

August 2023

NASA/TP−20230012154

NESC-NPP-22-01775

Software Error Incident Categorizations in

Aerospace

Lorraine E. Prokop/NESC

Langley Research Center, Hampton, Virginia

NASA STI Program Report Series

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA scientific and technical information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI program operates under the auspices

of the Agency Chief Information Officer. It collects,

organizes, provides for archiving, and disseminates

NASA’s STI. The NASA STI program provides access

to the NTRS Registered and its public interface, the

NASA Technical Reports Server, thus providing one

of the largest collections of aeronautical and space

science STI in the world. Results are published in both

non-NASA channels and by NASA in the NASA STI

Report Series, which includes the following report

types:

1) TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of

research that present the results of NASA

Programs and include extensive data or theoretical

analysis. Includes compilations of significant

scientific and technical data and information

deemed to be of continuing reference value.

NASA counterpart of peer-reviewed formal

professional papers but has less stringent

limitations on manuscript length and extent of

graphic presentations.

2) TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain minimal

annotation. Does not contain extensive analysis.

3) CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

4) CONFERENCE PUBLICATION.

Collected papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or

co-sponsored by NASA.

5) SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

6) TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing

specialized research announcements and feeds,

providing information desk and personal search

support, and enabling data exchange services.

For more information about the NASA STI program,

see the following:

7) Access the NASA STI program home page at

http://www.sti.nasa.gov

8) Help desk contact information:

https://www.sti.nasa.gov/sti-contact-form/

and select the “General” help request type.

https://www.sti.nasa.gov/sti-contact-form/

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

August 2023

NASA/TP−20230012154

NESC-NPP-22-01775

Software Error Incident Categorizations in

Aerospace

Lorraine E. Prokop/NESC

Langley Research Center, Hampton, Virginia

Available from:

NASA STI Program / Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

Fax: 757-864-6500

Acknowledgments

This work was a culmination of two NESC assessment teams working tirelessly to

improve human spaceflight safety by reducing software errors. I would like to

sincerely thank each of those members who helped put this dataset together,

identify and study incidents, and find credible references. I would like to thank

each team member in alphabetical order: Jon Berndt, Tim Brady, Linda Burgess,

Jesse Couch, Tim Crumbley, Neil Dennehy, Jenny DeVasher, Captain Victor

“Ike” Glover, Bruce Jackson, Dr. Mary Kaiser, Kylene Kramer, John LaNeave,

Laura Maynard-Nelson, Dr. Paul Miner, Mike Peacock, David Root, Manuel

Rosso-Llopart, Jeremy Shidner, Scott Tashakkor, John West, and the late Aron

Wolf. I would also like to thank my son and most critical computer scientist peer

reviewer, Daniel Williams, for his valuable insight and comments.

The use of trademarks or names of manufacturers in the report is for accurate reporting and does not

constitute an official endorsement, either expressed or implied, of such products or manufacturers by the

National Aeronautics and Space Administration.

iii

Table of Contents
1.0 Introduction .. 1

1.1 Motivation ... 1

1.2 Incident Dataset .. 2

1.3 Software Common-Cause Errors .. 2

1.4 Paper Outline .. 3

2.0 Software Incident Failure Categories .. 3
2.1 Erroneous vs. Fail-Silent ... 3

2.2 Reboot Recoverability .. 3

2.3 Absence of Code ... 3

2.4 Error Location ... 4

2.5 Unknown-Unknowns .. 4

3.0 Historic Incidents ... 4
3.1 Incident Descriptions by Year ... 5

3.2 Categorizations of Incidents .. 20

4.0 Results ... 21
4.1 Erroneous vs. Fail-Silent ... 21

4.2 Reboot Recoverability .. 21

4.3 Absence of Code ... 22

4.4 Error Location ... 22

4.5 Unknown-unknowns ... 23

5.0 Conclusions ... 23
6.0 References ... 24

List of Figures
Figure 1. Flight computer without software errors. .. 2
Figure 2. Flight computer with software errors. ... 2
Figure 3. Gemini 5 Astronauts training for landing recovery. .. 6
Figure 4. Therac Radiation Therapy Machine. ... 8
Figure 5. Patriot Missile.. 9
Figure 6. Mars Polar Lander. .. 12
Figure 7. Quantas Flight 72. ... 16
Figure 8. CRS-7 Mishap. .. 17
Figure 9. Boeing OFT Landing. .. 18

List of Tables
Table 1. Industry of Incidents Studied .. 5
Table 2. Incident Categorization ... 20
Table 3. Manifestation – Fail-Silent or Erroneous? .. 21
Table 4. Reboot Recoverability ... 22
Table 5. Absence of Code ... 22
Table 6. Software Architectural Error Location .. 23
Table 7. Unknown-unknowns ... 23

Abstract

Since the first use of computers in space and aircraft, software errors

have occurred. These errors can manifest as loss-of-life or less

catastrophically. As the demand for automation increases, software in

safety-critical systems should be designed to be tolerant to the most likely

software faults. This paper categorizes historic aerospace software errors

to determine trends of how and where automation is most likely to fail. A

distinction between software producing wrong (erroneous) output versus

no output (fail-silent) is introduced. Of the historical incidents analyzed,

87% were from software acting unexpectedly rather than simply stopping.

Rebooting was found to be ineffective to clear erroneous behavior, and

only partially effective for silent software. Errors were traced back to the

software logic itself in 62% of cases, 13% within configurable data, and

25% introduced through input. Thirty percent (30%) of unexpected

software behavior was caused by the absence of software and 20% was

due to “unknown-unknowns”. These findings indicate that to achieve fault

tolerance in safety-critical systems, backup strategies must be employed

to detect and respond to erroneous software behavior beyond only fail-

silent cases, and robust off-nominal testing should be performed to

uncover unanticipated situations.

1.0 Introduction

This paper explores incidents of unexpected automation/software behavior and software errors

primarily in aerospace (and a few other safety-critical and representative systems) to identify and

raise awareness of erroneous software manifestation trends. It introduces a dataset of 47 incidents

to expose trends in software behavior. It explores if software more often behaves unexpectedly,

producing erroneous output, versus simply stopping/crashing. It identifies where within the

software architecture the error happened—within code itself, within configurable data, or from

sensor or command input. It quantifies cases of missing code, including missing requirements, and

quantifies “unknown-unknowns” as causes for unexpected software behavior. By understanding

how and where software is most likely to fail, systems may be better designed and proportionately

tested for robustness against the most probable failures, and backup strategies may be better

architected to minimize software risk.

1.1 Motivation

Before digging in, let’s provide a few words of motivation. Software risk seems to be a difficult

topic for “non-software people” to grasp as well as an inherently difficult topic to visualize and

communicate. Software is intangible and normally concealed beneath layers of abstraction and

physical shielding. For example, Figure 1 depicts a flight computer—a Space Shuttle General

Purpose Computer—with no software errors. Conversely, Figure 2 shows a flight computer riddled

with software errors. With no discernable visual difference between them, the differences only

become apparent through use. Software representation is therefore left to the imagination, but

undeniably serves as the means to bring hardware to life (or death), providing behavior and

personality. It integrates systems together end-to-end, plays a role in virtually all subsystems, and

2

is ever increasing in complexity. All disciplines should learn to “own” their software and

understand its vulnerabilities and inherent risks.

Figure 1. Flight computer without software

errors.

(Credit: NASA)

Figure 2. Flight computer with software

errors.

(Credit: NASA)

1.2 Incident Dataset

A dataset of 47 historical incidents starting in 1962 is introduced and analyzed. It includes all

incidents found since the beginning of employing computers in aerospace to present day such that

the software/automation behaved unexpectedly and possibly could or should have been written

differently in hindsight to affect a different outcome. In each incident, the automation controlling

the system either acted unexpectedly or failed to act (for whatever reason) leading to loss of life,

loss of mission, loss of time/revenue, or presented a significant close call. It is important to note

that the ultimate root cause of these incidents is not necessarily “software”. In fact, it could be

argued that in all of these cases the software performed exactly as programmed. Determining root-

cause of these failures—identifying why the software was programmed that way—is left for further

study but may include examples such as lack of system understanding, unknown physics, lack of

time or resources, lack of skills, or procedural/process errors.

1.3 Software Common-Cause Errors

Although not specifically studied here, the notion of software errors being “common-cause” should

be considered because many, if not all of these incidents could be considered common-cause.

Software “common-cause” or “common-mode” failures arise when software failed, either

erroneously or silently, but because the software may be duplicated running on multiple redundant

computers at the same time, a single software error can affect all redundant computers in the same

way simultaneously. This is a software common-cause error. System architecture determines the

vulnerability to software common-mode failures. In systems where there is only one copy of flight

software, a single software error could be considered a common-cause error. Mitigating software

common-cause errors should be assessed based on system criticality and time-to-effect. Some

common mitigation strategies include employing a dissimilar software backup system, providing

manual control, installing monitoring systems, failing into a safe mode, patching the software, and

3

of course, rebooting. For example, some crewed space and aircraft allow for manual piloting,

which was successfully used in several incidents. Determining which of these strategies, if any,

were either employed or may have mitigated these incidents is left for further study.

1.4 Paper Outline

Section 2.0 of this paper identifies the categories and statistics explored with this dataset. It

discusses category relevance to system design and in establishing/influencing test strategy. Section

3.0 lists, in chronological order, each historic software incident in the dataset. A description of

software’s role in the incident is the primary focus, with references left to readers for more in-

depth information. Section 4.0 presents statistical results of the categorizations of these incidents

along with an interpretive discussion.

2.0 Software Incident Failure Categories

2.1 Erroneous vs. Fail-Silent

First, we must make a distinction between software failing “erroneously,” which includes the

automation producing wrong or unexpected output, and software failing “silent,” providing no

output at all (i.e., crashing). This is an important distinction because detecting the “fail-silent” case

is usually more straightforward. A watchdog timer can detect the fail-silent case. Rebooting is

typically used to recover from a silent computer, but the effectiveness of this strategy is discussed

in the next category, “Reboot Recoverability,” with associated results provided in Section 4.0.

Detecting and responding to the “erroneous output” case, however, may not be as straightforward.

How do you know if the software is doing the wrong thing? If a human is onboard, or a ground

team is actively monitoring, they may be able to recognize software performing unexpectedly and

override the automation to take appropriate action. But if there is no human in the loop, or if time-

critical, software/automatic backup systems may be employed to recognize and respond to the

primary software behaving unexpectedly. Fail-down strategies should be employed in safety-

critical systems for transitioning to backup strategies or systems to mitigate the erroneous-output

case.

2.2 Reboot Recoverability

A common strategy to recover from faulty software is to reboot. Unfortunately, reboots do not fix

all software problems. The incident dataset was reviewed subjectively considering the following

question, “Would reboot have cleared this problem?” A yes/no answer is tabulated and presented

in the Section 4.0. This is important to know because depending on the problem, it is often assumed

that performing a simple reboot may correct the problem. But given the effectiveness presented

here, a better risk determination can be made for the particular system, and alternate design

approaches can be considered.

2.3 Absence of Code

An interesting statistic studied against this dataset is whether the incident could have been avoided

by adding code (in hindsight). The incident dataset was reviewed subjectively considering the

following question, “Could the problem have been averted by adding some code?” A yes/no

answer to this question is tabulated in Section 4.0. It is well understood that it is much easier to

know what code to add after a mishap rather than predicting the failure in advance. Considering

4

whether or not the code could or should have been there is a more difficult question addressed in

the categorization of “unknown-unknowns” below. But simply determining if an incident was the

result of the absence of software has large testing implications. If software is only tested against

requirements, or tested against code that exists, then how can errors caused by the absence of

software be discovered? This poses a testing challenge. Performing off-nominal testing for random

input sets may help to uncover missing code. Test campaigns should consider testing both the

existing code as well as for the absence of code proportionately to how errors usually manifest.

Results of this investigation and further discussion are provided in Section 4.0.

2.4 Error Location

A categorization as to where in the software the error initially manifested is performed by

distinguishing between the following four groups: code/logic, data, sensor input, and command

input. The reason for these distinctions is because assuring integrity in each of these areas both

pre-flight and operationally have different testing characteristics and procedural validation

methods.

First, “coding/logic” includes errors that are in the code itself, encoded into logic or algorithms.

This category includes the absence of code as discussed above, and missing requirements, where

code could have been written to avert the error. Next, “data” includes those errors due to

misconfigured data, or erroneous stored parameters. This is separated from “code/logic” to

distinguish between the fact that software is becoming more data-driven, and that data are more

likely to change than the code itself. The third category, “sensor input,” addresses errors stemming

from unexpected or erroneous sensor input. This distinction is made because generating off-

nominal tests specifically targeting random sensor input may help to avert this error. The final

category, “command input,” includes erroneous command input due to operator or procedural

error. These errors should normally be averted through command verification during operations

prior to their issuance and by process assurance. The overall prevalence of each of these categories

is given in Section 4.0.

2.5 Unknown-Unknowns

The last category, “unknown-unknowns,” a term popularized by Donald Rumsfeld referring to

“the ones we don’t know we don’t know” [1]”, is a highly subjective category, but attempts to

conservatively quantify how many of these incidents arose from knowledge only realized or

conceived in hindsight that could not have been discovered ahead of time with reasonable effort.

It primarily includes cases where aerodynamics or physics were studied but not fully understood

and cases of highly unusual sensor input, unanticipated situations, or scenarios created by fault

situations. It could be argued that with infinite resources, all of these could have been known, such

as by performing more wind tunnel testing, more simulation, more analysis, deeper fault level

scenario study, or longer and more robust sensor characterization. A subjective evaluation of the

question “Could/should it have been reasonably known?” within reasonable project constraints is

provided here. This may be used as a rough level-of-risk measure for the unplanned and

unexpected and should be assessed in relation to software criticality and backup options.

3.0 Historic Incidents

A dataset consisting of 47 software failure incidents primarily within aerospace along with a

representative few in the medical and commercial industries is presented. Note again these

5

incidents are discussed through a software perspective only as software failures, although the root-

cause of the incidents may be attributable otherwise. Here, a software failure is considered to be

where the software or automation behaved unexpectedly and could have been corrected within the

software to achieve a different outcome. Table 1 shows a breakdown of studied incidents by

industry. Eighty-seven percent (87%) of these incidents are in aerospace (spacecraft, aircraft,

launch vehicle, missile), with others included as well-known representative software incidents in

medical, commercial, or utility systems. As shown in Table 1, over half of the dataset consists of

spacecraft. Spacecraft and launch vehicles combined comprise two-thirds of the incidents. Table

2, in Section 3.2, shows the classifications of each incident against each of the categories discussed

in Section 2.0.

Table 1. Industry of Incidents Studied

Industry Percent Quantity

Spacecraft 51 % 24

Launch Vehicle 17 % 8

Aircraft 15 % 7

Missile 4 % 2

Medical 6 % 3

Commercial 6 % 3

3.1 Incident Descriptions by Year

This section lists and provides brief descriptions of software incidents organized by year. The

incident number corresponds to the same number as shown in Table 2 (Section 3.2), where more

information on error categorizations is provided.

1) Year: 1962

System: Mariner 1 – Atlas-Agena Rocket

Title: Programmer error in ground guidance veered launch vehicle off

course

Result: Loss of vehicle

Description: Mariner 1 was launched by an Atlas-Agena rocket from Cape Canaveral's

Pad 12 on 22 July 1962. Shortly after liftoff, errors in communication between the rocket

and its ground-based guidance system caused the rocket to veer off course, and was

destroyed by range safety. The errors were traced to two factors: (1) improper operation of

beacon equipment resulting in periods of silence, and (2) a programming error (omission

of a hyphen) which incorrectly accepted sweep frequency guidance signals into the

program during inoperable beacon periods. This caused the computer to produce swinging

steering commands sending the vehicle off course. Further documentation can be found in

[2,3].

2) Year: 1965

System: Gemini 3

Title: Incorrect lift estimate causes short landing

Result: Landed 84 km short, crew manually compensated to decrease short

landing error

Description: During the first manned entry on March 23, 1965, the “Molly Brown”

capsule was off course, landing short due to capsule lift falling short of what was calculated

in wind tunnel tests [4, p. 236]. The capsule landed 84 km short. Although wind-tunnel

testing was performed and the software did not contain a “bug,” this is an example of how

6

a lack of understanding of the real-world environment can result in software behaving

unexpectedly due to the absence of code.

3) Year: 1965

System: Gemini 5

Title: Data error of earth rotation lands Gemini 5 short

Result: Landed 130 km short, crew manually compensated

Description: Although the computer was operating properly, a programmer had entered

the rate of the Earth's rotation as 360° per 24 hours instead of 360.98° [4, p. 262]. The crew

compensated for the computing error, landing 80 miles (130 kilometers) short of the

planned landing point in the Atlantic Ocean. The astronauts controlled the reentry, creating

drag and lift by rotating the capsule. This is an example of erroneous data causing software

misbehavior. A depiction of the crew for the Gemini 5 space flight, astronauts Charles

Conrad Jr., (in water) and L. Gordon Cooper Jr. (in raft), is shown in Figure 3.

Figure 3. Gemini 5 Astronauts training for landing recovery.

(Credit: NASA)

4) Year: 1968

System: Apollo 8

Title: Memory Inadvertently Erased

Result: Close call fixed manually

Description: An inadvertent astronaut command erased computer memory causing the

computer to believe the IMU was in an incorrect vehicle orientation. The crew manually

corrected the orientation and computer data according to a pre-established procedure [5].

5) Year: 1969

System: Apollo 10

Title: Switch Misconfigured as bad input data to abort guidance

Result: Vehicle tumbled, recovered manually

Description: The Abort Guidance System (AGS) was inadvertently switched from

HOLD ATTITUDE to AUTO, which caused the Lunar Module to look for the

Command/Service Module (CSM) and tumble. The computer behaved correctly based on

the erroneous data switch configuration. The Commander was able to switch the vehicle

7

into all manual control mode to stabilize the vehicle before losing the energy required for

complete lunar ascent. Further documentation can be found in [6,7].

6) Year: 1981

System: STS-1

Title: Failure of computers to sync

Result: Launch Scrub of First Shuttle flight

Description: During the STS-1 countdown, twenty minutes prior to the first Space

Shuttle flight, all computer clocks were desynchronized. This was due to programming

changes 1 and 2 years prior that caused a General Purpose Computer (GPC) mismatch of

time among the computers with a 1 in 67 chance of occurring, though happening that day.

When asked to initiate with an incorrect start time in the past, the system set the start cycles

in the future which was seen as noise by the backup computer [8].

7) Year: 1982

System: Viking-1

Title: Erroneous Command caused loss of communication

Result: Loss of Vehicle

Description: An erroneous command intended to improve battery charging inadvertently

overwrote data used by the antenna pointing software and caused permanent loss of

communication [9]. This is an example of an erroneous command.

8) Year: 1985-87

System: Therac-25

Title: Radiation therapy machine output lethal doses caused by user input

speed

Result: Four deaths, two chronic injured

Description: Six accidents between 1985 and 1987 provided patients with massive

overdoses of radiation.  Because of concurrent programming errors, it sometimes gave

patients radiation doses that were hundreds of times greater than normal, resulting in death

or serious injury. These accidents highlighted the dangers of software control of safety-

critical systems, and they have become a standard case study in health informatics, software

engineering, and computer ethics. An image of the Therac-25 is shown in Figure 4, and

further documentation can be found in [10].

8

Figure 4. Therac Radiation Therapy Machine.

(Photo Credit: The National Archives, catalog.archives.gov, NAID: 6361754).

9) Year: 1988

System: Phobos-1

Title: Erroneous unchecked uplinked command lost vehicle

Result: Loss of vehicle/Mission

Description: On 2 September 1988, an expected transmission from Phobos 1 was not

received. This was traced to a faulty key-command that was sent on 28 August from ground

control in Yevpatoria. A technician unintentionally left out a single hyphen in one of the

keyed commands. All commands were supposed to be proofread by a computer before

being transmitted, but the computer that checked commands was malfunctioning. The

technician violated procedure and transmitted the command before the computer could be

fixed to proofread it. This minor alteration in the command code activated unused test code

and deactivated the attitude thrusters, losing sun tracking and thus depleting its batteries.

Further documentation can be found in [11,12].

10) Year: 1988

System: Soyuz TM-5

Title: Wrong code executed to perform de-orbit burn

Result: Extra day in orbit, new code uplinked

Description: After undocking from Mir EP-3, the Soyuz TM-5 spacecraft deorbit engine

software shut down prematurely, not completing the burn. A second attempt after engine

restart behaved the same.

Ground teams discovered the computer was executing a program that was used to dock

with Mir several months earlier. New software was uplinked, and the crew landed safely.

Further documentation can be found in [13].

9

11) Year: 1991

System: Aries – Red Tigress I

Title: Bad command causes guidance error

Result: Loss of Vehicle

Description: The vehicle suffered a guidance error and was destroyed approximately

20 seconds after liftoff. Root cause was an erroneous command automatically issued by a

failing/crashing VAX computer. Further documentation can be found in [14].

12) Year: 1991

System: Patriot Missile

Title: Failed target intercept due to 24-bit rounding error growth over time

Result: Failed to intercept incoming scud missile, resulting in American

barracks being struck, 28 soldiers killed, 100 injured

Description: A 1970s 24-bit legacy code rounding error in time conversion led to time

inaccuracies in predicting incoming missile range prediction. The truncation error grew

larger the longer software was run and led to loss of precision. Time was calculated since

boot, and in this case, the Patriot battery had been up approximately 100 hours which

resulted in a time error of about 0.34 seconds. In trying to intercept a scud moving at

1,676 meters per second, this error placed the scud outside of the Patriot’s tracking ability.

An image of a patriot missile is shown in Figure 5, and further documentation can be found

in [15].

Figure 5. Patriot Missile.

(Photo Credit: The National Archives, catalog.archives.gov, NAID: 6424495)

13) Year: 1992

System: F-22 Raptor

10

Title: Software failed to compensate for pilot-induced oscillation in

presence of feedback lag

Result: Pilot killed, loss of test vehicle

Description: In April 1992 the first F-22 Raptor crashed while landing at Edwards Air

Force Base, California. The cause of the crash was found to be a flight control software

error that failed to prevent a pilot-induced oscillation [16].

14) Year: 1994

System: Clementine Lunar Mission

Title: Erroneous thruster firing exhausted propellant, cancelling asteroid

flyby

Result: Failed mission objective

Description: An erroneous thruster firing exhausted propellant and left the

spacecraft rotating at ~80 revolutions per minute (rpm), causing the cancelation of the

planned asteroid flyby. The Clementine mission did successfully transmit lunar images and

was able to complete its study of radiation impact on sensors and components with an

alternative trajectory (passing through the Van Allen belts). Thus, two of the three main

mission objectives were completed, albeit with an alternative radiation exposure profile.

The mission suffered from a minimal budget as well as schedule pressure; Clementine was

launched without the software being complete or tested [17,18,19].

15) Year: 1994

System: Pegasus XL STEP-1

Title: Booster loss of control due to lateral instability

Result: Loss of vehicle/Mission

Description: The control program code grossly underestimated the aerodynamic dihedral

effect of high wing. Further, there was insufficient testing to reveal a faulty sideslip

estimation algorithm that neglected gravitational acceleration (B. Jackson, personal

communication, November 15, 2022). “Several seconds after first-stage ignition, Pegasus

veered off course and lost speed, prompting the Range Safety Officer (RSO) to destroy it.

The investigation revealed that the vehicle experienced an anomalous roll due to a

‘phantom yaw’ caused by an improper aerodynamics model used in the control system

autopilot design” [20, p. 53].

16) Year: 1994

System: Pegasus HAPS

Title: Navigation software error prematurely shut down upper stage

Result: Unintended/low orbit

Description: The Pegasus HAPS liquid upper stage shut down about 25 seconds

early due to a software navigation error, resulting in a lower-than-specified orbit. The

payload was still able to provide useful data, but its lifespan was reduced by 2.5 years [20].

17) Year: 1996

System: Ariane 5 Maiden Flight

Title: Unprotected overflow in floating-point to integer conversion

disrupted inertial navigation system

Result: Loss of Vehicle

Description: During launch of Ariane 5, horizontal velocity was larger than in the

legacy Ariane 4 (A4). Conversion from a 64-bit floating point to scaled 16-bit integer

caused overflow in reused A4 inertial navigation system alignment routine. Further, the

11

alignment routine continued for 40 seconds after launch per A4, but this was not required

for A5 after liftoff. Identical hardware and software in redundant inertial systems both

failed, leaving no other source of data. Further documentation can be found in [21,22].

18) Year: 1997

System: Pathfinder

Title: Software priority inversion caused images to stall

Result: Close Call for Mission Loss

Description: A programming error in real-time priority inheritance on mutex

semaphores caused downlink of imaging to be stalled, and the computer watchdog kept

resetting the computer. The error was identified and corrected using debugging features of

operating system not originally planned to be used in-flight. Further documentation can be

found in [23,24,25].

19) Year: 1998

System: Delta III

Title: Unanticipated 4Hz oscillation in control system led to vehicle loss

Result: Loss of vehicle

Description: In August 1998, the Delta III rocket veered off course and was destroyed by

range safety 70 seconds into flight. The control software failed to recognize and correct an

unanticipated 4Hz oscillating roll that developed during the first minute of flight, depleting

the gimbal hydraulic fluid. Further documentation can be found in [20,26].

20) Year: 1999

System: Mars Polar Lander

Title: Premature shut down of landing engine due to misinterpretation of

landing signature

Result: Loss of Vehicle/mission

Description: A “jolt” of landing micro-switches during landing gear deployment

was misinterpreted as an actual landing, and engines were prematurely shut down. The

software was intended to include logic that would discount touchdown indications prior to

the enabling of the touchdown sensing logic, but this code was not correctly implemented.

Thus, the software accepted this spurious touchdown indication as valid. A rendition of the

Mars Polar Lander is shown in Figure 6, and further information can be found in [27,28].

12

Figure 6. Mars Polar Lander.

(Credit: NASA)

21) Year: 1999

System: Mars Climate Orbiter

Title: Metric vs. imperial units error

Result: Loss of vehicle/mission

Description: Mars Climate Orbiter was lost in September 1999 because of a

mismatch between measurement units in the navigation program. The spacecraft

encountered Mars on a trajectory that brought it too close to the planet, and it was either

destroyed in the atmosphere or escaped the planet's vicinity and entered an orbit around the

Sun. An investigation attributed the failure to a measurement mismatch between two

software systems: metric units by NASA and US Customary (imperial or “English”) units

by spacecraft builder Lockheed Martin. Further documentation can be found in [29,30].

22) Year: 1999

System: Titan IV B Centaur

Title: Programming error omitting decimal in data file caused loss of

control

Result: Unintended low orbit, Milstar Satellite lost 10 days after launch

Description: This Titan IV B launch vehicle was equipped with a Centaur upper stage

intended to deliver a Milstar satellite into geosynchronous orbit. After the Centaur

separated from the Titan IV B, the vehicle began to experience anomalous rolls. The

vehicle did not reach its intended velocity or orbit. The Milstar satellite was permanently

shut down 10 days later and declared dead in orbit. During development of the Centaur

computer software, a decimal point was misplaced while manually entering the roll rate

filter constant in the Inertial Measurement System flight software configuration file. [20].

23) Year: 2000

System: Zenit 3SL

Title: Ground software error failed to close valve.

13

Result: Loss of Vehicle

Description: The Zenit-3SL’s second stage shut down 80 seconds early into its planned

6.5-minute burn, and vehicle landed in ocean after 450 seconds. The launch failed due to

faulty ground software not closing a valve in the rocket's second stage pneumatic system

[20].

24) Year: 2001

System: Pegasus XL/HyperX Launch Vehicle / X-43A

Title: Airframe failure due to inaccurate analytical models

Result: Loss of vehicle/mission

Description: The error was caused by combination of misestimated aerodynamic

characteristics and aliased solid motor organ tone appearing as significant lateral

acceleration at low frequency due to improper signal filtering (B. Jackson, personal

communication, November 15, 2022). “The X-43A HXLV failed because the vehicle

control system design was deficient for the trajectory flown due to inaccurate analytical

models (Pegasus heritage and HXLV specific), which overestimated the system margins”

[31].

25) Year: 2001

System: STS-108 through 110

Title: Shuttle main engine controller mix-ratio coefficient sign-flip error

Result: Significant close call, SSME underperformance

Description: Prior to STS-108 a change had been made to the controller software

coefficient for the Space Shuttle Main Engine (SSME) to compensate for an observed

measurement bias in the SSME main combustion chamber pressure sensor, which controls

the SSME fuel/oxidizer mixture ratio. The pressure chamber sensor was biased high

causing the flight software to lower the chamber pressure by decreasing the liquid oxygen

flow rate. Because of communication errors between ground systems engineers and

deficiencies in the flight software verification and validation processes, the software

coefficient was adjusted in the wrong direction, resulting in even larger dispersions in the

mixture ratio and SSME performance. The error in the coefficient was discovered during

post-flight reconstruction of the data from STS-108. The cause of the error remained

unknown until after STS-110. The erroneous coefficient was flown on three consecutive

flights (STS-108, STS-109, and STS-110) resulting in a slight SSME underperformance

on each flight and was fixed with the proper coefficient and independent verification prior

to STS-111. The error in software and resulting mixture ratio wasn't severe enough to cause

any significant impacts to SSME performance, and all three flights achieved proper orbits.

However, if the software error had been larger, more severe impacts to the missions and

crew safety could have occurred, including a premature engine shutdown/failure resulting

in on-pad or ascent abort and loss of mission. Further documentation may be found in

[32,33].

26) Year: 2003

System: Multidata Systems Radiation Machine

Title: Radiation therapy machine output lethal doses caused by

counterclockwise user input

Result: Many injured, 15 deaths.

Description: In a series of accidents, therapy planning software created by

Multidata Systems International miscalculated the proper dosage of radiation for patients

14

undergoing radiation therapy leading to lethal doses. Miscalculations in dosage resulted

from unexpected operator input, including graphically drawing the treatment region

counterclockwise. Further documentation can be found in [34,35,36].

27) Year: 2003

System: Soyuz - TMA-1

Title: Undefined yaw value triggered ballistic reentry

Result: Landed 400 km short

Description: The problem, which caused Soyuz TMA-1 to fail-down to a re-entry

in ballistic mode and land 400 km short of the intended landing site, was due to a failure in

the BUSP-M guidance system, necessary to carry out a controlled re-entry. This guidance

system reads gyroscopes and accelerometers and sends appropriate commands to attitude

control thrusters. The yaw control channel, a sub-unit of the BUSP-M produced

‘undefined’ readings, indicating a malfunction. This caused higher control functions to take

the BUSP-M system out of the control loop and engage ballistic re-entry mode. The radio

antennae burned off so contact was only established with the crew once on the ground via

hand-held radios. This was US Astronauts Don Petit’s and Ken Bowersox’s ISS return

flight. The problem was not duplicated on ground but believed to be small timing issue.

Further documentation may be found in [37,38,39].

28) Year: 2003

System: North American Electric Power Grid

Title: Software errors contribute to widespread power outage

Result: Widespread loss of power service (2 hours - 4 days)

Description: The Northeast blackout of 2003 was triggered by a local outage that

went undetected and cascaded due to real-time priority inversions in monitoring software

and inadequate system modeling in planning tools. The processes that annunciated alarms

and provided logs to operators were “stalled”, hindering situational awareness, while

letting input data “pile up” until overflowing buffers, ultimately crashing the processor.

Additionally, their planning tools did not accurately assess the impact of power losses.

Several key lines went off-line undetected, and there was a lack of sufficient reactive power

reserves contributing to cascading power loss [40].

29) Year: 2005

System: CryoSat-1

Title: Missing command causes loss of vehicle

Result: Loss of Vehicle

Description: The European Space Agency's CryoSat-1 satellite was lost in a

launch failure in 2005 due to a missing shutdown command in the flight control system of

its carrier rocket. The main engines in the second section of the three-stage rocket

continued to burn until they had completely run out of fuel, landing the craft in the Arctic

Ocean [41].

30) Year: 2005

System: Demonstration of Autonomous Rendezvous Technology (DART)

Title: Navigation software errors fail mission objectives.

Result: Loss of mission

Description: Disagreement between measured and estimated navigation positions

caused repeated resets, and by using the same GPS sensor data carried over between

repeated resets coupled with a guidance algorithm that performed continual course

15

correction, thruster firings depleted propellant and lost the mission. The algorithm was

deemed overly-sensitive to divergent navigation data and contained a design flaw favoring

the estimated value over the measured value, thus they would never have converged and

repeatedly reset as a result. Further documentation may be found in [42,43].

31) Year: 2006

System: Mars Global Surveyor (MGS)

Title: Erroneous command led to pointing error and power/vehicle loss

Result: Premature loss of vehicle

Description: A maintenance update command sent data to the wrong location in

memory, over writing communication and solar array pointing, which ultimately caused

the craft to deplete power. Further documentation may be found in [44,45,46].

32) Year: 2007

System: F22 First Deployment

Title: International Date Line crossing crashed computer systems

Result: Loss of navigation & communication

Description: Multiple software-related system failures occurred when the

crossing the 180th meridian, resulting in loss of navigation and communication. Clear

weather permitted the squadron to pilot the aircraft manually and visually by following

tanker ships back to Hawaii. Further documentation may be found in [47,48].

33) Year: 2008

System: STS-124

Title: All 4 shuttle computers fail / disagree during fueling

Result: Fueling stopped, flight delayed

Description: A cracked diode in an external sensor effectively sent each of the

four primary Shuttle General Purpose Computers (GPC) a different input signal from the

same sensor, causing a 1-1-1-1 disagreement among the 4 redundant computers which

halted fueling and delayed the flight. Further documentation can be found in [49,50].

34) Year: 2008

System: Quantas Flight 72, Airbus A330-303

Title: Sensor input spikes caused autopilot to pitch-down, resulting in

crew and passenger injuries

Result: One crew member and 11 passengers suffered serious injuries

Description: One of the aircraft’s three air data inertial reference units (ADIRU

1) exhibited a data-spike failure mode, during which it transmitted a significant amount of

incorrect data to the autopilot without it being flagged invalid. The design never considered

these spiked data and resulted in systems warning irregularity, including contradictory stall

and overspeed warnings, and issued an uncommanded pitch down. The Australian

Transport Safety Bureau (ATSB) investigation found this to be a previously unknown

software design limitation of the Airbus A330's fly-by-wire flight control system software.

A depiction of the stages in the flight is shown in Figure 7, and further documentation can

be found in [51].

16

Figure 7. Quantas Flight 72.

(Credit: Masakatsu Ukon, CC BY-SA 2.0, via Wikimedia Commons

https://creativecommons.org/licenses/by-sa/2.0/

https://commons.wikimedia.org/wiki/File:Qantas_Airways,_Airbus_A330-300_VH-

QPA_NRT_(34167383486).jpg)

35) Year: 2008

System: B-2 Spirit - Guam crash

Title: Miscalculation with missing input data caused uncommanded pitch

up

Result: Crew members successfully ejected.

Description: After three pressure transducers failed to function due to

condensation inside the devices and heavy rain, the flight-control software was without all

necessary information and calculated inaccurate aircraft angle-of-attack and airspeed. Once

airborne and with a higher indicated speed than actual, a negative angle-of-attack was

calculated, causing an uncommanded pitch up. Further documentation can be found in [52].

36) Year: 2012

System: Red Wings Flight 9268 TU-204

Title: Unanticipated landing circumstances coupled with design features

resulted in crash landing

Result: 5 of 8 crewmembers killed

Description: When attempting a crosswind landing in snow, the weight-on-

wheels switch failed to engage, the aircraft hydroplaned, and the reverse thruster did not

deploy. As a safety feature, both sets of main landing gear were required to be compressed

simultaneously before the thrust reversers could deploy. Because there was no compression

of the right landing gear, the reversers were never deployed, the pilots were unaware that

reverse thrusters didn’t deploy, and when they moved the controls to the maximum reverse

position, it caused an increase of forward thrust in both engines. In addition to the lack of

reverse thrust, the airbrakes and spoilers failed to activate automatically, and the crew did

not attempt to activate them manually. Further documentation can be found in [53].

37) Year: 2015

System: Airbus A400M test flight

Title: Missing software parameters during installation caused crash

Result: Four fatalities

https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Qantas_Airways,_Airbus_A330-300_VH-QPA_NRT_(34167383486).jpg
https://commons.wikimedia.org/wiki/File:Qantas_Airways,_Airbus_A330-300_VH-QPA_NRT_(34167383486).jpg

17

Description: The absence of a configuration file defining critical engine

parameters caused the loss of three of four engines, leading to a crash. During the final

assembly process, software was incorrectly installed. Further documentation can be found

in [54,55].

38) Year: 2015

System: SpaceX CRS-7

Title: Opening chutes unavailable after launch vehicle failure

Result: Possibly could have saved Dragon capsule from crash landing

Description: After launch vehicle failure, an attempt to save the Dragon vehicle

by opening the chutes failed because software for handling this situation was absent from

the program. Code to open the nose cone and command chutes to open were disallowed in

the current state. Consequently, the vehicle was destroyed by a crash-landing into the

ocean. The code was changed after the flight to handle this contingency situation [56]. A

figure of the launch explosion is shown in Figure 8.

Figure 8. CRS-7 Mishap.

(Credit: NASA).

39) Year: 2016

System: Hitomi X-ray space telescope

Title: Error in computing spacecraft orientation led to spacecraft loss

Result: Loss of vehicle

Description: An error computing spacecraft orientation from gyros against a

failed star-tracker led to cascading failures, including firing thrusters in the wrong direction

to increase, rather than arrest, spacecraft spin. The fail-safe for the spin was also confused

about orientation so was ineffective, and an erroneous command uplinked for initiating

safe mode further accelerated the spin. Further documentation may be found in [57,58].

40) Year: 2017

System: SpaceX CRS-10

Title: Erroneous relative state vector transmitted to Dragon

Result: ISS rendezvous delay

Description: The Dragon spacecraft rendezvoused with the International Space

Station on 22 February, but its approach was automatically aborted by an on-board

18

computer when a data error was reported in its navigation system. This is the first

rendezvous abort by a Dragon spacecraft. The problem was traced to an incorrect data value

in the spacecraft's Global Positioning System used to determine relative position to the

space station. The abort resulted in a 24-hour hold on its approach. Further documentation

may be found in [59,60].

41) Year: 2018, 2019

System: 737 Max crash

Title: Unanticipated software response to faulty sensor input

Result: 346 people died on two flights

Description: Erroneous input from a non-redundant faulty angle-of-attack sensor

showed higher than actual angle-of-attack, causing the software to respond with a nose-

down trim of the horizontal stabilizer. Handling of this erroneous sensor input was not in

the software design, information about this software behavior was not generally

communicated, and pilots were not trained to respond. Further documentation may be

found in [61].

42) Year: 2019

System: Boeing Orbital Flight Test (OFT)

Title: Incorrect MET caused no ISS rendezvous and uncovered other

latent software errors

Result: Failed ISS rendezvous, multi-year program delay

Description: An error with the Mission Elapsed Timer (MET) 31 minutes into

flight, which was polled from the Atlas V booster nearly 11 hours prior to launch caused

the spacecraft to burn into an incorrect orbit and use excess fuel, preventing ISS

rendezvous. Investigation into the MET problem uncovered other errors which would

likely have led to spacecraft loss upon return but were prevented by ground commanding

enabling a safe landing (see Figure 9). NASA stated: “Breakdowns in the design and code

phase inserted the original defects. Additionally, breakdowns in the test and verification

phase failed to identify the defects preflight despite their detectability. While both errors

could have led to risk of spacecraft loss, the actions of the NASA-Boeing team were able

to correct the issues and return the Starliner spacecraft safely to Earth.” Further

documentation may be found in [62,63].

Figure 9. Boeing OFT Landing.

(Credit: NASA)

19

43) Year: 2019

System: Beresheet

Title: Repeated reboots cause engine shutdown during lunar descent

Result: Loss of vehicle

Description: Israel's first attempt to land an unmanned spacecraft on the moon

with the Beresheet was rendered unsuccessful on April 11, 2019, due to a software bug

which caused repeated reboots and engine shut down, preventing it from slowing down

during its final descent on the moon's surface [64].

44) Year: 2020

System: Amazon Web Service (AWS) Kinesis

Title: Maximum threads exceeded caused cascading server outage

Result: Loss of service, revenues.

Description: An upper limit on number of threads allowed by the operating

system was exceeded when Amazon tried to scale up service. The exceedance caused

servers to shed load, cascading to other servers. Further documentation may be found in

[65,66].

45) Year: 2020

System: BD Alaris™️ Infusion Pump

Title: Infusion delivery system software causes injury/death

Result: 55 injuries, 1 death

Description: Software synchronization errors led to over/under infusion, infusion

delay, or infusion interruption. If a user selected two functions from the user interface

within a one second interval, a system error was generated that triggered a non-silenceable

high priority alarm, program operation continued, and further edits to the unit operation or

programing were disallowed. The FDA issued a Class I recall on this device. Further

documentation may be found in [67,68].

46) Year: 2021

System: Global Facebook Outage

Title: Bad command causes global Facebook and cascading

communication outages

Result: Disrupted communication, loss of revenues

Description: During maintenance, an erroneous inquiry command accidentally

disconnected Facebook data centers, leading to the deletion of routing information that

disconnected Facebook and subsidiary data centers for several hours. The failure cascaded,

locking out internet access to customers as well as secure access by Facebook employees.

Further documentation can be found in [69,70].

47) Year: 2021

System: International Space Station (ISS)

Title: Uncontrolled ISS attitude spin from erroneous thruster firing

software

Result: Close call

Description: The ISS experienced an uncontrolled spin event caused by

erroneous Nauka module thruster firing. “Due to a short-term software failure, a direct

command was mistakenly implemented to turn on the module's engines for withdrawal”

[71]. Thrusters on the ISS Service and Progress modules were used to compensate, and

once propellant was exhausted, control was restored.

20

3.2 Categorizations of Incidents

Table 2 shows a categorization of the 47 historical incidents enumerated in the previous section.

The ID of each incident corresponds with its number in the previous section. Each incident was

subjectively evaluated against the categories discussed in Section 2.0 – Erroneous vs Fail-Silent,

likelihood of recovering from reboot, whether there was missing code, where the source of the

error was within the software architecture, and if this could be considered an “unknown-unknown.”

Table 2. Incident Categorization

ID System

Erroneous Output or

Fail-Silent?

Reboot-

Recover-

able?

Missing

Code? Error Location

Unknown-

Unknown?

1 Mariner 1 Mission –

Atlas-Agena

Erroneous Output No No Code/Logic No

2 Gemini 3 Erroneous Output No Yes Code/Logic Yes

3 Gemini 5 Erroneous Output No No Data No

4 Apollo 8 Erroneous Output No No Command Input No

5 Apollo 10 Erroneous Output No No Data No

6 STS-1 Fail Silent Yes Yes Code/Logic No

7 Viking-1 Erroneous Output No No Command Input No

8 Therac-25 Erroneous Output No No Code/Logic No

9 Phobos-1 Erroneous Output No No Command Input No

10 Soyuz TM-5 Erroneous Output No No Code/Logic No

11 Aries - Red Tigress I Erroneous Output No No Sensor Input No

12 Patriot Missile Erroneous Output Yes No Code/Logic No

13 F-22 Raptor Erroneous Output No Yes Sensor Input Yes

14 Clementine Lunar

Mission

Erroneous Output No No Code/Logic No

15 Pegasus XL STEP-1 Erroneous Output No Yes Code/Logic Yes

16 Pegasus HAPS Erroneous Output No Yes Code/Logic No

17 Ariane 5 Maiden Flight Erroneous Output No No Code/Logic No

18 Pathfinder Erroneous Output No No Code/Logic No

19 Delta III Erroneous Output No Yes Code/Logic Yes

20 Mars Polar Lander Erroneous Output No Yes Sensor Input No

21 Mars Climate Orbiter Erroneous Output No No Data No

22 Titan IV B Centaur Erroneous Output No No Data No

23 Zenit 3SL Erroneous Output No No Code/Logic No

24 Pegasus XL/HyperX

Launch Vehicle / X-43A

Erroneous Output No Yes Code/Logic Yes

25 STS-108 through 110 Erroneous Output No No Data No

26 Multidata Systems

Radiation Machine

Erroneous Output No No Code/Logic No

27 Soyuz - TMA-1 Erroneous Output No No Code/Logic No

28 North American Electric

Power Grid

Fail Silent Yes No Code/Logic No

29 CryoSat-1 Erroneous Output No Yes Code/Logic No

30 DART (Demonstration

of Autonomous

Rendezvous

Technology)

Erroneous Output No No Code/Logic No

31 Mars Global Surveyor

(MGS)

Erroneous Output No No Code/Logic No

32 F22 First Deployment Fail Silent No Yes Code/Logic No

33 STS-124 Erroneous Output No Yes Sensor Input No

21

34 Quantas Flight 72,

Airbus A330-303

Erroneous Output No Yes Sensor Input Yes

35 B-2 Spirit -Guam crash Erroneous Output No Yes Sensor Input Yes

36 Red Wings Flight 9268

TU-204 crash

Erroneous Output No Yes Code/Logic Yes

37 Airbus A400M test

flight

Erroneous Output No No Data No

38 SpaceX CRS-7 Erroneous Output No Yes Code/Logic No

39 Hitomi X-ray space

telescope

Erroneous Output No No Code/Logic No

40 SpaceX CRS-10 Erroneous Output No No Data No

41 737 Max crash Erroneous Output No Yes Sensor Input Yes

42 Boeing Orbital Flight

Test (OFT)

Erroneous Output No No Code/Logic No

43 Beresheet Fail Silent No No Code/Logic No

44 Amazon Web Service

(AWS) Kinesis

Fail Silent No Yes Code/Logic No

45 BD Alaris™️ Infusion

Pump

Erroneous Output No No Code/Logic No

46 Global Facebook

Outage

Fail Silent Yes No Command Input No

47 ISS Erroneous Output No No Code/Logic No

4.0 Results

4.1 Erroneous vs. Fail-Silent

Using the data from Table 2, Table 3 shows the tabulated results in terms of number of incidents

and percent over the dataset of software errors manifesting as unexpected/erroneous behavior

versus failing silent, producing no output. Erroneous output was over seven times as likely, 87%

of the cases. Critical systems should take the substantially greater likelihood of erroneous behavior

into account when considering and designing for fault tolerance. Based on this, the system’s

operation should be evaluated with the following questions in mind, “What would the impact be

if the software behaved unexpectedly at this moment?,” “What is the risk of that happening?,”

“Should/could the erroneous output risk be mitigated” and if so, “How?”

Table 3. Manifestation – Fail-Silent or Erroneous?

Manifestation: Erroneous Output or Fail-Silent?

Number of

Incidents

Percent

Erroneous Output 41 87 %

Fail-Silent 6 13 %

4.2 Reboot Recoverability

Table 4 summarizes the subjective reboot recoverability likelihood comparing erroneous output

cases and fail-silent cases. Shown here, 98% of the erroneous output cases were deemed not

correctable by reboot, with only 2% (the single erroneous output case for the Patriot Missile)

recoverable by reboot. Reboot recoverability is ineffective for almost all erroneous output cases.

Fail-silent cases showed a greater chance of reboot recoverability over a small dataset of 6 cases

with half of those deemed recoverable. This implies that reboot is also not always an effective

strategy to clear fail-silent situations. Perhaps depending upon criticality, an alternate backup

22

mitigation approach besides rebooting should be considered. Overall, reboot only was deemed

effective for 4 out of 47 incidents, independent of manifestation, or less than 9% of the cases.

Table 4. Reboot Recoverability

Manifestation Recoverability with Reboot

Recoverable

with Reboot

Not

Recoverable

with Reboot

Erroneous Output (41 incidents) 2 % 98%

Fail Silent (6 incidents) 50 % 50%

4.3 Absence of Code

Table 5 indicates that an interestingly large 36% percent of these incidents were the result of the

absence of code, as opposed to wrong code, albeit in hindsight. The absence of code satisfies the

question, “Could/should software have been added to correct this incident?,” and is subjective, but

includes causes such as missing requirements, incomplete understanding or modeling of the real

world, and unexpected inputs. This result should influence software test planning. For example, a

proportionate amount of requirements verification and unit testing should be performed on the

code that exists, but a percentage of the testing should also be reserved for off-nominal cases and

unexpected input scenarios, possibly exposing some of the code that is lacking.

Table 5. Absence of Code

Could incident have been

corrected by adding code?

Yes,

Percent

No,

Percent

Missing Code? 36 % 64%

4.4 Error Location

Table 6 categorizes the location of the error within the software architecture. A discussion of why

these particular categories were chosen is given in Section 4.4, but they were mainly differentiated

because mitigating errors between these categories is normally done with different methods,

testing, processes, and procedures. Unsurprisingly, the majority of these errors were found to be

within the code and logic itself since this category includes not only faulty code, but also missing

requirements and “unknown-unknowns.” Uncovering missing code during earlier phases such as

unit testing or requirements verification may be a challenge, but missing code could possibly be

exposed during integration testing, hardware-in-the-loop-testing, and especially with off-nominal

scenario testing. Aside from missing code, code/logic errors could be exposed through focused

peer reviews and comprehensive unit testing. Misconfigured data alone caused 15% of these errors.

To combat data misconfiguration errors, special testing should be performed to assure that

configurable data are validated prior to flight and reviewed by system experts, even if the software

itself does not change. Input data, sensor, and command input combined accounted for

approximately 25% of all errors. While handling input could also be considered part of

coding/logic, it is useful to break this out knowing that comprehensive and off-nominal input

testing could be employed to uncover errors in this part of the code. Randomized input could be

computer-generated to assure robustness to unexpected input. For sensor data, actual sensor

hardware should be used to “test like you fly” rather than simulating sensor input. For command

input errors, operational procedures should be put in place and safeguards followed to validate

commands prior to issue.

23

Table 6. Software Architectural Error Location

Error location Percent

Code - Code/Logic/Algorithm 62 %

Data - Data Misconfiguration 15 %

Sensor Input– Unanticipated/Erroneous Sensor Input 15 %

Command Input - Operator/Procedure Error 9 %

4.5 Unknown-unknowns

Characterizing unknown-unknowns is highly subjective and can be a controversial topic. However,

considering and designing for “unknown-unknowns” has been common aerospace practice. It

could be argued that given enough time and resources, each of these incidents could have been

known a priori, so a subjective reasonability test was considered against each incident to

distinguish “should or could this have been known within reasonable project constraints” versus,

“the project did everything they should have, yet an unknown situation led to unexpected software

behavior.” Unknown-unknowns include cases of unknown aerodynamics after modeling, highly

unusual sensor behavior, or behavior in the presence of unlikely fault situations. Given this

subjectivity, the percent of these incidents that could be considered “unknown-unknowns” is

arguably and conservatively 20% (see Table 7). If one-fifth of software errors are due to things

reasonably unknowable, this alone could give credence to the consideration for erroneous software

backup strategies in safety-critical applications. Overall strategies to mitigate the risk of software

failing during operations due to unknown-unknowns or other software failures are usually time-

criticality dependent, but generally include manual human-in-the-loop control, employing

dissimilar backup systems, run-time monitoring and response systems, computer reboot, entering

a safe mode, or time-permitting, software reload.

Table 7. Unknown-unknowns

Predictability of Manifestation? Percent

Unknown unknowns 20 %

Reasonably Could have known 80 %

5.0 Conclusions

This paper introduced a dataset of aerospace incidents involving software since the advent of

computerized automation. It analyzed aerospace failures through the eyes of the software and

automation discipline in an effort to characterize and predict trends in software behavior (and

misbehavior) as a design and test aid to current and future aerospace systems. It characterized how

software is most likely to fail—erroneously or silent—and determined that automation fails

erroneously much more often than simply “crashing” or ceasing to output. Systems should

recognize the relative risk and be designed accordingly. Rebooting the software, though used

prevalently, was found to be largely ineffective to clear software failures, effective in less than 9%

of the total cases, and less than 2% for the erroneous-output case. This paper explored software

errors relating to the absence of code as well as the prevalence of unknown-unknowns, both of

which were substantial constituents in the dataset, 36% and 20% respectively. Software testing

should be planned to uncover missing code through off-nominal input and integrated testing, and

backup systems should be considered to mitigate the risk of “unknown-unknowns” in safety-

critical systems. Finally, a categorization determining what location within the software

24

architecture (code, data, sensor input, or command input) was provided to better influence

processes and testing related to those areas both during development and during operations.

The dataset presented here is rich for further study, especially in the areas of backup systems,

relationship to common-cause, and manual control for safety-critical systems. Some key questions

such as, “Was this a multi-string common-cause failure?,” “Was a manual or automated backup

system used?,” “Would a backup system have helped?,” “If so, what kind of a backup system could

have helped?” could be explored. Would a human-in-the-loop, a dissimilar backup, a monitor

system, or no backup at all be the best option for each situation?

Another key question could be, “What was the root cause of this error?” Looking at how these

errors might have been avoided altogether has great merit and projects may better focus on areas

most likely to catch root cause software errors. Since the software performed exactly as

programmed in these cases, exploring “why” it was programmed the way it was in terms of root-

cause may be a lesson to organizations producing software.

“In what phase of the project could/should have this incident been discovered and averted?” is

another interesting question. How much testing and what type of testing would have provided the

most “bang for the buck” in averting these errors? All of these questions would be useful follow-

on work against this, hopefully stagnant, yet continually growing, dataset.

6.0 References

[1] Zak, D., “‘Nothing ever ends’: Sorting through Rumsfeld’s knowns and unknowns,” The

Washington Post, July 1, 2021.

[2] NASA, “Mariner 1,” NASA Space Science Data Coordinated Archive [online database],

URL: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MARIN1 [retrieved

11 Oct. 2022].

[3] NASA Jet Propulsion Laboratory, “Mariner-Venus 1962 Final Project Report,” NASA

SP-59, July 1965, URL: https://history.nasa.gov/SP-59.pdf [retrieved 11 Oct. 2022].

[4] Hacker, B., and Grimwood, J., On the Shoulders of Titans, NASA SP-4203, Washington

D.C., 1977, URL: https://history.nasa.gov/SP-4203.pdf [retrieved 11 Oct. 2022].

[5] NASA, “Apollo 8 Mission Report,” MSC-PA-R-69-1, Manned Spacecraft Center,

Houston, TX, February 1969, URL: https://history.nasa.gov/afj/ap08fj/pdf/a08-

missionreport.pdf.

[6] NASA, Apollo 10 Mission Report, MSC-00126, Manned Spacecraft Center, Houston,

TX, August 1969.

[7] Cernan, G., “Interview on Apollo 10 - (December 23, 2009),”, URL:

https://www.youtube.com/watch?v=fsObsxU08ys [retrieved 12 Oct. 2022].

[8] Garman, J.R., “The “BUG” heard 'round the world: discussion of the software problem

which delayed the first shuttle orbital flight,” ACM SIGSOFT Software Engineering

Notes, Volume 6, Issue 5, October 1981, pp. 3-10, URL:

https://doi.org/10.1145/1005928.1005929 [retrieved 14 Oct. 2022].

[9] Mudgway, D. J., “Telecommunications and Data Acquisition Systems Support for the

Viking 1975 Mission to Mars”, NASA JPL Publication 82-107, May 15, 1983.

[10] Levenson, N.G. and Turner, C.S., “An Investigation of the Therac-25 Accidents,” UCI

Technical Report 92-108, Information and Computer Science Department, University of

https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MARIN1
https://history.nasa.gov/SP-59.pdf
https://history.nasa.gov/SP-4203.pdf
https://history.nasa.gov/afj/ap08fj/pdf/a08-missionreport.pdf
https://history.nasa.gov/afj/ap08fj/pdf/a08-missionreport.pdf
https://www.youtube.com/watch?v=fsObsxU08ys

25

California, Irvine, CA, URL: https://escholarship.org/uc/item/5dr206s3 [retrieved 14 Oct.

2022].

[11] Waldrop, M., “Phobos at Mars: A Dramatic View - and Then Failure,” Science, Vol 245,

8 September 1989, p. 1045.

[12] Katell, A., “Soviet Mars Probe Lost in Space Because of Controller's Error,” Associated

Press, 9 Sept. 1988.

[13] Harland, D.M., “The Story of Space Station Mir,” Springer-Verlag, ISBN 978-0-387-

23011-5, 2005.

[14] Applied Technology Associates, Inc., and Dillow, M., “Red Tigress Mission Report,”

Albuquerque, New Mexico, 1991, URL: https://apps.dtic.mil/sti/pdfs/ADA338873.pdf

[retrieved on 12 Oct 2022].

[15] United States General Accounting Office, Report to the Chairman, Subcommittee on

Investigations and Oversight, Committee on Science, Space, and Technology, House of

Representatives, “Patriot Missile Defense, Software Problem Led to System Failure at

Dhahran, Saudi Arabia,” Feb. 1992, URL: https://www-

users.cse.umn.edu/~arnold/disasters/GAO-IMTEC-92-96.pdf [retrieved on 14 Oct. 2022].

[16] Dornheim, M.A., “Report Pinpoints Factors Leading to YF-22 Crash,” Aviation Week

and Space Technology, November 9, 1992.

[17] Regeon, P. A., Chapman, R. J., Baugh, R., “Clementine, The Deep Space Program

Science Experiment,” Acta Astronautica Vol. 35, Suppl., pp. 307-321, 1995.

[18] Horan, Donald M. and Berkowitz, Bruce D., “Clementine,” in Reducing Space Mission

Cost, edited by Wertz, James R. and Larson, Wiley J., Space Technology Library,

Microcosm Press, Torrance, CA, 1996.

[19] Committee on Planetary and Lunar Exploration (COMPLEX) Space Studies Board

Commission on Physical Sciences, Mathematics, and Applications, National Research

Council, “Lessons Learned from the Clementine Mission,” 1997.

[20] NASA, “Mission Success of U.S. Launch Vehicle Flights from a Propulsion Stage-based

Perspective 1980-2015,” NASA TM-2017-219497, 2017.

[21] Le Lann, Gérard, “An Analysis of the Ariane 5 Flight 501 Failure – A System

Engineering Perspective,” Proceedings of the 1997 international conference on

Engineering of computer-based systems (ECBS'97). IEEE Computer Society, pp. 339–

346, 1997.

[22] Dowson, M., “The Ariane 5 Software Failure,” ACM SIGSOFT Software Engineering

Notes. 22 (2): 84, 1997.

[23] Reeves, G.E., Re: What Really Happened on Mars? Risks Forum 19(54) (1998)

[24] McHale, J., “NASA tackles Pathfinder software glitch,” Military & Aerospace

Electronics Magazine, August 31, 1997.

[25] Durkin, T., “What the Media Couldn’t Tell You About Mars Pathfinder,” Robot Science

and Technology Magazine, Issue 1, 1998.

[26] Boeing, URL: https://boeing.mediaroom.com/1998-10-15-Boeing-Changes-Delta-III-

Control-Software [retrieved 12 Oct 2022].

[27] JPL Special Review Board, Report on the Loss of the Mars Polar Lander and Deep Space

2 Missions, JPL D-18709, 2000.

[28] Reichhardt, T. Software error ‘caused Mars lander crash’, Note in Nature Vol.404, 423

(2000).

26

[29] Stephenson, A.G.; LaPiana, L.S.; Mulville, D. R.; Rutledge, P.J.; Bauer, F.H.; Folta, D.;

Dukeman, G.A.; Sackheim, R.t; Norvig, P., Mars Climate Orbiter Mishap Investigation

Board Phase I Report, NASA, 1999.

[30] Oberg, James, “Why the Mars Probe went off course,” IEEE Spectrum. IEEE, 1999.

[31] X-43A Mishap Investigation Board, “Report of Findings X-43A Mishap,” Accepted

Draft 9/6/02, URL: https://www.nasa.gov/pdf/47414main_x43A_mishap.pdf [retrieved

15 Nov 2022].

[32] Space Shuttle Program Close Call Awareness Papers, “STS-108: MCC Pc Calibration

Error,” STS 1 -108_CC_paper_(MCC_Pc_Calibration)_07_20_06, URL:

https://smasp.jsc.nasa.gov/na/na13/SII-2015-

001/Document%20Library/1/SigIncProto%20Drop%204%20FY15%20Final/Interactive

%20Sig%20Inc%20Prototype/Space%20Shuttle/STS-108/STS-

108_CC_paper_(MCC_Pc_Calibration)_07_20_06.pdf [retrieved 15 Nov 2022].

[33] JSC SMA Flight Safety Office, “Significant Incidents & Close Calls in Human

Spaceflight,” URL: https://sma.nasa.gov/SignificantIncidents/ [retrieved 15 Nov 2022].

[34] International Atomic Energy Agency, A Panel of Experts (2001), “Investigation of an

Accidental Exposure of Radiotherapy Patients in Panama,” /Report of a Team of Experts,

26 May – 1 June, 2001, Vienna, Austria: International Atomic Energy Agency/, URL:

https://www-pub.iaea.org/MTCD/publications/PDF/Pub1114_scr.pdf [retrieved 15 Nov

2022].

[35] Garfinkel, Simson, “History's Worst Software Bugs,” Wired.com, November 8, 2005.

URL: https://lessons-from-

history.com/Presentations/Articles/History's%20Worst%20Software%20Bugs.pdf

[retrieved 15 Nov 2022].

[36] Schmid, Randolph E., “Decree Blocks Firm on Radiation Devices,” AP News, May 7,

2003, URL: https://apnews.com/article/0e24f8dd5444a93fcc6c8d2a7dbf010b [retrieved

15 Nov 2022].

[37] The European Space Agency, “New Soyuz TMA spacecraft cleared for next mission with

ESA,” URL:

https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Cervantes_

Mission/New_Soyuz_TMA_spacecraft_cleared_for_next_mission_with_ESA_astronaut

[retrieved 15 Nov 2022].

[38] Spaceref Editor, “RSC Energia Report on Cause of Soyuz TMA-1 Reentry Problems,” 28

May 2003, URL: https://spaceref.com/press-release/rsc-energia-report-on-cause-of-

soyuz-tma-1-reentry-problems/ [retrieved 15 Nov 2022].

[39] Spaceref Editor, “RSC Energia: Technical Board reviewing the causes of ballistic mode

reentry of Soyuz TMA-1,” 16 May 2003, URL: https://spaceref.com/status-report/rsc-

energia-technical-board-reviewing-the-causes-of-ballistic-mode-reentry-of-soyuz-tma-1/

[retrieved 15 Nov 2022].

[40] U.S.-Canada Power System Outage Task Force, “Final Report on the August 14, 2003

Blackout in the United States and Canada: Causes and Recommendations,” April 2004.

[41] Peplow, M., “CryoSat mission lost”, Nature, 10 October 2005.

[42] NASA, “Overview of the DART Mishap Investigation Results,” URL:

https://www.nasa.gov/pdf/148072main_DART_mishap_overview.pdf, [retrieved 15 Nov

2022].

27

[43] SpaceNewsEditor, “Multiple Errors Caused DART Rendezvous Mission Mishap,”

SpaceNews.com, June 29, 2004. URL: https://spacenews.com/multiple-errors-caused-

dart-rendezvous-mission-mishap/ [retrieved 15 Nov 2022].

[44] Minkel, J.R., “Human Error Caused Mars Global Surveyor Failure,” Scientific American,

13 Apr 2007., URL: https://www.scientificamerican.com/article/human-error-caused-

mars-g/ [retrieved on 15 Nov 2022].

[45] NASA, “Mars Global Surveyor (MGS) Spacecraft Loss of Contact,” 13 Apr 2007, URL:

https://www.nasa.gov/sites/default/files/174244main_mgs_white_paper_20070413.pdf

[retrieved on 15 Nov 2022].

[46] NASA Public Lessons Learned System, Lesson Number 1805, Lesson Date 2007-09-03,

“Mars Global Surveyor (MGS) Spacecraft Loss of Contact,” URL:

https://llis.nasa.gov/lesson/1805 [retrieved on 15 Nov 2022].

[47] Thompson, M., “A $330 Million Case of Jet Lag,” TIME, 07 Mar 2007, URL:

http://content.time.com/time/nation/article/0,8599,1597043,00.html [retrieved 18 Nov

2022].

[48] Staff, “F-22 Squadron Shot Down by the International Date Line,” Defense Industry

Daily, 01 Mar 2007, URL: https://www.defenseindustrydaily.com/f22-squadron-shot-

down-by-the-international-date-line-03087/ [retrieved 18 Nov 2022].

[49] Bergin, C., “STS-124: FRR debate outstanding issues – faulty MDM removed,”

NASASpaceflight.com, 15 May 2008, URL:

https://www.nasaspaceflight.com/2008/05/sts-124-frr-debate-outstanding-issues-faulty-

mdm-removed/ [retrieved 18 Nov 2022].

[50] Bergin, C., “STS-126: Super smooth Endeavour easing through the countdown to L-1,”

NASASpaceflight.com, 13 Nov 2008, URL:

https://www.nasaspaceflight.com/2008/11/sts-126-endeavour-easing-through-countdown/

[retrieved 18 Nov 2022].

[51] Australian Transport Safety Bureau, “In-flight upset - Airbus A330-303, VH-QPA, 154

km west of Learmonth, WA, 7 October 2008,” Investigation Number AO-2008-070,

Released 19 Dec 2011.

[52] USAF Accident Investigation Board, B-2A, S/N 89-0127, 20080223 KSZL501A, URL:

https://web.archive.org/web/20160304002933if_/http://www.glennpew.com/Special/B2F

acts.pdf [retrieved 18 Nov 2022].

[53] Hradecky, S., “Accident: Red Wings T204 at Moscow on Dec 29th 2012, overran runway

on landing,” The Aviation Herald, 29 Dec 2012, URL:

http://www.avherald.com/h?article=45b4b3cb [retrieved on 18 Nov 2022].

[54] Osborne, T., “Incorrectly Installed Engine Software Caused A400M Crash, Airbus

Official Says,” Aviation Week, 27 May 2015.

[55] Chirgwin, R., “Airbus confirms software brought down A400M transport plane,” The

Register, 31 May 2015, URL:

https://www.theregister.com/2015/05/31/airbus_software_config_brought_down_a400m/

[56] Bergin, C., “Saving Spaceship Dragon - Software to provide contingency chute deploy,”

NASA Spaceflight.com, URL: https://www.nasaspaceflight.com/2015/07/saving-

spaceship-dragon-contingency-chute/ [retrieved on 22 Nov 2022].

[57] Klein, A., “Japanese satellite's death spiral linked to software malfunction,”

NewScientist, 29 Apr 2016, URL: https://www.newscientist.com/article/2086422-

japanese-satellites-death-spiral-linked-to-software-malfunction/ [retrieved 18 Nov 2022].

https://www.theregister.com/2015/05/31/airbus_software_config_brought_down_a400m/

28

[58] Witze, A., “Software Error Doomed Japanese Hitomi Spacecraft,” Nature, 29 Apr 2016.

URL: https://www.scientificamerican.com/article/software-error-doomed-japanese-

hitomi-spacecraft/ [retrieved 18 Nov 2022].

[59] Richardson, D., “Dragon Rendezvous Aborted, Next Attempt in 24 Hours,” Spaceflight

Insider, 22 Feb 2017, URL: https://www.spaceflightinsider.com/missions/iss/dragon-

rendezvous-aborted-next-attempt-in-24-hours/ [retrieved 22 Nov 2022]

[60] Harwood, W., “SpaceX cargo ship aborts approach to station,” CBS News, 22 Feb 2017,

URL: https://www.cbsnews.com/news/spacex-russian-cargo-ships-en-route-to-station/

[retrieved 22 Nov 2022].

[61] Federal Aviation Administration, “Preliminary Summary of the FAA’s Review of the

Boeing 737 MAX,” Version 1, 3 Aug 2020, URL:

https://www.faa.gov/news/media/attachments/737-MAX-RTS-Preliminary-Summary-v-

1.pdf [retrieved 13 Nov 2022].

[62] Chang, K., “Boeing Starliner Flight’s Flaws Show ‘Fundamental Problem,’ NASA Says,”

New York Times, 7 Feb 2020, URL:

https://www.nytimes.com/2020/02/07/science/boeing-starliner-nasa.html [retrieved 13

Nov 2022].

[63] NASA Blogs, “NASA Shares Initial Findings from Boeing Starliner Orbital Flight Test

Investigation,” 7 Feb 2020, URL:

https://blogs.nasa.gov/commercialcrew/2020/02/07/nasa-shares-initial-findings-from-

boeing-starliner-orbital-flight-test-investigation/ [retrieved 18 Nov 2022].

[64] Nevo, E., “What Happened to Beresheet?,” Weizmann Institute of Science Online

Journal, 20 Feb 2020, [retrieved 12 Oct. 2020], URL:

https://davidson.weizmann.ac.il/en/online/sciencepanorama/what-happened-beresheet

[65] Whitney, L., “Amazon reveals reason for last week’s major AWS outage,” TechRepublic,

30 Nov 2020, URL: https://www.techrepublic.com/article/amazon-reveals-reason-for-

last-weeks-major-aws-outage/ [retrieved on 18 Nov 2022].

[66] Tung, L., “Amazon: Here's what caused the major AWS outage last week,” ZDNet

Business, 30 Nov 2020, URL: https://www.zdnet.com/article/amazon-heres-what-caused-

major-aws-outage-last-week-apologies/ [retrieved on 18 Nov 2022].

[67] Becton, Dickenson and Company (BD), “Urgent: Medical Device Recall Notification,

Affected Device: BD Alaris System,” 10020 Pacific Mesa Blvd, San Diego, CA, 92121,

4 Feb 2020, URL:

https://www.bd.com/documents/alerts/AlarisSystem9.x_CustomerRecallPackage.pdf

[retrieved 16 Nov 2022].

[68] United States Food and Drug Administration, “Becton Dickinson (BD) CareFusion 303

Inc. Recalls Alaris System Infusion Pumps Due to Software and System Errors,” 2020

Medical Device Recalls, URL: https://www.fda.gov/medical-devices/medical-device-

recalls/becton-dickinson-bd-carefusion-303-inc-recalls-alaris-system-infusion-pumps-

due-software-and-system [retrieved 16 Nov 2022].

[69] Feuer, W., “Facebook and its apps start to come back online after stocks tank,” New

York Post, 4 Oct 2021, URL: https://nypost.com/2021/10/04/facebook-instagram-and-

whatsapp-hit-by-global-outage/ [retrieved 16 Nov 2022].

[70] Shead, S., “Facebook says sorry for mass outage and reveals why it happened,” CNBC, 5

Oct 2021, URL: https://www.cnbc.com/2021/10/05/facebook-says-sorry-for-mass-

outage-and-reveals-why-it-happened.html [retrieved 16 Nov 2022].

29

[71] Zastrow, M., “International Space Station saved from out-of-control spin,” Astronomy,

30 Jul 2021, URL: https://astronomy.com/news/2021/07/international-space-station-

saved-from-out-of-control-spin [retrieved 16 Nov 2022]

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

08/16/2023 Technical Publication

Software Error Incident Categorizations in Aerospace

Prokop, Lorraine E.

NASA Langley Research Center
Hampton, VA 23681-2199 NESC-NPP-22-01775

National Aeronautics and Space Administration
Washington, DC 20546-0001

869021.01.23.01.01

NASA

NASA/TP-20230012154

Unclassified - Unlimited
Subject Category Computer Programming and Software
Availability: NASA STI Program (757) 864-9658

Since the first use of computers in space and aircraft, software errors have occurred. These errors can manifest as loss-of-
life or less catastrophically. As the demand for automation increases, software in safety-critical systems should be designed
to be tolerant to the most likely software faults. This paper categorizes historic aerospace software errors to determine
trends of how and where automation is most likely to fail.

Software; Error; Failure; Fault-tolerance

U U U UU 35

STI Help Desk (email: help@sti.nasa.gov)

(443) 757-5802

	1.0 Introduction
	1.1 Motivation
	1.2 Incident Dataset
	1.3 Software Common-Cause Errors
	1.4 Paper Outline

	2.0 Software Incident Failure Categories
	2.1 Erroneous vs. Fail-Silent
	2.2 Reboot Recoverability
	2.3 Absence of Code
	2.4 Error Location
	2.5 Unknown-Unknowns

	3.0 Historic Incidents
	3.1 Incident Descriptions by Year
	3.2 Categorizations of Incidents

	4.0 Results
	4.1 Erroneous vs. Fail-Silent
	4.2 Reboot Recoverability
	4.3 Absence of Code
	4.4 Error Location
	4.5 Unknown-unknowns

	5.0 Conclusions
	6.0 References

