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Abstract

Effective deployment of machine-learning (ML) models
could drive a high level of efficiency in aircraft engine
conceptual design. Aero-Engines Al is a user-friendly app that
has been created to deploy trained machine-learning (ML)
models to assess aircraft engine concepts. It was created using
tkinter, a GUI (graphical user interface) module that is built into
the standard Python library. Employing tkinter greatly
facilitates the sharing of ML application as an executable file
which can be run on Windows machines (without the need to
have Python or any library installed). The app gets user input
for a turbofan design, preprocesses the input data, and deploys
trained ML models to predict turbofan thrust specific fuel
consumption (TSFC), engine weight, core size, and
turbomachinery stage-counts. The ML predictive models were
built by employing supervised deep-learning and K-nearest
neighbor regression algorithms to study patterns in an existing
open-source database of production and research turbofan
engines. They were trained, cross-validated, and tested in
Keras, an open-source neural networks API (application
programming interface) written in Python, with TensorFlow
(Google open-source artificial intelligence library) serving as
the backend engine. The smooth deployment of these ML
models using the app shows that Aero-Engines Al is an easy-to-
use and a time-saving tool for aircraft engine design-space
exploration during the conceptual design stage. Current version
of the app focuses on the performance prediction of
conventional turbofans. However, the scope of the app can
easily be easily expanded to include other engine types (such as
turboshaft and hybrid-electric systems) after their ML models
are developed. Overall, the use of a machine-learning app for
aircraft engine concept assessment represents a promising area
of development in aircraft engine conceptual design.

Introduction

More and more organizations are adopting a data-informed
approach to decision-making. With the vast amounts of data
collected and tracked in recent times, machine-learning (ML)
applications are gaining popularity across multiple industries.
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The aircraft engine industry has amassed and stored significant
quantities of data over the years. These big data sets, sourced
from multiple origins such as the database of currently
manufactured engines, ongoing development projects,
previously = completed  development  projects, and
unmanufactured designs, hold tremendous potential as a
knowledge asset for future engine projects.

Designing an aircraft engine is a complex, interdisciplinary
process that requires significant time and effort. Engine
designers encounter a formidable challenge during the
conceptual design phase - how to rapidly evaluate the
performance of a specific engine design given the aircraft's
mission requirements and various design parameters. The
number of potential engine configurations could be vast,
requiring designers to rely on system analysis and simulation to
estimate performance. Consequently, designers must conduct a
comprehensive propulsion system study for each possible
configuration, which can be time-consuming, particularly when
dealing with a large design space.

By leveraging the power of machine learning (ML)
algorithms to learn from the existing engine data sets, it is
possible to develop ML models that can quickly and accurately
assess new aircraft engine concepts, providing valuable insights
and reducing the time and resources required for the engine
concept assessment process. A ML model can identify patterns
and trends that may not be immediately apparent to human
analysts, leading to more informed decision-making and
ultimately resulting in the development of better aircraft engine
concepts. The ability to assess new engine concepts quickly and
accurately can be a competitive advantage in aircraft engine
development.

Previously, the author focused on training/developing the
ML models that allow for quick estimation of engine TSFC,
system weight, and core size during the conceptual design
phase. The development process and methodology for these
models are described in References 1 to 3. Additional ML
models were developed for the turbomachinery stage count
prediction since then, using the same methodology. This paper
zeros in on the deployment of these trained ML models to assess
aircraft engine concepts, via an app. The development process
of the app, Aero-Engines Al, is described in this paper.



Trained machine-learning models
Engine TSFC
Engine weight
Engine core size
Engine fan diameter
Turbomachinery stage counts

Engine fan diameter

User input
Engine design - Aero-Engines Al -
parameters
Turbomachinery stage counts

Figure 1.—Structure of Aero-Engines Al app.
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Engine TSFC
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Engine core size

While the development of ML models is essential for their
applications, the models would only be of value if they are
actively deployed in a production environment where they can
be used to solve practical problems. Thus, effective ML model
deployment is just as important as ML model development. ML
model deployment involves integrating trained ML models,
developed in a R&D environment, into a production
environment. It is a critical step that must be done so an
organization can use the models to solve problems. Seamless
deployment of trained ML models into production is essential
for putting the models to practical use.

Aero-Engines Al, a Windows app, has been created to deploy
the trained ML models for aircraft engine concepts assessment.
It was created using tkinter, a GUI module that is built into the
standard Python library. Employing tkinter greatly facilitates
the sharing of ML application as an executable file which can
be run on Windows machines (without the need to have Python
or any library installed). MS Windows platform was chosen for
the deployment to reduce complexity and for ease of access.
The structure of the app is shown in Figure 1.

The app is user-friendly. It is simple to learn, easy to
navigate, and its use is intuitive enough that it does not require
an instruction manual. The development process of Aero-
Engines Al consists of five steps:

1. Engine data collection, augmentation, and preparation
ML models training

ML models testing and evaluation

App design for ML models deployment

Monitoring and updating

aps o

Engine Data Collection, Augmentation,
and Preparation

Engine Data Collection

Current version of the app has only turbofan assessment
capability (will be expanded to include other engine types such
as turboshaft, hybrid-turbofan, etc., in the future versions). The
basic engine architecture is an axial-compressor turbofan. The
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engine database consists of 145 manufactured (commercial)
engines (Refs. 4 to 10) and 39 engines that were studied
previously in various NASA aeronautics projects. These
commercial engines capture over half-a-century of engine
technology improvements and lessons-learned, which would
minimize the prediction uncertainties of the ML models. The
NASA engine data were the system-study results for various
NASA aeronautics projects (Refs. 11 to 16). The engine
database is shown in Appendix A.

Data Augmentation

Data augmentation is an important technique that is
commonly used in ML to improve the performance and
generalizability of a training model. The process entails
creating additional data points from the existing training data
by applying various transformations and modifications to the
data. Data augmentation increases the diversity and quantity of
training data, improving the model’s performance for its task,
and making it more adaptable to changes in the data. For this
study, the data augmentation was performed by scaling up the
current engines by 10 percent. For example, the sea-level static
(SLS) engine thrust and weight were increased by 10 percent,
while keeping the other operating parameters such as bypass
ratio (BPR), overall pressure ratio (OPR), Mach No., altitude,
and TSFC unchanged, as shown below:

SLS Thrust Alt. TSFC Weight
BPR OPR (Ibs) Mach (f)  (b/he/lb)  (Ibs)
8.44 38.37 79377 0.85 35000 .5526 18949
8.44 3837 87315 0.85 35000 5526 20844

With the data augmentation, the size of the database becomes:
Turbofan type No. of engines

2-spool direct-drive 273
2-spool geared 89
3-spool direct-drive 50

Dataset Preparation

The next step was to prepare the data that would be used to
train the ML models. It involved cleaning and preprocessing the
data to remove errors or inconsistencies and organizing the data
into a format that could be used for the training. The engine
dataset was normalized and shuffled randomly (using pseudo-
random number generator) and divided into two datasets: the
training set and the testing set. The training set was used to train,
cross-validate, and build predictive models. The testing set
consisted of the remaining engines that were unseen by the
training models and was retained for the final evaluation of the
predictive analytics. The dataset preparation is described in
detail in References 1 to 3.



ML Models Training

Once the data was ready, the next step was to select the
appropriate algorithms that would be used to train the ML
models. This can involve choosing from a variety of machine
learning algorithms and tuning the parameters and
hyperparameters of the models to optimize their performance
on the specific problem or task.

As reported in References 1 to 3, the ML models for TSFC,
engine weight, and core size predictions were constructed using
supervised deep-learning and K-nearest neighbor algorithms
(Ref. 17), which analyzed patterns in an open-source database
of research and production turbofan engines. Additional ML
models were developed since then for the turbomachinery stage
count prediction, using K-nearest neighbor regression
algorithm. These models were trained, cross-validated, and
tested using Keras, an open-source neural networks API written
in Python, with TensorFlow as the backend engine. These
models were trained and deployed in Keras (Ref. 18), an open-
source neural networks APl written in Python, with TensorFlow
(Ref. 19) serving as the backend engine. Keras provided the
building blocks for developing the deep-learning models, and
TensorFlow handled the tensor computations and
manipulations.

Depending on the ML model, either L2 or Dropout
regularization technique (where neuron outputs are dropped out
randomly) (Refs. 20 and 21) was applied to prevent the DNN
from overfitting the training data. A grid-search routine was
used to determine the regularization parameter, dropout rate,
number of epochs, batch size, and the number of ‘neurons’ in
the hidden layers that give the lowest training error. The Adam
optimization algorithm (Ref. 22) was used to update the
network weights during each epoch.

Totally, nine ML models were trained for engine TSFC,
weight, core size (last stage HPC blade height), fan diameter,
and turbomachinery stage count predictions, respectively. The
training and cross validation of these ML models are described
in detail in References 1 to 3.

ML Models Testing

After the ML models were trained, the next step was to test
and evaluate their performances. The trained ML models were
evaluated using a separate set of data, the testing dataset (that
was unseen by the training models). The testing procedures of
these ML models are described in detail in References 1 to 3.
The results showed that these ML models are an effective tool
for predicting engine TSFC, engine weight, core size, and
turbomachinery stage counts. Their performances were
determined, in terms of the means and standard deviations, as
shown in Table I.
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TABLE |.—ML MODELS PERFORMANCE

ML model Mean Uncertainty
accuracy, 95% confidence interval
percent (2 standard deviations)
TSFC 98 4%
Weight 95 5%
Core size 98 4%
Fan diameter 98 5%
LPC stage count 98 14% (or 1 stage)?
HPC stage count 98 8% (or 1 stage)?
HPT stage count 96 39% (or 1 stage)?
LPT stage count 98 18% (or 1 stage)?
IPT stage count 90 44% (or 1 stage)?

@Based on the current database. 1-stage fan is assumed for all the
engines.

APP Design for ML Models Deployment

After the ML models were developed, trained, and tested,
they were integrated into the user-friendly app, Aero-Engines
Al, that allows for the easy and intuitive assessment of engine
concepts. Aero-Engines Al is a Windows app that deploys
trained ML models to assess aircraft engine concepts. The app
was created using tkinter (Ref. 23), a GUI (graphical user
interface) module that is built into the standard Python library.
And pyinstaller (Ref. 24), a Python package, was used to
convert the python scripts into an executable file that can be run
on Windows machines. The conversion greatly facilitates the
sharing of ML applications with other Windows users (who do
not need to have Python, or any library installed in their
computers).

The app design aimed to provide a user-friendly experience
with a simple point-and-click feature. The input page consists
of three elements:

1. adrop-down menu to select options
2. dataentry fields
3. a ‘PREDICT’ button to run the app

These three elements are shown in Figure 2.

The drop-down menu allows users to select different options
for engine architectures, configurations, and timeframe. When a
user selects a tab, the drop-down menu will display the options
that are associated with that tab. Based on the user's selection, the
app would use the trained ML models to analyze relevant data
and make predictions on engine performance, in terms of engine
TSFC, weight, core size, and turbomachinery stage counts.



The drop-down menu consists of the following tabs:

Engine type—current version of the app only has the
conventional turbofans option. Turboshaft and hybrid-electric
turbofan are being considered for the future app versions. The
engine-type tab is shown in Figure 3.

Drive system—offers two options: direct-drive or geared. This
tab is shown in Figure 4.

Engine configuration—offers two options: 2-spool or 3-spool
design. This tab is shown in Figure 5.

Engine timeframe—engine certified year. Users can pick a
calendar year or NASA timeframe (N+1, N+2, etc.). This tab is
shown in Figure 6.

Single engine or Multiple engine designs—offers two options:
single engine design or multiple-engine designs analyses. This
tab is shown in Figure 7. If “multiple engine designs” is
selected, the user inputs for bypass ratio, overall pressure ratio,
and engine thrust would be in ranges, as shown in Figure 8.

The data entry fields are provided for the users to input the
engine design parameters. The default entries for the Mach
number and cruise altitude are provided (0.8 and 35000 ft,
respectively), as shown in Figure 2. The users can override
these numbers.

App execution—to run the app, one simply clicks the
‘PREDICT’ button.

Input changes—users can return to the input page and modify
the inputs by clicking the ‘BACK’ button on the output page.
This button is shown in Figure 9.

Example Problems

e Single engine design:
o input parameters are shown in Figure 7
o outputs are shown in Figure 9

o Multiple engine designs:
o input parameters are shown in Figure 8
o output spreadsheet is shown in Figure 10

Monitoring and Updating

Monitoring and updates are important aspects of ML app
development, as they help ensure that the app continues to
perform well and provide accurate predictions or
recommendations over time. To ensure optimal performance of
the current ML models, it’s crucial to keep track of the changing
engine data and its effect on their overall functionality. While
the commercial engine data in the current database remain
static, the NASA engine data are obtained through research on
aeronautics studies for three generations of aircraft - near, mid,
and far term. Each generation has associated goals for
reductions in noise, emissions, fuel burn, and field length
relative to present-day aircrafts. These aircraft generations are
labeled as 'N+1', 'N+2', and 'N+3', respectively. The research
for 'N+2' and 'N+3' is aimed at enabling new vehicle
configurations that meet NASA’s ambitious technology
objectives. As the NASA engine data could be revised over
time, the ML models must be updated periodically to consider
the impact of such updates.

Turbofan — Direct-Drive — 2-Spool — Engine Timeframe — | Single Engine Design —

PREDICT

Figure 2.—User input page for single-engine design.
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Direct-Drive — 2-Spool — Engine Timeframe — | Single Engine Design —

Turbofan

Figure 3.—Engine type option.

2-Spool — Engine Timeframe — | Single Engine Design —
Direct-Drive
Geared

PREDICT

Figure 4.—Direct-drive or geared turbofan option.

Turbofan — Direct-Drive -] 2-Spool — [Engine Timeframe — | Single Engine Design —
2-Spool
3-Spool

PREDICT

Figure 5.—Engine configuration options.
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Turbofan — Direct-Drive — 2-Spool - Engine Timeframe —| Single Engine Design —

Engine Timeframe
Year 2020
Year 2025
Year 2030
Year 2035
Year 2040
Year 2045
Year 2050
NASA N+1
NASA N+2
NASA N+3
NASA N+4

Figure 6.—Engine timeframe option.

Turbofan — Direct-Drive — 2-Spool — Year 2020  —| Single Engine Design —
single Engine Design
Multiple Engine Designs

PREDICT

Figure 7.—Single-engine or multiple-engine design option.

Turbofan — Geared -Spool — Year 2035 —| Multiple Engine Designs —

PREDICT

Figure 8.—Input page for multiple-engine designs.
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Figure 9.—Example output of a single-engine design.
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Figure 10.—Example spreadsheet output of multiple-engine designs.
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Summary

Aero-Engines Al, a user-friendly Windows app, has been
created using tkinter, a GUI module that is built into the
standard Python library. This app is designed to deploy trained
ML models to assess various aircraft engine concepts. These
ML models were trained, cross-validated, and tested in Keras,
an open-source neural networks API written in Python, with
TensorFlow serving as the backend engine. The assessment
results are presented in terms of engine TSFC, weight, core size,
and turbomachinery stage counts. The seamless deployment of
these ML models through the app demonstrates that Aero-
Engines Al is an efficient and easy-to-use tool for exploring the
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design space of aircraft engines during the conceptual design
stage. The current version of the app focuses on predicting the
performance of conventional turbofans. However, the app’s
scope can be easily expanded to include other engine types
(such as turboshaft and hybrid-electric systems), after ML
models are developed for them.

The success of the ML application will depend on the quality
and quantity of data available for training, as well as the
deployment of the ML model itself. Careful consideration of
these factors is crucial to ensure the optimal performance of the
ML system. Overall, the use of a machine-learning app for
aircraft engine concept assessment represents a promising area
of development in aircraft engine conceptual design.






Appendix A.—Engine Database

Thrust, Cruise Cruise Year System  No.of Cruise TSFC Propulsion System

Org. Engine Model BPR (5L5) OPR(5LS) lbs(515] Mach Alt. kft. certified Type Spools Ib/1bf.hr Weight, Ibs
CFM Int'l CFM56-2C1 6.0 23.50 22000 0.80 35 1979 oo 2 0.651 7159
CEM Int'l CFMS56-3B1 51 22.40 20000 0.20 35 19584 oo 2 0.655 6389
CEM Int'l CFM56-3B2 51 2430 22000 0.20 35 19584 oo 2 0.655 6607
CFM Int'l CFM56-3C1 51 2550 23500 0.80 35 1986 oo 2 0.667 5766
CEM Int'l CFMS5E-5A1 6.0 26.60 25000 0.20 35 1987 oo 2 0.596 7770
CEM Int'l CFMS5SE-5A3 6.0 27.80 26500 0.20 35 1990 oo 2 0.596 7850
CFM Int'l CFM56-5A4 6.0 23.80 22000 0.80 35 1996 oo 2 0.5596 7375
CFM Int'l CFMS56-5A5 6.0 2510 23500 0.80 35 1996 oo 2 0.556 7534
CEM Int'l CFMS5SE-5B1 57 30.20 30000 0.20 35 1994 oo 2 0.600 3366
CFM Int'l CFM56-5B2 5.6 31.30 31000 0.80 35 1993 oo 2 0.600 8479
CFM Int'l CFM56-5B3 5.4 32.60 33300 0.80 35 1997 oo 2 0.600 8734
CEM Int'l CFM56-5B4 59 27.10 27000 0.20 35 1994 oo 2 0.600 3036
CFM Int'l CFMS6E-5B5/P 59 23.33 22000 0.80 35 1996 oo 2 0.600 7509
CFM Int'l CFMSE-5B6/P 6.0 2464 23500 0.80 35 19495 oo 2 0.600 7659
CEM Int'l CFM5SB-5C2 6.8 28.80 31200 0.20 35 1991 oo 2 0.545 3796
CFM Int'l CFMS56-5C3 6.7 2990 32500 0.80 35 1994 oo 2 0.567 9122
CFM Int'l CFM56-5C4 6.6 31.15 34000 0.80 35 1994 oo 2 0.567 9285
CFM Int'l CFM56-7B20 5.4 2261 20600 0.80 35 1996 oo 2 0.603 5963
CFM Int'l CFM56-7B22 53 24.41 22700 0.80 35 1996 oo 2 0.603 7194
CFM Int'l CFM56-7B24 52 2578 24200 0.80 35 1996 oo 2 0.603 7360
CFM Int'l CFMS56-7B26 51 2761 26300 0.80 35 1996 oo 2 0.603 7602
CFM Int'l CFMS56-7B27 5.0 28.63 27300 0.80 35 1996 oo 2 0.603 7872
CFM Int'l LEAP-1AZE 111 33.40 27112 078 35 2015 oo 2 0.536 8840
CFM Int'l LEAP-1A3S 10.7 38.60 32170 078 35 2015 oo 2 0.536 9401
CFM Int'l LEAP-1B25 34 38.40 26797 0.79 35 2016 [5]8] 2 0.536 7778
CFM Int'l LEAP-1B27 85 35990 28034 0.79 35 2016 oo 2 0.536 78598
CFM Int'l LEAP-1B28 8.6 41.50 29315 0.79 35 2016 oo 2 0.536 8024

GE CFE-60 59 2470 40000 0.85 35 1970 [5]8] 2 0.646 11749
GE CFe-6D1 59 2470 41500 0.85 35 1971 oo 2 0.646 11895
GE CFe-6D1A 59 25.40 41500 0.85 35 1971 oo 2 0.646 11895
GE CFG-45A2 43 2590 46500 0.85 35 1573 [5]8] 2 0.630 12927
GE CFe-50C 4.3 28.80 51000 0.85 35 1975 oo 2 0.657 13323
GE CFE-50C1 4.3 2980 52500 0.85 35 1975 oo 2 0.657 13467
GE CFE-50C2 43 2844 52500 0.85 35 1578 [5]8] 2 0.630 13467
GE CFE-50C28 4.3 29.06 54000 0.85 35 1979 oo 2 0.630 13611
GE CF&-50E 4.3 28.44 52500 0.85 35 1973 oo 2 0.657 13505
GE CF&-50E2 43 25.80 52500 0.85 35 1573 [5]8] 2 0.630 13505
GE CFE-80A 5.0 29.00 48000 0.80 35 1981 oo 2 0.623 12883
GE CFE-B0A2 5.0 30.10 50000 0.80 35 1981 oo 2 0623 13076
GE CFE5-B0A3 5.0 30.10 50000 0.80 35 1581 [5]8] 2 0.623 13069
GE CFB-80C2A1 5.1 30.96 59000 0.80 35 1985 oo 2 0.576 14782
GE CFB-80C2A2 5.1 28.00 52460 0.80 35 1986 oo 2 0.578 14034
GE CFG-80C2A3 51 3164 58950 0.80 35 1988 [5]8] 2 0.576 14776
GE CFB-80C2A5 5.1 31.58 60100 0.80 35 1988 oo 2 0.578 14907
GE CFB-80C2A8 5.1 31.00 59000 0.80 35 1996 oo 2 0.602 14782
GE CFG6-80C2B1 51 30.08 56700 0.80 35 1987 [5]8] 2 0.576 14529
GE CFE-80C2B1F 5.1 30.13 57160 0.80 35 1985 oo 2 0.564 14628
GE CFE-80C2B2 5.1 27.74 51580 0.80 35 1987 oo 2 0.576 14039
GE CFE-80C2B4 5.1 30.36 57180 0.80 35 1987 oo 2 0.550 14575
GE CFE-80C2B6 5.1 31.56 60070 0.80 35 1987 oo 2 0.602 14851
GE CFE-80E1AL 5.1 32.46 67500 0.80 35 1993 oo 2 0.562 14844
GE CFE-B0E1A2 5.1 33.10 63240 0.80 35 1993 oo 2 0.562 14844
GE CFE-B0ELA3 5.1 35.70 68520 0.80 35 2001 oo 2 0.562 14844
GE CFE-80E1LA4 5.1 34.50 66870 0.80 35 1997 oo 2 0.562 14844
GE CF34-10A 5.4 26.50 13290 074 37 2010 oo 2 0.650 5453
GE CF34-10E 5.1 27.30 18820 074 37 2002 oo 2 0.665 5598
GE CF34-3A 6.3 19.70 9220 074 37 1986 oo 2 0.704 2845
GE CF34-8C1 5.1 23.03 126570 074 37 1995 oo 2 0.664 3988
GE CF34-8C5 51 23.09 13358 074 37 2002 oo 2 0.680 3935
GE CF34-8ESA2 5.1 24.82 14500 074 37 2002 oo 2 0.680 4125
GE GESO-76B 8.6 35.45 79554 0.80 35 1995 oo 2 0.545 20830

System type: DD = direct-drive system
G = geared system
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Appendix A.—Continued

Thrust,lbs Cruise CruiseAlt. Year System No.of CruiseTSEC Propulsion System

Org. Engine Model BPR (5LS) OPR(5L5) SLS Mach kft. certified Type Spools 1b/1bf.hr Weight, lbs
GE GESO-85B 3.4 38.37 87315 0.80 35 1995 oo 2 0.553 21656
GE GESO-90B 5.4 3970 94000 0.80 35 1997 oo 2 0.545 22280
GE GESC-54B 33 4053 57300 0.80 35 2000 oo 2 0.545 23552
GE GE90-1158 7.1 4224 115529 0.80 35 2003 oo 2 0.550 25876
GE GEnx-1B54 9.4 35.20 57394 0.85 40 2008 oo 2 0514 16594
GE GEnx-1B58 9.2 37.20 609591 0.85 40 2008 oo 2 0.514 16952
GE GEnx-1B64 9.0 40.60 66993 0.85 40 2008 oo 2 0.514 17537
GE GEnx-1B70 3.3 43.50 72299 0.85 40 2008 oo 2 0514 18054
PEW IT8D-7 11 1582 14000 0.80 35 1966 oo 2 0.796 4508
PEW IT8D-9 1.0 15.88 14500 0.80 35 1967 oo 2 0.807 4646
PEW ITED-17AR 10 17.28 16400 0.80 35 1882 oo 2 0.825 4910
PEW ITBD-17R 10 18.24 17400 0.80 35 15876 oo 2 0.825 5009
PEW ITED-209 1.8 18.30 18500 0.80 35 1979 oo 2 0.724 5905
PEW IT8D-219 1.7 20.27 21000 0.80 35 1885 oo 2 0.737 6266
PEW ITSD-3A 5.2 2150 44300 0.85 35 1969 oo 2 0624 12794
PEW ITap-7 5.2 2220 46300 0.85 35 1871 oo 2 0.620 13102
PEW ITSD-7A 51 2030 468950 0.85 35 1972 oD 2 0.625 13169
PEW ITaD-7F 51 22.80 48000 0.85 35 1974 oo 2 0.631 13270
PEW 1TaD-71 51 23.50 50000 0.85 35 1976 oo 2 0.631 13468
PEW ITsp-7Q 49 2450 53000 0.85 35 1578 oo 2 0.631 14055
PEW ITSD-7R4D 5.0 23.40 48000 0.85 35 1978 oo 2 0.615 13553
PEW ITSD-7R4E 50 2420 50000 0.85 35 1882 oo 2 0.620 13565
PEW ITSD-7R4G2 43 26.30 54750 0.85 35 1582 oo 2 0.639 14220
PEW ITSD-7R4H1 4.8 2870 56000 0.85 35 1982 oo 2 0.628 14340
PEW ITsD-20 5.2 20.30 46300 0.85 35 1872 oo 2 0624 13087
PEW ITSD-704 49 2450 53000 0.85 35 1574 oo 2 0.631 135950
PEW 1127G 12.3 3170 27000 0.78 35 2014 G 2 0.530 86300
PEW 1518G 116 32.30 19000 0.78 35 2013 G 2 0.544 4800
PEW 2037 6.0 26.90 37600 0.80 35 1983 oo 2 0.563 106807
PEW 2040 5.5 29.40 40900 0.80 35 18987 oo 2 0.563 10972
PEW 2043 5.3 3180 42600 0.80 35 1955 oo 2 0.563 111559
PEW 4052 5.0 26.32 52200 0.85 35 1987 oo 2 0.560 14027
PEW 4056 4.7 28.30 56750 0.85 35 1986 oo 2 0.560 14450
PEW 4060 45 3240 60000 0.85 35 1988 oo 2 0.560 14819
PEW 4074 6.8 32.20 74500 0.85 35 1994 oo 2 0.560 19457
PEW 4077 6.7 33.20 77000 0.85 35 1994 oD 2 0.560 19850
PEW 4084 6.4 36.20 84000 0.85 35 1594 oo 2 0.560 20549
PEW 4000 6.1 39.16 90200 0.85 35 1996 oo 2 0.560 21522
PEW 4098 5.8 41.37 95340 0.85 35 1998 oD 2 0.560 22025
PEW 4152 49 26890 52200 0.85 35 1986 oo 2 0.560 14036
PEW 4156 4.7 2930 56750 0.85 35 1986 oo 2 0.560 14490
PEW 4164 5.2 31.24 64000 0.85 35 1953 oo 2 0.560 16886
PEW 4168-10 49 33.10 68600 0.85 35 2008 oo 2 0.560 17345
PEW 4460 4.7 30.68 60000 0.85 35 1988 oo 2 0.560 14802
PEW 4462 46 31581 63300 0.85 35 1992 oo 2 0.560 15126
PEW 61224 48 2570 22100 0.80 35 2004 oo 2 0.540 6311
Rolls-Royce RB211-228B 47 25.00 41000 0.85 35 1873 oD 3 0.655 12008
Rolls-Royce RB211-524B 45 2840 45100 0.85 35 1573 oo 3 0.633 13270
Rolls-Raoyce RB211-52484-02 4.4 29.00 50000 0.85 35 1981 oo 3 0.603 13309
Rolls-Royce RB211-524C2 45 2910 51500 0.85 35 1879 oD 3 0.656 13370
Rolls-Royce RB211-52404 43 2870 53000 0.85 35 15983 oo 3 0.631 13606
Rolls-Royce RB211-524G 4.3 32.10 58000 0.85 35 1989 oo 3 0.582 14040
Rolls-Royce RB211-524H 42 3400 60600 0.85 35 159859 oo 3 0.572 14186
Rolls-Royee RB211-535C 45 2150 37400 0.80 35 1981 oo 3 0.646 10338
Rolls-Royce RB211-535E4 41 25.40 40100 0.80 35 1983 oo 3 0.598 10648
Rolls-Royce AE3007A 5.2 18.08 7580 0.78 32 1997 oo 2 0.625 2332
Rolls-Royee BR710-A1-10 42 2423 14750 0.80 35 1996 oo 2 0.630 4640
Rolls-Royce BR715-A1-30 4.7 2898 18920 0.76 35 1998 oo 2 0.620 5155
Rolls-Royce BR715-C1-30 46 32.15 21430 0.76 35 1998 oo 2 0.620 6155
Rolls-Raoyce Trent 1000-A 9.5 41.00 70000 0.85 35 2007 oo 3 0.506 18056
Rolls-Royce Trent553-61 7.5 35.19 56620 0.82 35 2000 oo 3 0.539 14843

System type: DD = direct-drive system
G = geared system
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Orge.
Rolls-Royce
Rolls-Royee
Rolls-Royce
Rolls-Royce
Rolls-Royee
Rolls-Royee
Rolls-Royce
Rolls-Royce
Rolls-Royee
Rolls-Royce
Rolls-Royce
Rolls-Royce
Rolls-Royce
RollsRoyee

IAE

IAE

IAE

IAE

IAE

IAE

IAE

IAE
MASA SFW
MASA AATT
MNASA AATT
MASA AATT
MASA AATT
NASA AATT
MNASA ERA
MNASA ERA
MNASA ERA
NASA ERA
MNASA ERA
MNASA ERA
MASA ERA
MNASA ERA
MNASA ERA
MNASA ERA
NASA ERA
MNASA ERA
MNASA ERA
MNASA ERA
MNASA ERA
MNASA ERA
MNASA ERA
MNASA ERA
MASA SFW
MASA SFW
MASA SFW
MASA SFW
MASA SFW
MASA SFW
MASA SFW
MASA SFW
MASA SFW
MASA SFW
MASA SFW
MASA SFW
MASA SFW
MASA SFW
MASA SFW

Engine Model
Trent556-61
Trent 7000-72
Trent 768
Trent 772
Trent 772B-60
Trent 875
Trent 877
Trent 884
Trent890-17
Trent 892
Trent 895
Trent970-84
Trent XWB-84
Trent XWB-97
VZ2500-A1
W2522-A5
W2524-A5
WZ525-D5
VZ527-A5
V2528-D5
V2530-A5
WZ533-A5
UHB
N3CC-2016
N3CC-2017
N+3
SmallCore geared
M3CC-2018
Large-DD-2015
Large-DD-2015-HWB-V1
Large-DD-2015-HWB-V2

Large-Geared-2015-HWB-V3
Large-Geared-2015-HWB-V2

Large-Geared-2015-HWB
Large-Geared-2015
Medium-Geared-2015

Medium-Geared-2015-V2

Small-DD-2015
Small-DD-2015V2
Small-Geared-2015
Small-Geared-2015-V2
Large-DD-2014
Large-Geared-2014
Medium-Geared-2014
Small-DD-2014
Small-Geared-2014
SA-FPR1.4-DD-2D
SA-FPR1.5-DD-2D
SA-FPR1.6-DD-20v
SA-FPR1.7-DD-2Z0v
SA-FPR1.3-GR-HW-2D
SA-FPRL.4-GR-HW-2D
5A-FPR1.5-GR-HW-2D
SA-FPR1.B-GR-HW-2D
SA-FPR1.3-GR-HW-2E
5A-FPR1.4-GR-HW-2ZE
5A-FPR1.5-GR-HW-2E
SA-FPR1.6-GR-HW-2E
SA-FPRL.7-DD-LW-2E
Simulated Genx
Simulated GESO-1108

Appendix A.—Concluded

BPR (5L5] OPR(5LS)

75 36.70
9.0 45 40
52 34.00
5.0 35.80
45 36.80
61 35.42
5.0 36.30
559 38.96
6.2 40,70
57 41.38
57 41.52
85 38.00
9.0 4110
8.0 43.60
53 2980
49 2570
438 26.90
4.8 27.20
4.8 27.20
47 30.00
48 32.00
45 33.44
188 447
176 316
173 369
275 366
255 388
216 36.7
16.6 437
144 489
137 498
200 472
200 471
183 472
247 39.9
239 384
248 385
99 287
100 287
270 246
274 248
16.2 47.4
214 472
224 447
9.8 287
247 2932
13.4 331
150 338
127 344
109 35

241 326
175 33.8
146 335
124 34

260 323
180 338
121 354
99 36.3
85 376
9.2 414
7.2 42

System type: DD = direct-drive system
G = geared system
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Thrust, Ibs
SLS
56620
73700
68400
71100
72000
79100
81300
87700
91300
932500
52500
76100
85200
98200
25000
23043
24518
25000
25000
28000
29900
31600
36833
18830
21515
28620
37659
21662
71752
B7183
67233
56172
67423
67386
74149
45825
45799
14647
14686
21535
21553
80071
87456
51395
15566
24887
23813
23370
23046
22734
26343
248917
23369
23934
28358
268575
24686
24362
23889
63800
110000

Cruise Cruise Alt.

Mach
0.82
0.85
0.82
0.82
0.82
0.83
0.83
0.83
0.83
0.83
0.83
0.85
0.85
0.85
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
070
078
0.80
0.80
0.79
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.85
0.85

13

kft,
35
35
35
33
35
35
35
35
35
35
35
35
35
35
35
35
35
33
35
35
35
35
35
35
35
35
35
37.7
35
35
35
35
35
35
35
35
35
35
35
35
35
33
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35

Year
certified
2000
2018
1994
1554
1998
1995
1995
1555
1955
1997
1555
2006
2013
2017
1588
1996
1996
1592
1992
1992
15582
1556
2015
2040
2040
2040
2040
2040
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2008
2003

System
Type
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

[ I ' I S I Y I Y I I )

o Qg
o oo

MNo.of
Spools

[T T R R T T T T T R R T T T T T e T o e R R R T O T O e T O T T T R T T R T T T ]

Cruise TSFC  Propulsion System
Ib/lbf.hr Weight, lbs
0.539 14843
0.508 18864
0.565 16839
0.565 17105
0.565 17215
0.560 19430
0.560 19650
0.560 20284
0.560 206802
0.560 20762
0.560 20801
0.518 15379
0.488 21163
0.488 22771
0.580 7300
0.575 7500
0.575 7597
0.575 7900
0.575 7651
0.575 3140
0.575 8219
0.575 8420
0.477 9300
0.461 5343
0.485 6012
0.464 9354
0.460 12152
0.479 6007
0.450 21359
0.485 18768
0.487 18832
0.465 15551
0.464 18823
0.466 18823
0.458 23023
0.466 13631
0.465 13668
0.526 3815
0.525 3812
0.485 6203
0.483 6232
0.469 22534
0.458 23248
0.467 12645
0.519 3833
0.486 5913
0.479 10563
0.496 7965
0.510 6592
0.525 6099
0.470 8736
0.486 7401
0.502 6626
0.517 6252
0.473 8550
0.435 7123
0.515 6305
0.534 5896
0.547 5561
0.523 17158
0.549 23728

SFW—Subsonic Fixed Wing project

ERA—Environmentally Responsible Aviation project
AATT—Advanced Air Transport Technology project
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