
DeepONet-Assisted	Optimization	of	Surface	
Topography	for	Transition	Delay	in	a	

Mach	4.5	Boundary	Layer
Nathaniel	Hildebrand,	Vishal	Srivastava	(AMA),	and	Meelan	M.	Choudhari

Computational	AeroSciences	Branch,
NASA	Langley	Research	Center,	Hampton,	VA

Tamer	A.	Zaki
Johns	Hopkins	University,	Baltimore,	MD

14th	International	ERCOFTAC	Symposium	on
Engineering	Turbulence	Modelling	and	Measurements	(ETMM14)

Mini	Symposia:	Machine	Learning	for	Turbulence
September	8,	2023



2/17

Motivation
• Design	optimization	is	critical	to	enable	radically	new	aerospace	concepts,	
especially	in	applications	that	require	high-fidelity	information	based	on	
nonlinear	time-accurate	flow	behavior,	e.g.,	aeroacoustics,	laminar-turbulent	
transition,	aerothermodynamics,	etc.

• Current	methods	based	on	direct	applications	of	DNS,	LES,	etc.,	are	
computationally	expensive	and	slow
• Repeated	evaluations	of	the	design	metric	and	sensitivities	to	different	control	

parameters	(around	30+)

• Our	goal	is	to	reduce	the	computational	cost	for	aerodesign	requiring	high-
fidelity	time-accurate	data,	while	encapsulating	the	knowledge	base	
generated	during	the	design	task	into	an	accurate	and	efficient	post-design	
reduced-order	model
• Novel	machine-learning	architectures	based	on	Deep	Operator	Networks	

(DeepONets)	that	encode	nonlinear	operators	and	complex	systems	of	governing	
equations	(Lu,	Jin,	and	Karniadakis	2021)



3/17

Outline
• Example	use	case:	Delay	transition	in	high-speed	boundary	layer	via	surface	
protuberance	(“roughness”	element)	by	combining	Ensemble-Variational	
(EnVar)	approach	with	DeepONets	and	DNS.
• Inspired	by	recent	application	of	EnVar	+	DNS	by	Jahanbakhshi	&	Zaki	(2023)	
• Alternate	problem	choices,	objective	function,	etc.,	also	possible,	but	main	

emphasis	is	to	evaluate	the	merit	of	DeepONets	to	reduce	the	optimization	cost

• Validation	of	automated	Python	interface	for	EnVar	against	results	in	
Jahanbakhshi	and	Zaki	(2023)

• Parametric	study	using	EnVar	and	DNS	for	different	roughness	parameters
• Training	data	for	DeepONet	model	with	3	design	variables

• Best	training	practices	for	DeepONet	model	

• Demonstrate	of	EnVar	+	DeepONets	with	no	DNS	(except	for	training)	for	
transition	delay	in	Mach	4.5	boundary	layer	with	a	single	roughness	element
• Computational	speedup	by	a	factor	of	5−6	so	far

• Summary	and	future	work



4/17

Flat	Plate	Configuration	
(Jahanbakhshi	and	Zaki	2023)

• Mach	4.5	boundary	layer	with	Re!! = 3.24×10"

• Mesh	consists	of	𝑁!	×	𝑁#	×	𝑁$ = (2984	×	189	×	151)	grid	points

• Flow	control	via	transition	delay	with	a	local	surface	deformation
• Roughness	defined	by	the	height	(𝐻!),	width	(𝑊!),	and	abruptness	(𝐿!)

𝑢
𝑢!

Laminar Transitional Turbulent

Flow

Inflow



5/17

Baseline	DNS	(No	Roughness	Element)
(Jahanbakhshi	and	Zaki	2023)

𝑢
𝑢!

Laminar Transitional Turbulent

Flow

Inflow

Transition	
occurs	around	
𝑅𝑒! = 2500



6/17

EnVar	Algorithm
𝒊 = 𝟎

• Estimate	the	initial	control	vector	𝒄% = 𝐻& ,𝑊& , 𝐿& T

• Obtain	the	mean	observations	via	DNS/DeepONet
• Evaluate	the	initial	cost	function

• 	ℑ = '
(
𝒄 − 𝒄(*) 𝑩"#

( + '
(
𝐶- 𝑑𝑥/𝐿! 𝑹"#

(

while	flow	still	transitions	in	domain	then
• Generate	ensemble	members	by	sampling	normal	distribution
• Acquire	ensemble	member	observations	via	DNS/DeepONet
• Construct	observation	matrix
• Compute	gradient	∇ℑ	and	Hessian
• Acquire	optimal	weights
• Construct	next	ensemble	mean	𝒄/0' = 𝐻& ,𝑊& , 𝐿& T

• Acquire	mean	observations	via	DNS/DeepONet
• Compute	the	cost	ℑ	and	check	the	convergence	criteria
𝒊 = 𝒊 + 𝟏

end

• Optimal	𝐜 = [𝐻& ,𝑊& , 𝐿&]T,	𝐶-(𝑥)	with	delayed	onset	of	transition



7/17

Verification	of	Automated	Python	Interface	for	EnVar
• Find	the	optimal	combination	of	roughness	parameters	(height,	width,	and	
abruptness)	that	delays	transition	using	EnVar	and	DNS

• After	four	iterations	of	EnVar,	the	roughness	element	successfully	delays	transition	
beyond	the	computational	domain

• Results	agree	very	closely	with	Jahanbakhshi	and	Zaki	2023
• Any	subtle	changes	due	to	random	seeding	of	ensemble	members

Jahanbakhshi	and	Zaki	2023: Our	result	with	Python	interface:



8/17

Influence	of	Roughness	Parameters
• Initial	parameters:	𝐻& =	3.0,	𝑊& =	72.5,	and	𝐿& =	0.06

• Each	iteration	has	one	mean	and	five	random	ensemble	members

• Roughness	height	becomes	much	larger	as	the	iteration	number	increases	from	
1	to	5	and	transition	is	delayed

• Roughness	width	and	abruptness	do	not	change	significantly



9/17

Results	of	Parametric	Study
• Further	examine	the	influence	of	𝐻& ,	𝑊& ,	and	𝐿& 	on	transition	delay	using	EnVar	
and	DNS	with	Python	interface

• Roughness	height	converges	to	a	value	around	𝐻& 	=	4.2	(1.1	mm	or	0.31𝛿!!)
• Most	important	parameter	for	transition	delay

• Roughness	width	and	abruptness	are	not	very	
						significant	and	converge	to	different	values

• All	simulations	resulted	in	fully	laminar	flow



10/17

DeepONet	Training
• Consists	of	a	branch	net	that	generates	the	input	function	space	and	a	trunk	net	
that	generates	the	basis	coefficients	for	the	output

• Prediction	of	skin-friction	distribution	given	low-dimensional	parameterization
• Roughness	height,	width,	and	abruptness

• 14	DNS	used	for	training	the	DeepONet	model

• Good	agreement	between	DNS	and	DeepONet

𝐶 !



11/17

Activation	Functions	for	DeepONet	Training
• DeepONet	has	2	hidden	layers	with	30	neurons	each

• Sigmoid	activation	function	is	used	for	hidden	layers	in	branch	net
• Linear	activation	function	used	for	output	layer

• Trunk	net	takes	𝑥	as	input	and	contains	1	hidden	layer	with	100	neurons
• Sinusoidal	activation	function	is	used	for	trunk	net
• Outperforms	relu,	sigmoid,	and	tanh	functions



12/17

EnVar	+	DeepONet	Optimization
• Repeat	optimization	problem	using	well-trained	DeepONet	model	(no	DNS)

• Initial	parameters:	𝐻& =	3.0,	𝑊& =	72.5,	and	𝐿& =	0.06

• Requires	more	iterations,	but	pushes	transition	out	of	domain
• Final	parameters:	𝐻& =	4.30,	𝑊& =	73.1,	and	𝐿& =	0.073

• Still	working	on	algorithms	to	leverage	both	DNS	and	DeepONet	to	speed	up	
convergence	and	computational	cost



13/17

DNS	and	DeepONet	Comparisons
• Excellent	agreement	between	DNS	and	DeepONet	results

• Every	case	besides	the	initial	one	(top	left)	is	outside	of	training	data



14/17

Can	the	DeepONet	Model	be	Trained	with	Less	Data?

• 18	total	DNS	used	for	this	exercise,	along	with	one	half	of	the	full	dataset	
(i.e.,	9	DNS)	and	one-third	(6	DNS)

• 𝐻& = 2.4	to	5.8	with	increments	of	0.2,	𝑊& = 72.5,	and	𝐿& = 0.06

𝐶 !

𝑥

𝐶 !

𝑥

𝐶 !

𝑥



15/17

Computational	Cost	of	DeepONets
• 1	DNS	=	15,260	CPU	hours
• 1	EnVar	iteration	requires	6	DNS,	i.e.,	92,160	CPU	hours
• 1	Python	aerodesign	procedure	takes	6	iterations,	i.e.,	552,960	CPU	hours

• DeepONet	model	is	trained	for	30,000	epochs	on	1	GPU	for	4	hours

• EnVar	+	DeepONet	results	are	instantaneous	and	run	on	a	laptop

• From	the	last	exercise,	one	third	of	the	total	training	dataset	or	6	DNS	is	enough	
to	obtain	an	accurate	DeepONet	model	that	can	predict	skin	friction	and	high-
speed	boundary-layer	transition

• Demonstrated	computational	speedup	by	a	factor	of	5	to	6	so	far

• Improvements	to	reach	a	computational	speedup	equal	to	an	order	of	
magnitude	will	involve	algorithmic	improvements,	extension	to	large	degrees-
of-freedom	(DoF)	cases,	and	extrapolation	of	same	DeepONet	model	to	different	
flow	conditions	with	very	minimal	or	no	additional	training



16/17

• Aerodesign	problem	of	delaying	transition	in	a	Mach	4.5	flat-plate	boundary	
layer	using	a	single	roughness	element	parameterized	by	(𝐻& ,𝑊& , 𝐿&)

• Verified	automated	Python	framework	that	incorporates	EnVar	design	and	
DNS	with	results	from	Jahanbakhshi	and	Zaki	2023

• Parametric	study	demonstrated	that	roughness	height	was	the	most	
important	parameter	in	terms	of	delaying	transition

• DeepONet	model	allowed	successful	delay	of	transition	and	the	skin-friction	
distributions	agreed	with	the	DNS	results

• Computational	speedup	of	5	to	6	seems	possible	with	current	training	
process	for	DeepONet	model	compared	to	state-of-the-art	transition	
predictions	(Jahanbakhshi	&	Zaki	2023)	for	a	2D	boundary	layer

• Ongoing	efforts	aim	to	improve	the	optimization	algorithm	to	better	leverage	
DNS	and	DeepONets,	while	extending	to	more	complex	geometries	with	
larger	number	of	design	variables	(e.g.,	cone	with	more	general	surface	
topography)

Summary	and	Future	Work



17/17

Acknowledgments

The	computations	described	in	this	presentation	were	carried	out	in	support	of	
the	NASA	Langley	Research	Center	FY23	CIF/IRAD	Program	under	“Machine-
Learning-Based	Reduced-Order	Modeling	for	Aerodynamic	Design”.

We	appreciate	computational	resources	from	both	the	NASA	Langley	Research	
Center	K	Cluster	and	the	NASA	High-End	Computing	Program	through	the	NASA	
Advanced	Supercomputing	Division	at	the	NASA	Ames	Research	Center.


