Optical Performance of Reflectivity Control Devices (RCDs) for Solar Sail Applications

David D. Smith¹, Andrew Heaton¹, Saba Ramazani¹, Daniel Tyler¹, Les Johnson¹, Dylan Shiltz², Chris Lapszynski², Chris H. Lee², Nayma Binte Nur², Charles Bachmann², Neset Akozbek³, Dana B. Dement⁴, Samuel Dummer⁵, and Brandon Farmer⁶

¹NASA Marshall Space Flight Center, ²Rochester Institute of Technology, ³US. Army Space and Missile Defense Command, ⁴CFD Research Corporation, ⁵Surface Optics Corporation, ⁶NeXolve

NASA

SPIE Optics & Photonics, August 2023.

Solar Cruiser Mission

- Deployed Area: 1653 m²
- Establish artificial equilibrium sunward of L1
- Propellantless indefinite station keeping
 - Active Mass Translator for Pitch and Yaw
 - Embedded Reflectivity Control Devices (RCDs) for Roll

Polymer Dispersed Liquid Crystals (PDLCs) as RCDs

NeXolve RCDs

 \Rightarrow Diffuse Reflection

On

 \Rightarrow Transparent, Specular Reflection from Al

Solar Sail Roll Control with RCDs

2 States: Clockwise and Counter-Clockwise

Notional Design

CP1 Optical Coefficients

Used slab model for R, T measurements. Inverted to obtain n, k. Could improve by using specular, rather than total, R & T.

Only known n(λ), k(λ) data for CP1!

Agrees with measurement!

NOA65 Optical Coefficients

- Nordland Optical Adhesives (NOA) a flexible epoxy that minimizes strain
- Assumed k = 0. (see caution below).
- Refractive Index (*n*) determined by Cauchy dispersion equation at 25° C:

 Caution: volume and refractive index of epoxies can depend strongly on temperature as well as extent of cure. In addition, many epoxies absorb below 350 nm and above 2200 nm.

ITO Coeffs: Best and Worst Cases

- n and k vary significantly with post-treatment
- Best case: annealed at 500 C on glass; Worst case: as-deposited, no post-treatment
- ITO on CP1 annealed at 250 C (glass transition at 263 C). Expect somewhere between these limits.

ITO Optical Coefficients

- Ion-assisted deposition at 0.3 nm/s in 2.5 x 10⁻⁵
 Torr O₂ background on a 1mm glass substrate.
- Post-annealed at 245 C in air for 1 hour
- Thickness was 106.6 nm
- Low surface resistance (75 Ohms/sq.) with good transparency

Conclusions:

- *n*, *k* found from transmission measurements using a Lorentz-Drude model. Results look like Horiba samples cooled in vacuum.
- Substrate limits accuracy in UV could improve by using fused silica substrate but not much solar flux there.
- Can improve confidence using iterative approach and by fitting reflection if needed in future.

Semiempirical Thin-Film Model

Reflection

- Absorption also deleterious
 - ✓ High quality ITO quality is crucial

Limitation of Thin-Film Model

 R_{s}

80

? Birefringence

60

Index Matching (at
$$\theta = 0$$
): $n_p = n_o \implies$ Specular Reflection

40

0.5

0

0

20

Birefringence Problem:

Why it might not be so important:

- For Solar Cruiser, θ_t not larger than about 40 degrees, so index n_e primarily determined by n_o .
- Incident light is equal mixture of two polarizations.

Why it could be important:

• Rayleigh scattering cross section increases dramatically with angle, especially when index matched

How to know: BRDF Measurements! (vs. AOI)

BRDF Measurements at RIT

- Hyperspectral (1 nm increments, 350 2500 nm)
- For each incident angle (5 AOIs chosen) data taken over entire viewing hemisphere $(\theta = 0.65^{\circ} \text{ zenith})$ and full azimuth ($\phi = 0.360^{\circ}$)

Photon Force Model

Analysis Steps

At each incident angle, α :

- 1) Integrate BRDF $f_r(\theta, \varphi, \lambda)$ over solar spectrum
- 2) Interpolate over zenith (θ = 0 65°) and azimuth (ϕ = 10 360°) angles in experiment
- 3) Add boundary conditions and extrapolate to edge of hemisphere
- 4) Integrate over all solid angle elements in σ to get total hemispherical reflection

$$\tilde{r} = \rho_{\sigma} = \int_{\sigma} f_r(\theta, \varphi) d\Omega$$

5) Define a cone and integrate over solid angle elements within it to obtain the specular reflection

$$\tilde{r}s = \rho_{cone} = \int_{cone} f_r(\theta, \varphi) d\Omega$$

6) Perform integration to obtain the non-Lambertian coefficient

$$B_{f} = \frac{\int_{\sigma} f_{r}(\theta, \varphi) \cos \theta \, d\Omega}{\int_{\sigma} f_{r}(\theta, \varphi) \, d\Omega}$$

projected solid angle: $d\Omega = \cos\theta \, d\omega$

BRDF Results

Birefringence Test

-0.1

0

10

20

30

-o-wave, s-pol

-e-wave, p-pol

-unpolarized

50

50

AOI (deg)

40

60

-BRDF data

60

70

- Reflectance at 632 nm

70

80

90

80

90

Measurements in AvMC Bowden Research Laboratory, Bldg. 7804

RCD Area Required (using coeffs from BRDF)

Conclusions

- First measurement of optical constants of CP1 sail material over solar spectrum
- Extraction of integrated RCD coefficients from fully hemispheric BRDF measurements. Same is needed for solar sail material.
- ITO absorption, Fresnel reflection, and birefringence are not showstoppers.
- RCD optical performance is more than sufficient for solar sail roll control (only ~0.1% of sail area needed)

Acknowledgment

We acknowledge the NASA MSFC SSADCS Team. Solar Cruiser was funded by the NASA SMD Heliophysics Division NNH17ZDA004O-HPTDMO.