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Abstract 

Since the first use of computers in space and aircraft, software errors 

have occurred. These errors can manifest as loss-of-life or less 

catastrophically. As the demand for automation increases, software in 

safety-critical systems should be designed to be tolerant to the most likely 

software faults. This paper categorizes historic aerospace software errors 

to determine trends of how and where automation is most likely to fail. A 

distinction between software producing wrong (erroneous) output versus 

no output (fail-silent) is introduced. Of the historical incidents analyzed, 

87% were from software acting unexpectedly rather than simply stopping. 

Rebooting was found to be ineffective to clear erroneous behavior, and 

only partially effective for silent software. Errors were traced back to the 

software logic itself in 62% of cases, 13% within configurable data, and 

25% introduced through input. Thirty percent (30%) of unexpected 

software behavior was caused by the absence of software and 20% was 

due to “unknown-unknowns”. These findings indicate that to achieve fault 

tolerance in safety-critical systems, backup strategies must be employed 

to detect and respond to erroneous software behavior beyond only fail-

silent cases, and robust off-nominal testing should be performed to 

uncover unanticipated situations. 

1.0 Introduction 

This paper explores incidents of unexpected automation/software behavior and software errors 

primarily in aerospace (and a few other safety-critical and representative systems) to identify and 

raise awareness of erroneous software manifestation trends. It introduces a dataset of 47 incidents 

to expose trends in software behavior. It explores if software more often behaves unexpectedly, 

producing erroneous output, versus simply stopping/crashing. It identifies where within the 

software architecture the error happened—within code itself, within configurable data, or from 

sensor or command input. It quantifies cases of missing code, including missing requirements, and 

quantifies “unknown-unknowns” as causes for unexpected software behavior. By understanding 

how and where software is most likely to fail, systems may be better designed and proportionately 

tested for robustness against the most probable failures, and backup strategies may be better 

architected to minimize software risk. 

1.1 Motivation 

Before digging in, let’s provide a few words of motivation. Software risk seems to be a difficult 

topic for “non-software people” to grasp as well as an inherently difficult topic to visualize and 

communicate. Software is intangible and normally concealed beneath layers of abstraction and 

physical shielding. For example, Figure 1 depicts a flight computer—a Space Shuttle General 

Purpose Computer—with no software errors. Conversely, Figure 2 shows a flight computer riddled 

with software errors. With no discernable visual difference between them, the differences only 

become apparent through use. Software representation is therefore left to the imagination, but 

undeniably serves as the means to bring hardware to life (or death), providing behavior and 

personality. It integrates systems together end-to-end, plays a role in virtually all subsystems, and 
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is ever increasing in complexity. All disciplines should learn to “own” their software and 

understand its vulnerabilities and inherent risks. 

  

Figure 1. Flight computer without software 

errors.  

(Credit: NASA) 

Figure 2. Flight computer with software 

errors.  

(Credit: NASA) 

1.2 Incident Dataset 

A dataset of 47 historical incidents starting in 1962 is introduced and analyzed. It includes all 

incidents found since the beginning of employing computers in aerospace to present day such that 

the software/automation behaved unexpectedly and possibly could or should have been written 

differently in hindsight to affect a different outcome. In each incident, the automation controlling 

the system either acted unexpectedly or failed to act (for whatever reason) leading to loss of life, 

loss of mission, loss of time/revenue, or presented a significant close call. It is important to note 

that the ultimate root cause of these incidents is not necessarily “software”. In fact, it could be 

argued that in all of these cases the software performed exactly as programmed. Determining root-

cause of these failures—identifying why the software was programmed that way—is left for further 

study but may include examples such as lack of system understanding, unknown physics, lack of 

time or resources, lack of skills, or procedural/process errors.  

1.3 Software Common-Cause Errors 

Although not specifically studied here, the notion of software errors being “common-cause” should 

be considered because many, if not all of these incidents could be considered common-cause. 

Software “common-cause” or “common-mode” failures arise when software failed, either 

erroneously or silently, but because the software may be duplicated running on multiple redundant 

computers at the same time, a single software error can affect all redundant computers in the same 

way simultaneously. This is a software common-cause error. System architecture determines the 

vulnerability to software common-mode failures. In systems where there is only one copy of flight 

software, a single software error could be considered a common-cause error. Mitigating software 

common-cause errors should be assessed based on system criticality and time-to-effect. Some 

common mitigation strategies include employing a dissimilar software backup system, providing 

manual control, installing monitoring systems, failing into a safe mode, patching the software, and 
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of course, rebooting. For example, some crewed space and aircraft allow for manual piloting, 

which was successfully used in several incidents. Determining which of these strategies, if any, 

were either employed or may have mitigated these incidents is left for further study. 

1.4 Paper Outline 

Section 2.0 of this paper identifies the categories and statistics explored with this dataset. It 

discusses category relevance to system design and in establishing/influencing test strategy. Section 

3.0 lists, in chronological order, each historic software incident in the dataset. A description of 

software’s role in the incident is the primary focus, with references left to readers for more in-

depth information. Section 4.0 presents statistical results of the categorizations of these incidents 

along with an interpretive discussion. 

2.0 Software Incident Failure Categories 

2.1 Erroneous vs. Fail-Silent 

First, we must make a distinction between software failing “erroneously,” which includes the 

automation producing wrong or unexpected output, and software failing “silent,” providing no 

output at all (i.e., crashing). This is an important distinction because detecting the “fail-silent” case 

is usually more straightforward. A watchdog timer can detect the fail-silent case. Rebooting is 

typically used to recover from a silent computer, but the effectiveness of this strategy is discussed 

in the next category, “Reboot Recoverability,” with associated results provided in Section 4.0. 

Detecting and responding to the “erroneous output” case, however, may not be as straightforward. 

How do you know if the software is doing the wrong thing? If a human is onboard, or a ground 

team is actively monitoring, they may be able to recognize software performing unexpectedly and 

override the automation to take appropriate action. But if there is no human in the loop, or if time-

critical, software/automatic backup systems may be employed to recognize and respond to the 

primary software behaving unexpectedly. Fail-down strategies should be employed in safety-

critical systems for transitioning to backup strategies or systems to mitigate the erroneous-output 

case. 

2.2 Reboot Recoverability 

A common strategy to recover from faulty software is to reboot. Unfortunately, reboots do not fix 

all software problems. The incident dataset was reviewed subjectively considering the following 

question, “Would reboot have cleared this problem?” A yes/no answer is tabulated and presented 

in the Section 4.0. This is important to know because depending on the problem, it is often assumed 

that performing a simple reboot may correct the problem. But given the effectiveness presented 

here, a better risk determination can be made for the particular system, and alternate design 

approaches can be considered. 

2.3 Absence of Code 

An interesting statistic studied against this dataset is whether the incident could have been avoided 

by adding code (in hindsight). The incident dataset was reviewed subjectively considering the 

following question, “Could the problem have been averted by adding some code?” A yes/no 

answer to this question is tabulated in Section 4.0. It is well understood that it is much easier to 

know what code to add after a mishap rather than predicting the failure in advance. Considering 
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whether or not the code could or should have been there is a more difficult question addressed in 

the categorization of “unknown-unknowns” below. But simply determining if an incident was the 

result of the absence of software has large testing implications. If software is only tested against 

requirements, or tested against code that exists, then how can errors caused by the absence of 

software be discovered? This poses a testing challenge. Performing off-nominal testing for random 

input sets may help to uncover missing code. Test campaigns should consider testing both the 

existing code as well as for the absence of code proportionately to how errors usually manifest. 

Results of this investigation and further discussion are provided in Section 4.0. 

2.4 Error Location 

A categorization as to where in the software the error initially manifested is performed by 

distinguishing between the following four groups: code/logic, data, sensor input, and command 

input. The reason for these distinctions is because assuring integrity in each of these areas both 

pre-flight and operationally have different testing characteristics and procedural validation 

methods.  

First, “coding/logic” includes errors that are in the code itself, encoded into logic or algorithms. 

This category includes the absence of code as discussed above, and missing requirements, where 

code could have been written to avert the error. Next, “data” includes those errors due to 

misconfigured data, or erroneous stored parameters. This is separated from “code/logic” to 

distinguish between the fact that software is becoming more data-driven, and that data are more 

likely to change than the code itself. The third category, “sensor input,” addresses errors stemming 

from unexpected or erroneous sensor input. This distinction is made because generating off-

nominal tests specifically targeting random sensor input may help to avert this error. The final 

category, “command input,” includes erroneous command input due to operator or procedural 

error. These errors should normally be averted through command verification during operations 

prior to their issuance and by process assurance. The overall prevalence of each of these categories 

is given in Section 4.0. 

2.5 Unknown-Unknowns 

The last category, “unknown-unknowns,” a term popularized by Donald Rumsfeld referring to 

“the ones we don’t know we don’t know” [1]”, is a highly subjective category, but attempts to 

conservatively quantify how many of these incidents arose from knowledge only realized or 

conceived in hindsight that could not have been discovered ahead of time with reasonable effort. 

It primarily includes cases where aerodynamics or physics were studied but not fully understood 

and cases of highly unusual sensor input, unanticipated situations, or scenarios created by fault 

situations. It could be argued that with infinite resources, all of these could have been known, such 

as by performing more wind tunnel testing, more simulation, more analysis, deeper fault level 

scenario study, or longer and more robust sensor characterization. A subjective evaluation of the 

question “Could/should it have been reasonably known?” within reasonable project constraints is 

provided here. This may be used as a rough level-of-risk measure for the unplanned and 

unexpected and should be assessed in relation to software criticality and backup options.  

3.0 Historic Incidents 

A dataset consisting of 47 software failure incidents primarily within aerospace along with a 

representative few in the medical and commercial industries is presented. Note again these 
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incidents are discussed through a software perspective only as software failures, although the root-

cause of the incidents may be attributable otherwise. Here, a software failure is considered to be 

where the software or automation behaved unexpectedly and could have been corrected within the 

software to achieve a different outcome. Table 1 shows a breakdown of studied incidents by 

industry. Eighty-seven percent (87%) of these incidents are in aerospace (spacecraft, aircraft, 

launch vehicle, missile), with others included as well-known representative software incidents in 

medical, commercial, or utility systems. As shown in Table 1, over half of the dataset consists of 

spacecraft. Spacecraft and launch vehicles combined comprise two-thirds of the incidents. Table 

2, in Section 3.2, shows the classifications of each incident against each of the categories discussed 

in Section 2.0. 

Table 1. Industry of Incidents Studied 

Industry Percent Quantity 

Spacecraft 51 % 24 

Launch Vehicle 17 % 8 

Aircraft 15 %  7 

Missile  4 %  2 

Medical  6 %  3 

Commercial  6 %  3 

3.1 Incident Descriptions by Year 

This section lists and provides brief descriptions of software incidents organized by year. The 

incident number corresponds to the same number as shown in Table 2 (Section 3.2), where more 

information on error categorizations is provided. 

1) Year:    1962 

System:   Mariner 1 – Atlas-Agena Rocket 

Title:   Programmer error in ground guidance veered launch vehicle off 

course 

Result:   Loss of vehicle 

Description:  Mariner 1 was launched by an Atlas-Agena rocket from Cape Canaveral's 

Pad 12 on 22 July 1962. Shortly after liftoff, errors in communication between the rocket 

and its ground-based guidance system caused the rocket to veer off course, and was 

destroyed by range safety. The errors were traced to two factors: (1) improper operation of 

beacon equipment resulting in periods of silence, and (2) a programming error (omission 

of a hyphen) which incorrectly accepted sweep frequency guidance signals into the 

program during inoperable beacon periods. This caused the computer to produce swinging 

steering commands sending the vehicle off course. Further documentation can be found in 

[2,3]. 

2) Year:    1965 

System:   Gemini 3 

Title:   Incorrect lift estimate causes short landing 

Result:   Landed 84 km short, crew manually compensated to decrease short 

landing error 

Description:  During the first manned entry on March 23, 1965, the “Molly Brown” 

capsule was off course, landing short due to capsule lift falling short of what was calculated 

in wind tunnel tests [4, p. 236]. The capsule landed 84 km short. Although wind-tunnel 

testing was performed and the software did not contain a “bug,” this is an example of how 
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a lack of understanding of the real-world environment can result in software behaving 

unexpectedly due to the absence of code.  

3) Year:    1965 

System:   Gemini 5 

Title:   Data error of earth rotation lands Gemini 5 short 

Result:   Landed 130 km short, crew manually compensated 

Description:  Although the computer was operating properly, a programmer had entered 

the rate of the Earth's rotation as 360° per 24 hours instead of 360.98° [4, p. 262]. The crew 

compensated for the computing error, landing 80 miles (130 kilometers) short of the 

planned landing point in the Atlantic Ocean. The astronauts controlled the reentry, creating 

drag and lift by rotating the capsule. This is an example of erroneous data causing software 

misbehavior. A depiction of the crew for the Gemini 5 space flight, astronauts Charles 

Conrad Jr., (in water) and L. Gordon Cooper Jr. (in raft), is shown in Figure 3. 

 

Figure 3. Gemini 5 Astronauts training for landing recovery.  

(Credit: NASA) 

4) Year:    1968 

System:   Apollo 8 

Title:   Memory Inadvertently Erased  

Result:   Close call fixed manually 

Description:  An inadvertent astronaut command erased computer memory causing the 

computer to believe the IMU was in an incorrect vehicle orientation. The crew manually 

corrected the orientation and computer data according to a pre-established procedure [5]. 

5) Year:    1969 

System:   Apollo 10 

Title:   Switch Misconfigured as bad input data to abort guidance 

Result:   Vehicle tumbled, recovered manually 

Description:  The Abort Guidance System (AGS) was inadvertently switched from 

HOLD ATTITUDE to AUTO, which caused the Lunar Module to look for the 

Command/Service Module (CSM) and tumble. The computer behaved correctly based on 

the erroneous data switch configuration. The Commander was able to switch the vehicle 
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into all manual control mode to stabilize the vehicle before losing the energy required for 

complete lunar ascent. Further documentation can be found in [6,7]. 

6) Year:    1981 

System:   STS-1 

Title:   Failure of computers to sync 

Result:   Launch Scrub of First Shuttle flight 

Description:  During the STS-1 countdown, twenty minutes prior to the first Space 

Shuttle flight, all computer clocks were desynchronized. This was due to programming 

changes 1 and 2 years prior that caused a General Purpose Computer (GPC) mismatch of 

time among the computers with a 1 in 67 chance of occurring, though happening that day. 

When asked to initiate with an incorrect start time in the past, the system set the start cycles 

in the future which was seen as noise by the backup computer [8]. 

7) Year:    1982 

System:   Viking-1 

Title:   Erroneous Command caused loss of communication  

Result:   Loss of Vehicle 

Description:  An erroneous command intended to improve battery charging inadvertently 

overwrote data used by the antenna pointing software and caused permanent loss of 

communication [9]. This is an example of an erroneous command. 

8) Year:    1985-87 

System:   Therac-25 

Title:   Radiation therapy machine output lethal doses caused by user input 

speed 

Result:   Four deaths, two chronic injured 

Description:  Six accidents between 1985 and 1987 provided patients with massive 

overdoses of radiation.  Because of concurrent programming errors, it sometimes gave 

patients radiation doses that were hundreds of times greater than normal, resulting in death 

or serious injury. These accidents highlighted the dangers of software control of safety-

critical systems, and they have become a standard case study in health informatics, software 

engineering, and computer ethics. An image of the Therac-25 is shown in Figure 4, and 

further documentation can be found in [10]. 
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Figure 4. Therac Radiation Therapy Machine. 

(Photo Credit: The National Archives, catalog.archives.gov, NAID: 6361754). 

9) Year:    1988 

System:   Phobos-1 

Title:   Erroneous unchecked uplinked command lost vehicle 

Result:   Loss of vehicle/Mission 

Description:  On 2 September 1988, an expected transmission from Phobos 1 was not 

received. This was traced to a faulty key-command that was sent on 28 August from ground 

control in Yevpatoria. A technician unintentionally left out a single hyphen in one of the 

keyed commands. All commands were supposed to be proofread by a computer before 

being transmitted, but the computer that checked commands was malfunctioning. The 

technician violated procedure and transmitted the command before the computer could be 

fixed to proofread it. This minor alteration in the command code activated unused test code 

and deactivated the attitude thrusters, losing sun tracking and thus depleting its batteries. 

Further documentation can be found in [11,12]. 

10) Year:    1988 

System:   Soyuz TM-5 

Title:   Wrong code executed to perform de-orbit burn 

Result:   Extra day in orbit, new code uplinked 

Description:  After undocking from Mir EP-3, the Soyuz TM-5 spacecraft deorbit engine 

software shut down prematurely, not completing the burn. A second attempt after engine 

restart behaved the same.  

Ground teams discovered the computer was executing a program that was used to dock 

with Mir several months earlier. New software was uplinked, and the crew landed safely. 

Further documentation can be found in [13]. 
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11) Year:    1991 

System:   Aries – Red Tigress I 

Title:   Bad command causes guidance error 

Result:   Loss of Vehicle 

Description:  The vehicle suffered a guidance error and was destroyed approximately 

20 seconds after liftoff. Root cause was an erroneous command automatically issued by a 

failing/crashing VAX computer. Further documentation can be found in [14]. 

12) Year:    1991 

System:   Patriot Missile 

Title:   Failed target intercept due to 24-bit rounding error growth over time 

Result:   Failed to intercept incoming scud missile, resulting in American 

barracks being struck, 28 soldiers killed, 100 injured 

Description:  A 1970s 24-bit legacy code rounding error in time conversion led to time 

inaccuracies in predicting incoming missile range prediction. The truncation error grew 

larger the longer software was run and led to loss of precision. Time was calculated since 

boot, and in this case, the Patriot battery had been up approximately 100 hours which 

resulted in a time error of about 0.34 seconds. In trying to intercept a scud moving at 

1,676 meters per second, this error placed the scud outside of the Patriot’s tracking ability. 

An image of a patriot missile is shown in Figure 5, and further documentation can be found 

in [15]. 

 

Figure 5. Patriot Missile. 

(Photo Credit: The National Archives, catalog.archives.gov, NAID: 6424495) 

13) Year:    1992 

System:   F-22 Raptor 
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Title:   Software failed to compensate for pilot-induced oscillation in 

presence of feedback lag 

Result:   Pilot killed, loss of test vehicle 

Description:  In April 1992 the first F-22 Raptor crashed while landing at Edwards Air 

Force Base, California. The cause of the crash was found to be a flight control software 

error that failed to prevent a pilot-induced oscillation [16]. 

14) Year:    1994 

System:  Clementine Lunar Mission 

Title:   Erroneous thruster firing exhausted propellant, cancelling asteroid 

flyby 

Result:   Failed mission objective 

Description:  An erroneous thruster firing exhausted propellant and left the 

spacecraft rotating at ~80 revolutions per minute (rpm), causing the cancelation of the 

planned asteroid flyby. The Clementine mission did successfully transmit lunar images and 

was able to complete its study of radiation impact on sensors and components with an 

alternative trajectory (passing through the Van Allen belts). Thus, two of the three main 

mission objectives were completed, albeit with an alternative radiation exposure profile. 

The mission suffered from a minimal budget as well as schedule pressure; Clementine was 

launched without the software being complete or tested [17,18,19]. 

15) Year:    1994 

System:   Pegasus XL STEP-1 

Title:   Booster loss of control due to lateral instability 

Result:   Loss of vehicle/Mission 

Description:  The control program code grossly underestimated the aerodynamic dihedral 

effect of high wing. Further, there was insufficient testing to reveal a faulty sideslip 

estimation algorithm that neglected gravitational acceleration (B. Jackson, personal 

communication, November 15, 2022). “Several seconds after first-stage ignition, Pegasus 

veered off course and lost speed, prompting the Range Safety Officer (RSO) to destroy it. 

The investigation revealed that the vehicle experienced an anomalous roll due to a 

‘phantom yaw’ caused by an improper aerodynamics model used in the control system 

autopilot design” [20, p. 53]. 

16) Year:    1994 

System:   Pegasus HAPS 

Title:   Navigation software error prematurely shut down upper stage 

Result:   Unintended/low orbit 

Description:   The Pegasus HAPS liquid upper stage shut down about 25 seconds 

early due to a software navigation error, resulting in a lower-than-specified orbit. The 

payload was still able to provide useful data, but its lifespan was reduced by 2.5 years [20]. 

17) Year:    1996 

System:   Ariane 5 Maiden Flight 

Title:   Unprotected overflow in floating-point to integer conversion 

disrupted inertial navigation system 

Result:   Loss of Vehicle 

Description:  During launch of Ariane 5, horizontal velocity was larger than in the 

legacy Ariane 4 (A4). Conversion from a 64-bit floating point to scaled 16-bit integer 

caused overflow in reused A4 inertial navigation system alignment routine. Further, the 
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alignment routine continued for 40 seconds after launch per A4, but this was not required 

for A5 after liftoff. Identical hardware and software in redundant inertial systems both 

failed, leaving no other source of data. Further documentation can be found in [21,22]. 

18) Year:    1997 

System:  Pathfinder 

Title:   Software priority inversion caused images to stall 

Result:   Close Call for Mission Loss  

Description:  A programming error in real-time priority inheritance on mutex 

semaphores caused downlink of imaging to be stalled, and the computer watchdog kept 

resetting the computer. The error was identified and corrected using debugging features of 

operating system not originally planned to be used in-flight. Further documentation can be 

found in [23,24,25]. 

19) Year:    1998   

System:   Delta III  

Title:   Unanticipated 4Hz oscillation in control system led to vehicle loss 

Result:   Loss of vehicle 

Description:  In August 1998, the Delta III rocket veered off course and was destroyed by 

range safety 70 seconds into flight. The control software failed to recognize and correct an 

unanticipated 4Hz oscillating roll that developed during the first minute of flight, depleting 

the gimbal hydraulic fluid. Further documentation can be found in [20,26]. 

20) Year:    1999 

System:  Mars Polar Lander 

Title:   Premature shut down of landing engine due to misinterpretation of 

landing signature 

Result:   Loss of Vehicle/mission 

Description:  A “jolt” of landing micro-switches during landing gear deployment 

was misinterpreted as an actual landing, and engines were prematurely shut down. The 

software was intended to include logic that would discount touchdown indications prior to 

the enabling of the touchdown sensing logic, but this code was not correctly implemented. 

Thus, the software accepted this spurious touchdown indication as valid. A rendition of the 

Mars Polar Lander is shown in Figure 6, and further information can be found in [27,28]. 
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Figure 6. Mars Polar Lander. 

(Credit: NASA) 

21) Year:    1999 

System:  Mars Climate Orbiter  

Title:   Metric vs. imperial units error 

Result:   Loss of vehicle/mission 

Description:  Mars Climate Orbiter was lost in September 1999 because of a 

mismatch between measurement units in the navigation program. The spacecraft 

encountered Mars on a trajectory that brought it too close to the planet, and it was either 

destroyed in the atmosphere or escaped the planet's vicinity and entered an orbit around the 

Sun. An investigation attributed the failure to a measurement mismatch between two 

software systems: metric units by NASA and US Customary (imperial or “English”) units 

by spacecraft builder Lockheed Martin. Further documentation can be found in [29,30]. 

22) Year:    1999 

System:   Titan IV B Centaur 

Title:   Programming error omitting decimal in data file caused loss of 

control 

Result:   Unintended low orbit, Milstar Satellite lost 10 days after launch 

Description:  This Titan IV B launch vehicle was equipped with a Centaur upper stage 

intended to deliver a Milstar satellite into geosynchronous orbit. After the Centaur 

separated from the Titan IV B, the vehicle began to experience anomalous rolls. The 

vehicle did not reach its intended velocity or orbit. The Milstar satellite was permanently 

shut down 10 days later and declared dead in orbit. During development of the Centaur 

computer software, a decimal point was misplaced while manually entering the roll rate 

filter constant in the Inertial Measurement System flight software configuration file. [20]. 

23) Year:    2000  

System:   Zenit 3SL 

Title:   Ground software error failed to close valve. 
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Result:   Loss of Vehicle 

Description:  The Zenit-3SL’s second stage shut down 80 seconds early into its planned 

6.5-minute burn, and vehicle landed in ocean after 450 seconds. The launch failed due to 

faulty ground software not closing a valve in the rocket's second stage pneumatic system 

[20]. 

24) Year:    2001 

System:  Pegasus XL/HyperX Launch Vehicle / X-43A 

Title:   Airframe failure due to inaccurate analytical models 

Result:   Loss of vehicle/mission 

Description:  The error was caused by combination of misestimated aerodynamic 

characteristics and aliased solid motor organ tone appearing as significant lateral 

acceleration at low frequency due to improper signal filtering (B. Jackson, personal 

communication, November 15, 2022). “The X-43A HXLV failed because the vehicle 

control system design was deficient for the trajectory flown due to inaccurate analytical 

models (Pegasus heritage and HXLV specific), which overestimated the system margins” 

[31]. 

25) Year:    2001 

System:  STS-108 through 110 

Title:   Shuttle main engine controller mix-ratio coefficient sign-flip error 

Result:   Significant close call, SSME underperformance 

Description:  Prior to STS-108 a change had been made to the controller software 

coefficient for the Space Shuttle Main Engine (SSME) to compensate for an observed 

measurement bias in the SSME main combustion chamber pressure sensor, which controls 

the SSME fuel/oxidizer mixture ratio. The pressure chamber sensor was biased high 

causing the flight software to lower the chamber pressure by decreasing the liquid oxygen 

flow rate. Because of communication errors between ground systems engineers and 

deficiencies in the flight software verification and validation processes, the software 

coefficient was adjusted in the wrong direction, resulting in even larger dispersions in the 

mixture ratio and SSME performance. The error in the coefficient was discovered during 

post-flight reconstruction of the data from STS-108. The cause of the error remained 

unknown until after STS-110. The erroneous coefficient was flown on three consecutive 

flights (STS-108, STS-109, and STS-110) resulting in a slight SSME underperformance 

on each flight and was fixed with the proper coefficient and independent verification prior 

to STS-111. The error in software and resulting mixture ratio wasn't severe enough to cause 

any significant impacts to SSME performance, and all three flights achieved proper orbits. 

However, if the software error had been larger, more severe impacts to the missions and 

crew safety could have occurred, including a premature engine shutdown/failure resulting 

in on-pad or ascent abort and loss of mission. Further documentation may be found in 

[32,33].  

26) Year:    2003 

System:  Multidata Systems Radiation Machine 

Title:   Radiation therapy machine output lethal doses caused by 

counterclockwise user input 

Result:   Many injured, 15 deaths. 

Description:  In a series of accidents, therapy planning software created by 

Multidata Systems International miscalculated the proper dosage of radiation for patients 
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undergoing radiation therapy leading to lethal doses. Miscalculations in dosage resulted 

from unexpected operator input, including graphically drawing the treatment region 

counterclockwise. Further documentation can be found in [34,35,36]. 

27) Year:    2003 

System:  Soyuz - TMA-1 

Title:   Undefined yaw value triggered ballistic reentry 

Result:   Landed 400 km short 

Description:  The problem, which caused Soyuz TMA-1 to fail-down to a re-entry 

in ballistic mode and land 400 km short of the intended landing site, was due to a failure in 

the BUSP-M guidance system, necessary to carry out a controlled re-entry. This guidance 

system reads gyroscopes and accelerometers and sends appropriate commands to attitude 

control thrusters. The yaw control channel, a sub-unit of the BUSP-M produced 

‘undefined’ readings, indicating a malfunction. This caused higher control functions to take 

the BUSP-M system out of the control loop and engage ballistic re-entry mode. The radio 

antennae burned off so contact was only established with the crew once on the ground via 

hand-held radios. This was US Astronauts Don Petit’s and Ken Bowersox’s ISS return 

flight. The problem was not duplicated on ground but believed to be small timing issue. 

Further documentation may be found in [37,38,39]. 

28) Year:    2003 

System:   North American Electric Power Grid 

Title:   Software errors contribute to widespread power outage 

Result:   Widespread loss of power service (2 hours - 4 days) 

Description:   The Northeast blackout of 2003 was triggered by a local outage that 

went undetected and cascaded due to real-time priority inversions in monitoring software 

and inadequate system modeling in planning tools. The processes that annunciated alarms 

and provided logs to operators were “stalled”, hindering situational awareness, while 

letting input data “pile up” until overflowing buffers, ultimately crashing the processor. 

Additionally, their planning tools did not accurately assess the impact of power losses. 

Several key lines went off-line undetected, and there was a lack of sufficient reactive power 

reserves contributing to cascading power loss [40].  

29) Year:    2005 

System:   CryoSat-1 

Title:   Missing command causes loss of vehicle 

Result:   Loss of Vehicle 

Description:   The European Space Agency's CryoSat-1 satellite was lost in a 

launch failure in 2005 due to a missing shutdown command in the flight control system of 

its carrier rocket. The main engines in the second section of the three-stage rocket 

continued to burn until they had completely run out of fuel, landing the craft in the Arctic 

Ocean [41]. 

30) Year:    2005 

System:  Demonstration of Autonomous Rendezvous Technology (DART) 

Title:   Navigation software errors fail mission objectives. 

Result:   Loss of mission 

Description:  Disagreement between measured and estimated navigation positions 

caused repeated resets, and by using the same GPS sensor data carried over between 

repeated resets coupled with a guidance algorithm that performed continual course 



15 

correction, thruster firings depleted propellant and lost the mission. The algorithm was 

deemed overly-sensitive to divergent navigation data and contained a design flaw favoring 

the estimated value over the measured value, thus they would never have converged and 

repeatedly reset as a result. Further documentation may be found in [42,43]. 

31) Year:    2006 

System:  Mars Global Surveyor (MGS) 

Title:   Erroneous command led to pointing error and power/vehicle loss 

Result:   Premature loss of vehicle 

Description:  A maintenance update command sent data to the wrong location in 

memory, over writing communication and solar array pointing, which ultimately caused 

the craft to deplete power. Further documentation may be found in [44,45,46]. 

32) Year:    2007 

System:  F22 First Deployment  

Title:   International Date Line crossing crashed computer systems  

Result:   Loss of navigation & communication 

Description:  Multiple software-related system failures occurred when the 

crossing the 180th meridian, resulting in loss of navigation and communication. Clear 

weather permitted the squadron to pilot the aircraft manually and visually by following 

tanker ships back to Hawaii. Further documentation may be found in [47,48].  

33) Year:    2008 

System:  STS-124 

Title:   All 4 shuttle computers fail / disagree during fueling 

Result:   Fueling stopped, flight delayed 

Description:  A cracked diode in an external sensor effectively sent each of the 

four primary Shuttle General Purpose Computers (GPC) a different input signal from the 

same sensor, causing a 1-1-1-1 disagreement among the 4 redundant computers which 

halted fueling and delayed the flight. Further documentation can be found in [49,50]. 

34) Year:    2008 

System:  Quantas Flight 72, Airbus A330-303 

Title:   Sensor input spikes caused autopilot to pitch-down, resulting in 

crew and passenger injuries 

Result:   One crew member and 11 passengers suffered serious injuries 

Description:  One of the aircraft’s three air data inertial reference units (ADIRU 

1) exhibited a data-spike failure mode, during which it transmitted a significant amount of 

incorrect data to the autopilot without it being flagged invalid. The design never considered 

these spiked data and resulted in systems warning irregularity, including contradictory stall 

and overspeed warnings, and issued an uncommanded pitch down. The Australian 

Transport Safety Bureau (ATSB) investigation found this to be a previously unknown 

software design limitation of the Airbus A330's fly-by-wire flight control system software. 

A depiction of the stages in the flight is shown in Figure 7, and further documentation can 

be found in [51]. 
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Figure 7. Quantas Flight 72.  

(Credit: Masakatsu Ukon, CC BY-SA 2.0, via Wikimedia Commons 

https://creativecommons.org/licenses/by-sa/2.0/ 

https://commons.wikimedia.org/wiki/File:Qantas_Airways,_Airbus_A330-300_VH-

QPA_NRT_(34167383486).jpg) 

35) Year:    2008 

System:  B-2 Spirit - Guam crash 

Title:   Miscalculation with missing input data caused uncommanded pitch 

up 

Result:   Crew members successfully ejected.  

Description:  After three pressure transducers failed to function due to 

condensation inside the devices and heavy rain, the flight-control software was without all 

necessary information and calculated inaccurate aircraft angle-of-attack and airspeed. Once 

airborne and with a higher indicated speed than actual, a negative angle-of-attack was 

calculated, causing an uncommanded pitch up. Further documentation can be found in [52]. 

36) Year:    2012 

System:  Red Wings Flight 9268 TU-204 

Title:   Unanticipated landing circumstances coupled with design features 

resulted in crash landing 

Result:   5 of 8 crewmembers killed 

Description:  When attempting a crosswind landing in snow, the weight-on-

wheels switch failed to engage, the aircraft hydroplaned, and the reverse thruster did not 

deploy. As a safety feature, both sets of main landing gear were required to be compressed 

simultaneously before the thrust reversers could deploy. Because there was no compression 

of the right landing gear, the reversers were never deployed, the pilots were unaware that 

reverse thrusters didn’t deploy, and when they moved the controls to the maximum reverse 

position, it caused an increase of forward thrust in both engines. In addition to the lack of 

reverse thrust, the airbrakes and spoilers failed to activate automatically, and the crew did 

not attempt to activate them manually. Further documentation can be found in [53]. 

37) Year:    2015 

System:   Airbus A400M test flight 

Title:   Missing software parameters during installation caused crash 

Result:   Four fatalities 

https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Qantas_Airways,_Airbus_A330-300_VH-QPA_NRT_(34167383486).jpg
https://commons.wikimedia.org/wiki/File:Qantas_Airways,_Airbus_A330-300_VH-QPA_NRT_(34167383486).jpg
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Description:   The absence of a configuration file defining critical engine 

parameters caused the loss of three of four engines, leading to a crash. During the final 

assembly process, software was incorrectly installed. Further documentation can be found 

in [54,55]. 

38) Year:    2015 

System:  SpaceX CRS-7 

Title:   Opening chutes unavailable after launch vehicle failure 

Result:   Possibly could have saved Dragon capsule from crash landing 

Description:  After launch vehicle failure, an attempt to save the Dragon vehicle 

by opening the chutes failed because software for handling this situation was absent from 

the program. Code to open the nose cone and command chutes to open were disallowed in 

the current state. Consequently, the vehicle was destroyed by a crash-landing into the 

ocean. The code was changed after the flight to handle this contingency situation [56]. A 

figure of the launch explosion is shown in Figure 8. 

 

Figure 8. CRS-7 Mishap. 

(Credit: NASA). 

39) Year:    2016 

System:  Hitomi X-ray space telescope  

Title:   Error in computing spacecraft orientation led to spacecraft loss 

Result:   Loss of vehicle 

Description:  An error computing spacecraft orientation from gyros against a 

failed star-tracker led to cascading failures, including firing thrusters in the wrong direction 

to increase, rather than arrest, spacecraft spin. The fail-safe for the spin was also confused 

about orientation so was ineffective, and an erroneous command uplinked for initiating 

safe mode further accelerated the spin. Further documentation may be found in [57,58]. 

40) Year:    2017 

System:  SpaceX CRS-10 

Title:   Erroneous relative state vector transmitted to Dragon 

Result:   ISS rendezvous delay 

Description:  The Dragon spacecraft rendezvoused with the International Space 

Station on 22 February, but its approach was automatically aborted by an on-board 
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computer when a data error was reported in its navigation system. This is the first 

rendezvous abort by a Dragon spacecraft. The problem was traced to an incorrect data value 

in the spacecraft's Global Positioning System used to determine relative position to the 

space station. The abort resulted in a 24-hour hold on its approach. Further documentation 

may be found in [59,60]. 

41) Year:    2018, 2019 

System:  737 Max crash  

Title:   Unanticipated software response to faulty sensor input 

Result:   346 people died on two flights 

Description:  Erroneous input from a non-redundant faulty angle-of-attack sensor 

showed higher than actual angle-of-attack, causing the software to respond with a nose-

down trim of the horizontal stabilizer. Handling of this erroneous sensor input was not in 

the software design, information about this software behavior was not generally 

communicated, and pilots were not trained to respond. Further documentation may be 

found in [61]. 

42) Year:    2019 

System:  Boeing Orbital Flight Test (OFT) 

Title:   Incorrect MET caused no ISS rendezvous and uncovered other 

latent software errors 

Result:   Failed ISS rendezvous, multi-year program delay 

Description:  An error with the Mission Elapsed Timer (MET) 31 minutes into 

flight, which was polled from the Atlas V booster nearly 11 hours prior to launch caused 

the spacecraft to burn into an incorrect orbit and use excess fuel, preventing ISS 

rendezvous. Investigation into the MET problem uncovered other errors which would 

likely have led to spacecraft loss upon return but were prevented by ground commanding 

enabling a safe landing (see Figure 9). NASA stated: “Breakdowns in the design and code 

phase inserted the original defects. Additionally, breakdowns in the test and verification 

phase failed to identify the defects preflight despite their detectability. While both errors 

could have led to risk of spacecraft loss, the actions of the NASA-Boeing team were able 

to correct the issues and return the Starliner spacecraft safely to Earth.” Further 

documentation may be found in [62,63]. 

 

Figure 9. Boeing OFT Landing. 

(Credit: NASA) 
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43) Year:    2019 

System:   Beresheet 

Title:   Repeated reboots cause engine shutdown during lunar descent 

Result:   Loss of vehicle 

Description:   Israel's first attempt to land an unmanned spacecraft on the moon 

with the Beresheet was rendered unsuccessful on April 11, 2019, due to a software bug 

which caused repeated reboots and engine shut down, preventing it from slowing down 

during its final descent on the moon's surface [64]. 

44) Year:    2020 

System:  Amazon Web Service (AWS) Kinesis 

Title:   Maximum threads exceeded caused cascading server outage 

Result:   Loss of service, revenues.  

Description:  An upper limit on number of threads allowed by the operating 

system was exceeded when Amazon tried to scale up service. The exceedance caused 

servers to shed load, cascading to other servers. Further documentation may be found in 

[65,66]. 

45) Year:    2020 

System:  BD Alaris™️ Infusion Pump 

Title:   Infusion delivery system software causes injury/death 

Result:   55 injuries, 1 death 

Description:  Software synchronization errors led to over/under infusion, infusion 

delay, or infusion interruption. If a user selected two functions from the user interface 

within a one second interval, a system error was generated that triggered a non-silenceable 

high priority alarm, program operation continued, and further edits to the unit operation or 

programing were disallowed. The FDA issued a Class I recall on this device. Further 

documentation may be found in [67,68]. 

46) Year:    2021 

System:  Global Facebook Outage 

Title:   Bad command causes global Facebook and cascading 

communication outages 

Result:   Disrupted communication, loss of revenues 

Description:  During maintenance, an erroneous inquiry command accidentally 

disconnected Facebook data centers, leading to the deletion of routing information that 

disconnected Facebook and subsidiary data centers for several hours. The failure cascaded, 

locking out internet access to customers as well as secure access by Facebook employees. 

Further documentation can be found in [69,70]. 

47) Year:    2021 

System:  International Space Station (ISS) 

Title:   Uncontrolled ISS attitude spin from erroneous thruster firing 

software 

Result:   Close call 

Description:  The ISS experienced an uncontrolled spin event caused by 

erroneous Nauka module thruster firing. “Due to a short-term software failure, a direct 

command was mistakenly implemented to turn on the module's engines for withdrawal” 

[71]. Thrusters on the ISS Service and Progress modules were used to compensate, and 

once propellant was exhausted, control was restored. 
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3.2 Categorizations of Incidents 

Table 2 shows a categorization of the 47 historical incidents enumerated in the previous section. 

The ID of each incident corresponds with its number in the previous section. Each incident was 

subjectively evaluated against the categories discussed in Section 2.0 – Erroneous vs Fail-Silent, 

likelihood of recovering from reboot, whether there was missing code, where the source of the 

error was within the software architecture, and if this could be considered an “unknown-unknown.” 

Table 2. Incident Categorization 

ID System 

Erroneous Output or 

Fail-Silent? 

Reboot-

Recover-

able? 

Missing 

Code? Error Location 

Unknown-

Unknown? 

1 Mariner 1 Mission – 

Atlas-Agena 

Erroneous Output No No Code/Logic No 

2 Gemini 3 Erroneous Output No Yes Code/Logic Yes 

3 Gemini 5 Erroneous Output No No Data No 

4 Apollo 8 Erroneous Output No No Command Input No 

5 Apollo 10 Erroneous Output No No Data No 

6 STS-1 Fail Silent Yes Yes Code/Logic No 

7 Viking-1 Erroneous Output No No Command Input No 

8 Therac-25 Erroneous Output No No Code/Logic No 

9 Phobos-1 Erroneous Output No No Command Input No 

10 Soyuz TM-5 Erroneous Output No No Code/Logic No 

11 Aries - Red Tigress I Erroneous Output No No Sensor Input No 

12 Patriot Missile Erroneous Output Yes No Code/Logic No 

13 F-22 Raptor Erroneous Output No Yes Sensor Input Yes 

14 Clementine Lunar 

Mission 

Erroneous Output No No Code/Logic No 

15 Pegasus XL STEP-1 Erroneous Output No Yes Code/Logic Yes 

16 Pegasus HAPS Erroneous Output No Yes Code/Logic No 

17 Ariane 5 Maiden Flight Erroneous Output No No Code/Logic No 

18 Pathfinder Erroneous Output No No Code/Logic No 

19 Delta III Erroneous Output No Yes Code/Logic Yes 

20 Mars Polar Lander Erroneous Output No Yes Sensor Input No 

21 Mars Climate Orbiter Erroneous Output No No Data No 

22 Titan IV B Centaur Erroneous Output No No Data No 

23 Zenit 3SL Erroneous Output No No Code/Logic No 

24 Pegasus XL/HyperX 

Launch Vehicle / X-43A 

Erroneous Output No Yes Code/Logic Yes 

25 STS-108 through 110 Erroneous Output No No Data No 

26 Multidata Systems 

Radiation Machine 

Erroneous Output No No Code/Logic No 

27 Soyuz - TMA-1 Erroneous Output No No Code/Logic No 

28 North American Electric 

Power Grid 

Fail Silent Yes No Code/Logic No 

29 CryoSat-1 Erroneous Output No Yes Code/Logic No 

30 DART (Demonstration 

of Autonomous 

Rendezvous 

Technology) 

Erroneous Output No No Code/Logic No 

31 Mars Global Surveyor 

(MGS) 

Erroneous Output No No Code/Logic No 

32 F22 First Deployment Fail Silent No Yes Code/Logic No 

33 STS-124 Erroneous Output No Yes Sensor Input No 
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34 Quantas Flight 72, 

Airbus A330-303 

Erroneous Output No Yes Sensor Input Yes 

35 B-2 Spirit -Guam crash Erroneous Output No Yes Sensor Input Yes 

36 Red Wings Flight 9268 

TU-204 crash 

Erroneous Output No Yes Code/Logic Yes 

37 Airbus A400M test 

flight  

Erroneous Output No No Data No 

38 SpaceX CRS-7 Erroneous Output No Yes Code/Logic No 

39 Hitomi X-ray space 

telescope 

Erroneous Output No No Code/Logic No 

40 SpaceX CRS-10 Erroneous Output No No Data No 

41 737 Max crash Erroneous Output No Yes Sensor Input Yes 

42 Boeing Orbital Flight 

Test (OFT) 

Erroneous Output No No Code/Logic No 

43 Beresheet Fail Silent No No Code/Logic No 

44 Amazon Web Service 

(AWS) Kinesis 

Fail Silent No Yes Code/Logic No 

45 BD Alaris™️ Infusion 

Pump 

Erroneous Output No No Code/Logic No 

46 Global Facebook 

Outage 

Fail Silent Yes No Command Input No 

47 ISS Erroneous Output No No Code/Logic No 

4.0 Results 

4.1 Erroneous vs. Fail-Silent 

Using the data from Table 2, Table 3 shows the tabulated results in terms of number of incidents 

and percent over the dataset of software errors manifesting as unexpected/erroneous behavior 

versus failing silent, producing no output. Erroneous output was over seven times as likely, 87% 

of the cases. Critical systems should take the substantially greater likelihood of erroneous behavior 

into account when considering and designing for fault tolerance. Based on this, the system’s 

operation should be evaluated with the following questions in mind, “What would the impact be 

if the software behaved unexpectedly at this moment?,” “What is the risk of that happening?,” 

“Should/could the erroneous output risk be mitigated” and if so, “How?” 

Table 3. Manifestation – Fail-Silent or Erroneous? 

Manifestation: Erroneous Output or Fail-Silent? 

Number of 

Incidents 

Percent  

Erroneous Output 41 87 % 

Fail-Silent 6 13 % 

4.2 Reboot Recoverability 

Table 4 summarizes the subjective reboot recoverability likelihood comparing erroneous output 

cases and fail-silent cases. Shown here, 98% of the erroneous output cases were deemed not 

correctable by reboot, with only 2% (the single erroneous output case for the Patriot Missile) 

recoverable by reboot. Reboot recoverability is ineffective for almost all erroneous output cases. 

Fail-silent cases showed a greater chance of reboot recoverability over a small dataset of 6 cases 

with half of those deemed recoverable. This implies that reboot is also not always an effective 

strategy to clear fail-silent situations. Perhaps depending upon criticality, an alternate backup 
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mitigation approach besides rebooting should be considered. Overall, reboot only was deemed 

effective for 4 out of 47 incidents, independent of manifestation, or less than 9% of the cases. 

Table 4. Reboot Recoverability 

Manifestation Recoverability with Reboot 

Recoverable 

with Reboot 

Not 

Recoverable 

with Reboot 

Erroneous Output (41 incidents)  2 % 98% 

Fail Silent (6 incidents) 50 % 50% 

4.3 Absence of Code 

Table 5 indicates that an interestingly large 36% percent of these incidents were the result of the 

absence of code, as opposed to wrong code, albeit in hindsight. The absence of code satisfies the 

question, “Could/should software have been added to correct this incident?,” and is subjective, but 

includes causes such as missing requirements, incomplete understanding or modeling of the real 

world, and unexpected inputs. This result should influence software test planning. For example, a 

proportionate amount of requirements verification and unit testing should be performed on the 

code that exists, but a percentage of the testing should also be reserved for off-nominal cases and 

unexpected input scenarios, possibly exposing some of the code that is lacking. 

Table 5. Absence of Code 

Could incident have been 

corrected by adding code? 

Yes, 

Percent 

No, 

Percent 

Missing Code? 36 % 64% 

4.4 Error Location 

Table 6 categorizes the location of the error within the software architecture. A discussion of why 

these particular categories were chosen is given in Section 4.4, but they were mainly differentiated 

because mitigating errors between these categories is normally done with different methods, 

testing, processes, and procedures. Unsurprisingly, the majority of these errors were found to be 

within the code and logic itself since this category includes not only faulty code, but also missing 

requirements and “unknown-unknowns.” Uncovering missing code during earlier phases such as 

unit testing or requirements verification may be a challenge, but missing code could possibly be 

exposed during integration testing, hardware-in-the-loop-testing, and especially with off-nominal 

scenario testing. Aside from missing code, code/logic errors could be exposed through focused 

peer reviews and comprehensive unit testing. Misconfigured data alone caused 15% of these errors. 

To combat data misconfiguration errors, special testing should be performed to assure that 

configurable data are validated prior to flight and reviewed by system experts, even if the software 

itself does not change. Input data, sensor, and command input combined accounted for 

approximately 25% of all errors. While handling input could also be considered part of 

coding/logic, it is useful to break this out knowing that comprehensive and off-nominal input 

testing could be employed to uncover errors in this part of the code. Randomized input could be 

computer-generated to assure robustness to unexpected input. For sensor data, actual sensor 

hardware should be used to “test like you fly” rather than simulating sensor input. For command 

input errors, operational procedures should be put in place and safeguards followed to validate 

commands prior to issue. 
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Table 6. Software Architectural Error Location 

Error location Percent 

Code   - Code/Logic/Algorithm 62 % 

Data    - Data Misconfiguration 15 % 

Sensor Input– Unanticipated/Erroneous Sensor Input 15 % 

Command Input - Operator/Procedure Error   9 % 

4.5 Unknown-unknowns 

Characterizing unknown-unknowns is highly subjective and can be a controversial topic. However, 

considering and designing for “unknown-unknowns” has been common aerospace practice. It 

could be argued that given enough time and resources, each of these incidents could have been 

known a priori, so a subjective reasonability test was considered against each incident to 

distinguish “should or could this have been known within reasonable project constraints” versus, 

“the project did everything they should have, yet an unknown situation led to unexpected software 

behavior.” Unknown-unknowns include cases of unknown aerodynamics after modeling, highly 

unusual sensor behavior, or behavior in the presence of unlikely fault situations. Given this 

subjectivity, the percent of these incidents that could be considered “unknown-unknowns” is 

arguably and conservatively 20% (see Table 7). If one-fifth of software errors are due to things 

reasonably unknowable, this alone could give credence to the consideration for erroneous software 

backup strategies in safety-critical applications. Overall strategies to mitigate the risk of software 

failing during operations due to unknown-unknowns or other software failures are usually time-

criticality dependent, but generally include manual human-in-the-loop control, employing 

dissimilar backup systems, run-time monitoring and response systems, computer reboot, entering 

a safe mode, or time-permitting, software reload. 

Table 7. Unknown-unknowns 

Predictability of Manifestation? Percent 

Unknown unknowns 20 % 

Reasonably Could have known 80 % 

5.0 Conclusions 

This paper introduced a dataset of aerospace incidents involving software since the advent of 

computerized automation. It analyzed aerospace failures through the eyes of the software and 

automation discipline in an effort to characterize and predict trends in software behavior (and 

misbehavior) as a design and test aid to current and future aerospace systems. It characterized how 

software is most likely to fail—erroneously or silent—and determined that automation fails 

erroneously much more often than simply “crashing” or ceasing to output. Systems should 

recognize the relative risk and be designed accordingly. Rebooting the software, though used 

prevalently, was found to be largely ineffective to clear software failures, effective in less than 9% 

of the total cases, and less than 2% for the erroneous-output case. This paper explored software 

errors relating to the absence of code as well as the prevalence of unknown-unknowns, both of 

which were substantial constituents in the dataset, 36% and 20% respectively. Software testing 

should be planned to uncover missing code through off-nominal input and integrated testing, and 

backup systems should be considered to mitigate the risk of “unknown-unknowns” in safety-

critical systems. Finally, a categorization determining what location within the software 
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architecture (code, data, sensor input, or command input) was provided to better influence 

processes and testing related to those areas both during development and during operations.  

The dataset presented here is rich for further study, especially in the areas of backup systems, 

relationship to common-cause, and manual control for safety-critical systems. Some key questions 

such as, “Was this a multi-string common-cause failure?,” “Was a manual or automated backup 

system used?,” “Would a backup system have helped?,” “If so, what kind of a backup system could 

have helped?” could be explored. Would a human-in-the-loop, a dissimilar backup, a monitor 

system, or no backup at all be the best option for each situation?  

Another key question could be, “What was the root cause of this error?” Looking at how these 

errors might have been avoided altogether has great merit and projects may better focus on areas 

most likely to catch root cause software errors. Since the software performed exactly as 

programmed in these cases, exploring “why” it was programmed the way it was in terms of root-

cause may be a lesson to organizations producing software.  

“In what phase of the project could/should have this incident been discovered and averted?” is 

another interesting question. How much testing and what type of testing would have provided the 

most “bang for the buck” in averting these errors? All of these questions would be useful follow-

on work against this, hopefully stagnant, yet continually growing, dataset. 
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