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Aero-Engines AI—A Machine-Learning App for  
Aircraft Engine Concepts Assessment 

 
Michael T. Tong 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

 
Abstract 

Effective deployment of machine-learning (ML) models 
could drive a high level of efficiency in aircraft engine 
conceptual design. Aero-Engines AI is a user-friendly app that 
has been created to deploy trained machine-learning (ML) 
models to assess aircraft engine concepts. It was created using 
tkinter, a GUI (graphical user interface) module that is built into 
the standard Python library. Employing tkinter greatly 
facilitates the sharing of ML application as an executable file 
which can be run on Windows machines (without the need to 
have Python or any library installed). The app gets user input 
for a turbofan design, preprocesses the input data, and deploys 
trained ML models to predict turbofan thrust specific fuel 
consumption (TSFC), engine weight, core size, and 
turbomachinery stage-counts. The ML predictive models were 
built by employing supervised deep-learning and K-nearest 
neighbor regression algorithms to study patterns in an existing 
open-source database of production and research turbofan 
engines. They were trained, cross-validated, and tested in 
Keras, an open-source neural networks API (application 
programming interface) written in Python, with TensorFlow 
(Google open-source artificial intelligence library) serving as 
the backend engine. The smooth deployment of these ML 
models using the app shows that Aero-Engines AI is an easy-to-
use and a time-saving tool for aircraft engine design-space 
exploration during the conceptual design stage. Current version 
of the app focuses on the performance prediction of 
conventional turbofans. However, the scope of the app can 
easily be easily expanded to include other engine types (such as 
turboshaft and hybrid-electric systems) after their ML models 
are developed. Overall, the use of a machine-learning app for 
aircraft engine concept assessment represents a promising area 
of development in aircraft engine conceptual design. 

Introduction 
More and more organizations are adopting a data-informed 

approach to decision-making. With the vast amounts of data 
collected and tracked in recent times, machine-learning (ML) 
applications are gaining popularity across multiple industries. 

The aircraft engine industry has amassed and stored significant 
quantities of data over the years. These big data sets, sourced 
from multiple origins such as the database of currently 
manufactured engines, ongoing development projects, 
previously completed development projects, and 
unmanufactured designs, hold tremendous potential as a 
knowledge asset for future engine projects. 

Designing an aircraft engine is a complex, interdisciplinary 
process that requires significant time and effort. Engine 
designers encounter a formidable challenge during the 
conceptual design phase - how to rapidly evaluate the 
performance of a specific engine design given the aircraft's 
mission requirements and various design parameters. The 
number of potential engine configurations could be vast, 
requiring designers to rely on system analysis and simulation to 
estimate performance. Consequently, designers must conduct a 
comprehensive propulsion system study for each possible 
configuration, which can be time-consuming, particularly when 
dealing with a large design space. 

By leveraging the power of machine learning (ML) 
algorithms to learn from the existing engine data sets, it is 
possible to develop ML models that can quickly and accurately 
assess new aircraft engine concepts, providing valuable insights 
and reducing the time and resources required for the engine 
concept assessment process. A ML model can identify patterns 
and trends that may not be immediately apparent to human 
analysts, leading to more informed decision-making and 
ultimately resulting in the development of better aircraft engine 
concepts. The ability to assess new engine concepts quickly and 
accurately can be a competitive advantage in aircraft engine 
development. 

Previously, the author focused on training/developing the 
ML models that allow for quick estimation of engine TSFC, 
system weight, and core size during the conceptual design 
phase. The development process and methodology for these 
models are described in References 1 to 3. Additional ML 
models were developed for the turbomachinery stage count 
prediction since then, using the same methodology. This paper 
zeros in on the deployment of these trained ML models to assess 
aircraft engine concepts, via an app. The development process 
of the app, Aero-Engines AI, is described in this paper. 
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Figure 1.—Structure of Aero-Engines AI app. 

 
While the development of ML models is essential for their 

applications, the models would only be of value if they are 
actively deployed in a production environment where they can 
be used to solve practical problems. Thus, effective ML model 
deployment is just as important as ML model development. ML 
model deployment involves integrating trained ML models, 
developed in a R&D environment, into a production 
environment. It is a critical step that must be done so an 
organization can use the models to solve problems. Seamless 
deployment of trained ML models into production is essential 
for putting the models to practical use.  

Aero-Engines AI, a Windows app, has been created to deploy 
the trained ML models for aircraft engine concepts assessment. 
It was created using tkinter, a GUI module that is built into the 
standard Python library. Employing tkinter greatly facilitates 
the sharing of ML application as an executable file which can 
be run on Windows machines (without the need to have Python 
or any library installed). MS Windows platform was chosen for 
the deployment to reduce complexity and for ease of access. 
The structure of the app is shown in Figure 1. 

The app is user-friendly. It is simple to learn, easy to 
navigate, and its use is intuitive enough that it does not require 
an instruction manual. The development process of Aero-
Engines AI consists of five steps: 
 

1. Engine data collection, augmentation, and preparation 
2. ML models training 
3. ML models testing and evaluation 
4. App design for ML models deployment 
5. Monitoring and updating 

Engine Data Collection, Augmentation, 
and Preparation 
Engine Data Collection 

Current version of the app has only turbofan assessment 
capability (will be expanded to include other engine types such 
as turboshaft, hybrid-turbofan, etc., in the future versions). The 
basic engine architecture is an axial-compressor turbofan. The 
 

engine database consists of 145 manufactured (commercial) 
engines (Refs. 4 to 10) and 39 engines that were studied 
previously in various NASA aeronautics projects. These 
commercial engines capture over half-a-century of engine 
technology improvements and lessons-learned, which would 
minimize the prediction uncertainties of the ML models. The 
NASA engine data were the system-study results for various 
NASA aeronautics projects (Refs. 11 to 16). The engine 
database is shown in Appendix A. 

Data Augmentation 

Data augmentation is an important technique that is 
commonly used in ML to improve the performance and 
generalizability of a training model. The process entails 
creating additional data points from the existing training data 
by applying various transformations and modifications to the 
data. Data augmentation increases the diversity and quantity of 
training data, improving the model’s performance for its task, 
and making it more adaptable to changes in the data. For this 
study, the data augmentation was performed by scaling up the 
current engines by 10 percent. For example, the sea-level static 
(SLS) engine thrust and weight were increased by 10 percent, 
while keeping the other operating parameters such as bypass 
ratio (BPR), overall pressure ratio (OPR), Mach No., altitude, 
and TSFC unchanged, as shown below: 
 

 
 

With the data augmentation, the size of the database becomes: 

Turbofan type    No. of engines 
2-spool direct-drive     273 
2-spool geared        89 
3-spool direct-drive       50 

Dataset Preparation 

The next step was to prepare the data that would be used to 
train the ML models. It involved cleaning and preprocessing the 
data to remove errors or inconsistencies and organizing the data 
into a format that could be used for the training. The engine 
dataset was normalized and shuffled randomly (using pseudo-
random number generator) and divided into two datasets: the 
training set and the testing set. The training set was used to train, 
cross-validate, and build predictive models. The testing set 
consisted of the remaining engines that were unseen by the 
training models and was retained for the final evaluation of the 
predictive analytics. The dataset preparation is described in 
detail in References 1 to 3. 
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ML Models Training 
Once the data was ready, the next step was to select the 

appropriate algorithms that would be used to train the ML 
models. This can involve choosing from a variety of machine 
learning algorithms and tuning the parameters and 
hyperparameters of the models to optimize their performance 
on the specific problem or task. 

As reported in References 1 to 3, the ML models for TSFC, 
engine weight, and core size predictions were constructed using 
supervised deep-learning and K-nearest neighbor algorithms 
(Ref. 17), which analyzed patterns in an open-source database 
of research and production turbofan engines. Additional ML 
models were developed since then for the turbomachinery stage 
count prediction, using K-nearest neighbor regression 
algorithm. These models were trained, cross-validated, and 
tested using Keras, an open-source neural networks API written 
in Python, with TensorFlow as the backend engine. These 
models were trained and deployed in Keras (Ref. 18), an open-
source neural networks API written in Python, with TensorFlow 
(Ref. 19) serving as the backend engine. Keras provided the 
building blocks for developing the deep-learning models, and 
TensorFlow handled the tensor computations and 
manipulations. 

Depending on the ML model, either L2 or Dropout 
regularization technique (where neuron outputs are dropped out 
randomly) (Refs. 20 and 21) was applied to prevent the DNN 
from overfitting the training data. A grid-search routine was 
used to determine the regularization parameter, dropout rate, 
number of epochs, batch size, and the number of ‘neurons’ in 
the hidden layers that give the lowest training error. The Adam 
optimization algorithm (Ref. 22) was used to update the 
network weights during each epoch.  

Totally, nine ML models were trained for engine TSFC, 
weight, core size (last stage HPC blade height), fan diameter, 
and turbomachinery stage count predictions, respectively. The 
training and cross validation of these ML models are described 
in detail in References 1 to 3.  

ML Models Testing 
After the ML models were trained, the next step was to test 

and evaluate their performances. The trained ML models were 
evaluated using a separate set of data, the testing dataset (that 
was unseen by the training models). The testing procedures of 
these ML models are described in detail in References 1 to 3. 
The results showed that these ML models are an effective tool 
for predicting engine TSFC, engine weight, core size, and 
turbomachinery stage counts. Their performances were 
determined, in terms of the means and standard deviations, as 
shown in Table I. 

TABLE I.—ML MODELS PERFORMANCE 
ML model Mean 

accuracy, 
percent 

Uncertainty 
95% confidence interval 
(2 standard deviations) 

TSFC 98 4% 

Weight 95 5% 

Core size 98 4% 

Fan diameter 98 5% 

LPC stage count 98 14% (or 1 stage)a 

HPC stage count 98 8% (or 1 stage)a 

HPT stage count 96 39% (or 1 stage)a 

LPT stage count 98 18% (or 1 stage)a 

IPT stage count 90 44% (or 1 stage)a 
aBased on the current database. 1-stage fan is assumed for all the 
engines. 

APP Design for ML Models Deployment 
After the ML models were developed, trained, and tested, 

they were integrated into the user-friendly app, Aero-Engines 
AI, that allows for the easy and intuitive assessment of engine 
concepts. Aero-Engines AI is a Windows app that deploys 
trained ML models to assess aircraft engine concepts. The app 
was created using tkinter (Ref. 23), a GUI (graphical user 
interface) module that is built into the standard Python library. 
And pyinstaller (Ref. 24), a Python package, was used to 
convert the python scripts into an executable file that can be run 
on Windows machines. The conversion greatly facilitates the 
sharing of ML applications with other Windows users (who do 
not need to have Python, or any library installed in their 
computers). 

The app design aimed to provide a user-friendly experience 
with a simple point-and-click feature. The input page consists 
of three elements:  
 

1. a drop-down menu to select options  
2. data entry fields 
3. a ‘PREDICT’ button to run the app 

 
These three elements are shown in Figure 2. 
 

The drop-down menu allows users to select different options 
for engine architectures, configurations, and timeframe. When a 
user selects a tab, the drop-down menu will display the options 
that are associated with that tab. Based on the user's selection, the 
app would use the trained ML models to analyze relevant data 
and make predictions on engine performance, in terms of engine 
TSFC, weight, core size, and turbomachinery stage counts. 
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The drop-down menu consists of the following tabs: 
 

Engine type—current version of the app only has the 
conventional turbofans option. Turboshaft and hybrid-electric 
turbofan are being considered for the future app versions. The 
engine-type tab is shown in Figure 3. 
 

Drive system—offers two options: direct-drive or geared. This 
tab is shown in Figure 4. 
 

Engine configuration—offers two options: 2-spool or 3-spool 
design. This tab is shown in Figure 5. 
 

Engine timeframe—engine certified year. Users can pick a 
calendar year or NASA timeframe (N+1, N+2, etc.). This tab is 
shown in Figure 6. 
 

Single engine or Multiple engine designs—offers two options: 
single engine design or multiple-engine designs analyses. This 
tab is shown in Figure 7. If “multiple engine designs” is 
selected, the user inputs for bypass ratio, overall pressure ratio, 
and engine thrust would be in ranges, as shown in Figure 8.  

 
The data entry fields are provided for the users to input the 

engine design parameters. The default entries for the Mach 
number and cruise altitude are provided (0.8 and 35000 ft, 
respectively), as shown in Figure 2. The users can override 
these numbers. 
 
App execution—to run the app, one simply clicks the 
‘PREDICT’ button.  
 

Input changes—users can return to the input page and modify 
the inputs by clicking the ‘BACK’ button on the output page. 
This button is shown in Figure 9. 

Example Problems 
• Single engine design: 

○ input parameters are shown in Figure 7 
○ outputs are shown in Figure 9 

• Multiple engine designs: 
○ input parameters are shown in Figure 8 
○ output spreadsheet is shown in Figure 10 

 
Monitoring and Updating 

Monitoring and updates are important aspects of ML app 
development, as they help ensure that the app continues to 
perform well and provide accurate predictions or 
recommendations over time. To ensure optimal performance of 
the current ML models, it’s crucial to keep track of the changing 
engine data and its effect on their overall functionality. While 
the commercial engine data in the current database remain 
static, the NASA engine data are obtained through research on 
aeronautics studies for three generations of aircraft - near, mid, 
and far term. Each generation has associated goals for 
reductions in noise, emissions, fuel burn, and field length 
relative to present-day aircrafts. These aircraft generations are 
labeled as 'N+1', 'N+2', and 'N+3', respectively. The research 
for 'N+2' and 'N+3' is aimed at enabling new vehicle 
configurations that meet NASA’s ambitious technology 
objectives. As the NASA engine data could be revised over 
time, the ML models must be updated periodically to consider 
the impact of such updates. 
 

 

 
Figure 2.—User input page for single-engine design. 
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Figure 3.—Engine type option. 

 
Figure 4.—Direct-drive or geared turbofan option. 

 
Figure 5.—Engine configuration options. 
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Figure 6.—Engine timeframe option. 

 
Figure 7.—Single-engine or multiple-engine design option. 

 
Figure 8.—Input page for multiple-engine designs. 
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Figure 9.—Example output of a single-engine design. 
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Figure 10.—Example spreadsheet output of multiple-engine designs. 



NASA/TM-20230012237 9 

Summary 
Aero-Engines AI, a user-friendly Windows app, has been 

created using tkinter, a GUI module that is built into the 
standard Python library. This app is designed to deploy trained 
ML models to assess various aircraft engine concepts. These 
ML models were trained, cross-validated, and tested in Keras, 
an open-source neural networks API written in Python, with 
TensorFlow serving as the backend engine. The assessment 
results are presented in terms of engine TSFC, weight, core size, 
and turbomachinery stage counts. The seamless deployment of 
these ML models through the app demonstrates that Aero-
Engines AI is an efficient and easy-to-use tool for exploring the 

design space of aircraft engines during the conceptual design 
stage. The current version of the app focuses on predicting the 
performance of conventional turbofans. However, the app’s 
scope can be easily expanded to include other engine types 
(such as turboshaft and hybrid-electric systems), after ML 
models are developed for them. 

The success of the ML application will depend on the quality 
and quantity of data available for training, as well as the 
deployment of the ML model itself. Careful consideration of 
these factors is crucial to ensure the optimal performance of the 
ML system. Overall, the use of a machine-learning app for 
aircraft engine concept assessment represents a promising area 
of development in aircraft engine conceptual design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





NASA/TM-20230012237 11 

Appendix A.—Engine Database 

 
 

System type: DD = direct-drive system 
         G = geared system 
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Appendix A.—Continued 

 
 

System type: DD = direct-drive system 
         G = geared system 
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Appendix A.—Concluded 

 
 
 

System type: DD = direct-drive system     SFW—Subsonic Fixed Wing project 
         G = geared system      ERA—Environmentally Responsible Aviation project 
          AATT—Advanced Air Transport Technology project 
 



NASA/TM-20230012237 14 

References 
1. Tong, M. T., “Using Machine Learning to Predict Core 

Sizes of High-Efficiency Turbofan Engines,” GTP-19-
1338, ASME Journal of Engineering for Gas Turbines and 
Power, Volume 141, Issue 11, November 2019. 

2. Tong, M. T., “Machine Learning-Based Predictive 
Analytics for Aircraft Engine Conceptual Design,” NASA 
TM-20205007448, October 2020. 

3. Tong, M. T., “A Machine-Learning Approach to Assess 
Aircraft Engine System Performance,” GT–2020–14661, 
Proceedings of ASME Turbo Expo 2020, September 21–
25, 2020 (virtual conference). 

4. Daly, M., 2018, “Jane’s Aero-Engine,” IHS, London, UK. 
5. Meier, N., 2018, “Civil Turbojet/Turbofan Specifications,” 

accessed Aug. 8, 2018,  
http://www.jet-engine.net/civtfspec.html 

6. GE Aviation, 2018, “GE Aviation,” GE Aviation, 
Evendale, OH, accessed Aug. 8, 2018, 
https://www.geaviation.com/commercial 

7. Pratt and Whitney, 2018, “Commercial-Engines,” Pratt and 
Whitney, East Hartford, CT, accessed Aug. 8, 2018, 
https://www.pw.utc.com/products-and-
services/products/commercial-engines 

8. Rolls Royce, 2018, “Rolls Royce,” Rolls Royce, Derby, 
UK, accessed Aug. 8, 2018, https://www.rolls-
royce.com/products-and-services/civil-aerospace 

9. CFM International, 2018, “CFM International,” CFM 
International, Cincinnati, OH, accessed Aug. 8, 2018, 
https://www.cfmaeroengines.com/ 

10. International Civil Aviation Organization, 2018, “ICAO 
Aircraft Emissions Databank,” International Civil Aviation 
Organization, Montreal, Canada. 

11. Guynn, M.D., Berton, J.J., Fisher, K.L., Haller, W.J., Tong, 
M., Thurman, D.R., “Engine Conceptual Study for an 
Advanced Single-Aisle Transport,” NASA TM-2009-
215784, August 2009. 

12. Guynn, M.D., Berton, J.J., Fisher, K.L., Haller, W.J., Tong, 
M., Thurman, D.R., “Analysis of Turbofan Design Options 
for an Advanced Single-Aisle Transport Aircraft,” AIAA 
2009-6942, September 2009. 

13. Guynn, M. D., Berton, J.J., Fisher, K.L., Haller, W.J., 
Tong, M., Thurman, D.R, “Refined Exploration of 
Turbofan Design Options for an Advanced Single-Aisle 
Transport,” NASA TM-2011-216883, January 2011. 

14. Guynn, M.D., Berton, J.J., Tong, M.T., Haller, W.J., 
“Advanced Single-Aisle Transport Propulsion Design 
Options Revisited,” AIAA 2013-4330, August 2013. 

15. Nickol, C.L. and Haller W.J., “Assessment of the 
Performance Potential of Advanced Subsonic Transport 
Concepts for NASA’s Environmentally Responsible 
Aviation Project,” AIAA 2016-1030, January 2016. 

16. Collier, F., Thomas, R., Burley, C., Nickol, C., Lee, C.M., 
Tong, M., “Environmentally Responsible Aviation – Real 
Solutions for Environmental Challenges Facing Aviation,” 
27th International Congress of the Aeronautical Sciences, 
September, 2010. 

17. Geron, A., “Hands-On Machine Learning with Scikit-
Learn and TensorFlow,” first edition, March 2017. 
Published by O’Reilly Media, Inc. 

18. Chollet, François and others, “Keras.” accessed February 
22, 2019, https://keras.io/ 

19. Google, “TensorFlow: Large-Scale Machine Learning on 
Heterogeneous Distributed Systems.” accessed February 
20, 2019, https://www.tensorflow.org/ 

20. Ng, A., 2004 “Feature selection, L1 vs. L2 regularization, 
and rotational invariance,” Proceedings of the twenty-first 
international conference on Machine learning, July 4, 2004 

21. Hinton, G.E., Krizhevsky, A., Srivastava, N., Sutskever, I., 
& Salakhutdinov, R., “Dropout: A simple Way to Prevent 
Neural Networks from Overfitting.” Journal of Machine 
Learning Research, 15, 1929-1958. June, 2014. 

22. Kingma, D. P. and Ba, J., “Adam: A Method for Stochastic 
Optimization,” International Conference on Learning 
Representations, May 2015. 

23. Van Rossum, G., et al., “The Python Library Reference, 
release 3.8.2,” Python Software Foundation, 2020. 

24. Cortesi, D., “PyInstaller 5.7.0,” released on December 4, 
2022, accessed December 19, 2022. 
https://pypi.org/project/pyinstaller/ 

 
 
 
 
 

http://www.jet-engine.net/civtfspec.html
https://www.geaviation.com/commercial
https://www.pw.utc.com/products-and-services/products/commercial-engines
https://www.pw.utc.com/products-and-services/products/commercial-engines
https://www.rolls-royce.com/products-and-services/civil-aerospace
https://www.rolls-royce.com/products-and-services/civil-aerospace
https://www.cfmaeroengines.com/
https://keras.io/
https://www.tensorflow.org/
https://pypi.org/project/pyinstaller/





	TM-20230012237.pdf
	Abstract
	Introduction
	Engine Data Collection, Augmentation, and Preparation
	Engine Data Collection
	Data Augmentation
	Dataset Preparation

	ML Models Training
	ML Models Testing
	APP Design for ML Models Deployment
	Example Problems

	Monitoring and Updating
	Summary
	Appendix A.—Engine Database

	References




