains.  When 218 
the baseline climatology is updated to 1991-2020, TN90p is reduced everywhere throughout the 219 
United States– strongest in the Southwest, and weakest in the Northern Great Plains (Fig. 3b).  This 220 
spatial pattern is a result of the change in the 90th percentile of temperature (Fig. 1c) with the 1991-221 
2020 baseline. Differences are similar when the baseline period is 1981-2020, but with smaller 222 
magnitude throughout the United States (Fig. 3c).  For cool days (TX10p), there are 223 
climatologically more in the Northern Great Plains and Midwest, and fewer in the Southwest (Fig. 224 
3d).  TX10p increases on average throughout the United States when the baseline period is 1991-225 
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2020 (Fig. 3e), except for the Northern Great Plains where differences are small and 226 
insignificant.  When the baseline period is 1981-2020, the changes are smaller and not significant 227 
in most regions of the United States, likely due to the thirty-year overlap of the two baseline periods 228 
(Fig. 3f).    229 
 230 
 231 

 232 
Figure 3.  (a) TN90p defined using percentiles from the 1981-2010 baseline period, averaged over 233 
all months in 1980-2021,  (b) the difference between TN90p defined using percentiles from the 234 
1991-2020 baseline period and TN90p defined using percentiles from the 1981-2010 baseline 235 
period, averaged over all months 1980-2021; grey hatching indicates where difference is 236 
significant at the 90% confidence level, (c) the difference between TN90p defined using 237 
percentiles from the 1981-2020 baseline period and TN90p defined using percentiles from the 238 
1981-2010 baseline period, averaged over all months 1980-2021, (d,e,f), (g,h,i), and (j,k,l) as in 239 
(a,b,c) but for TX10p, R99d, and R99p.  For readability, panels h-i, k-l are plotted with a 9-point 240 
smoother, i.e., a weighted average of the values of the grid point and the 8 surrounding ones. 241 
 242 
 243 

R99d (days with precipitation above the 99th percentile; Fig. 3g) and R99p (precipitation 244 
on these days; Fig. 3j) are both largest, on average, in the eastern US and pacific northwest. When 245 
the climatology period is updated, R99d is decreased over much of the US, i.e., fewer days with 246 
precipitation above the 99th percentile.  Differences are largest and most significant over eastern 247 
Texas, parts of the west and the Midwest US.  The changes are larger when the climatology period 248 
is 1981-2020 (Fig. 3i) than 1991-2020 (Fig. 3h).  The differences in R99p are less consistent across 249 
the country, and mostly consist of increases in eastern Texas and parts of the Southeast and 250 
Midwest (Fig. 3k-l).    251 

Finally, Fig. 4 shows the monthly time series of select indices averaged over the Southwest 252 
region of the US (as shown in Fig. 1a). The Southwest is chosen due to the relatively large changes 253 
observed in this region when updating the baseline period (Fig. 2).  Monthly indices are shown as 254 
computed from the three baseline climate periods: 1981-2020 (red line), 1981-2010 (black line) 255 
and 1991-2020 (blue line).  For the index representing warm days (TX90p; Fig. 4a), values are 256 
consistently lower when the index is defined using the 1991-2020 percentiles than the 1981-2010 257 
percentiles.  The difference between them increases later in the time series, indicating implications 258 
for trends in the indices; Dunn and Morice (2022) showed that positive trends in warm indices 259 
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such as TX90p were reduced when a later baseline period was used. The opposite is true for cold 260 
nights (TN10p; Fig. 4b), where the newer climatology period results in higher values for the index 261 
throughout the period. For the precipitation indices shown (Fig. 4c-d), differences become most 262 
apparent after 2010, when the 1991-2020 baseline period results in fewer very wet days (Fig. 4d), 263 
but more precipitation on very wet days (Fig. 4c).    264 

 265 

Figure 4.   Time series of 12-month running means for (a) TX90p, (b) TN10p, (c) R95p, and (d) 266 
R95d area averaged over the Southwest region using a base climatology of 1981-2020 (red 267 
lines), 1981-2010 (black lines), and 1991-2020 (cyan lines). 268 

 269 

4 Conclusions 270 

Defining a climatological baseline period is necessary for the computation of percentile-based 271 
extreme climate indices. However, in a non-stationary climate, updating this baseline period leads 272 
to significant changes in the quantification of these climate extremes. In summary, over the United 273 
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States, updating the baseline period from 1981-2010 to 1991-2020 (or 1981-2020) generally leads 274 
to more days identified as a cold temperature extreme, fewer days identified as a warm temperature 275 
extreme, and extreme precipitation events that are classified as being less frequent but more 276 
intense. There is regional variability in these changes: temperature indices are most affected by the 277 
baseline period in the Southwest and Northeast, and least affected in the Northern Great Plains; 278 
precipitation changes are localized but typically greatest in the Southeast, Midwest, and inter-279 
mountain west. This work has focused on the United States. However, the effect of the baseline 280 
period on the definition of extremes could be even more pronounced in other regions more 281 
sensitive to climate change.   282 

The goal of this study has been to quantify the changes in detected temperature and 283 
precipitation extremes with an updated baseline. The cause of the differences in temperature and 284 
precipitation percentiles between the baseline periods is potentially related to several factors. The 285 
relative roles of human-induced climate change and multidecadal variability need to be assessed, 286 
especially to better quantify how extreme climate indices will change in the future (Sillmann et al. 287 
2013a). The changing observing system of the reanalysis (e.g., McCarty et al., 2016) will also be 288 
explored in future work. While the focus of this work has been on MERRA-2, future work should 289 
involve analysis of extreme indices in other data sets, as Sillmann et al. (2013b) showed these can 290 
vary among reanalysis datasets.   291 

While it is standard practice to use a 30-year climate baseline period that shifts in time every 292 
ten years (Arguez et al., 2012), the results here suggest that it may be useful to consider alternatives 293 
for defining climate extremes.  The baseline period could be updated more frequently than every 294 
ten years, though it is not an easy task for operational centers to update their climatology period 295 
every year. To minimize the effect of multidecadal climate variability on extremes, the climatology 296 
could be extended to consist of the longest-record possible (Trewin, 2007). However, if one 297 
considers that society may adapt to the impacts of extremes over time, a shorter, more recent 298 
climatology may be a more logical comparison point. Furthermore, if using an observational record 299 
to define a baseline period, it is important to note whether in situ observational sites reported data 300 
within the reference period used. 301 

The most appropriate baseline likely depends on the application, so data centers could create 302 
versions of indices using multiple baseline periods (e.g., Dunn et al., 2020), or provide users with 303 
the option to develop their own baseline climatology best suited to their purpose. Some users may 304 
need a more frequently updated baseline, while other users may need older baselines retained. It 305 
should also be noted that extreme climate events can be defined without percentile-based 306 
thresholds, such as using indices with a fixed threshold, though these have limited regional 307 
relevance.  Methods based on return periods or time of emergence (Lewis et al., 2017) could also 308 
be used.  Regardless of the approach, it is important to clearly communicate how extremes are 309 
defined and interpreted as this choice and the unique statistics produced can influence public 310 
perception.  311 
 312 

 313 

 314 

 315 
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