
Michael T. Tong
Glenn Research Center, Cleveland, Ohio

Aero-Engines AI—A Machine-Learning App for
Aircraft Engine Concepts Assessment

NASA/TM-20230012237

September 2023

GT2023–102024

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space science.
The NASA Scientifi c and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientifi c and
technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658

• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

Michael T. Tong
Glenn Research Center, Cleveland, Ohio

Aero-Engines AI—A Machine-Learning App for
Aircraft Engine Concepts Assessment

NASA/TM-20230012237

September 2023

GT2023–102024

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Prepared for the
ASME Turbo Expo 2023: Turbine Technical Conference and Exposition
sponsored by American Society of Mechanical Engineers
Boston, Massachusetts, June 26–30, 2023

Acknowledgments

The work presented in this paper was supported by the NASA Advanced Air Transport Technology Project of the Advanced Air
Vehicles Program.

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

This report contains preliminary fi ndings,
subject to revision as analysis proceeds.

This work was sponsored by the Advanced Air Vehicle Program
at the NASA Glenn Research Center

This report is available in electronic form at https://www.sti.nasa.gov/ and https://ntrs.nasa.gov/

NASA/TM-20230012237 1

Aero-Engines AI—A Machine-Learning App for
Aircraft Engine Concepts Assessment

Michael T. Tong

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

Effective deployment of machine-learning (ML) models
could drive a high level of efficiency in aircraft engine
conceptual design. Aero-Engines AI is a user-friendly app that
has been created to deploy trained machine-learning (ML)
models to assess aircraft engine concepts. It was created using
tkinter, a GUI (graphical user interface) module that is built into
the standard Python library. Employing tkinter greatly
facilitates the sharing of ML application as an executable file
which can be run on Windows machines (without the need to
have Python or any library installed). The app gets user input
for a turbofan design, preprocesses the input data, and deploys
trained ML models to predict turbofan thrust specific fuel
consumption (TSFC), engine weight, core size, and
turbomachinery stage-counts. The ML predictive models were
built by employing supervised deep-learning and K-nearest
neighbor regression algorithms to study patterns in an existing
open-source database of production and research turbofan
engines. They were trained, cross-validated, and tested in
Keras, an open-source neural networks API (application
programming interface) written in Python, with TensorFlow
(Google open-source artificial intelligence library) serving as
the backend engine. The smooth deployment of these ML
models using the app shows that Aero-Engines AI is an easy-to-
use and a time-saving tool for aircraft engine design-space
exploration during the conceptual design stage. Current version
of the app focuses on the performance prediction of
conventional turbofans. However, the scope of the app can
easily be easily expanded to include other engine types (such as
turboshaft and hybrid-electric systems) after their ML models
are developed. Overall, the use of a machine-learning app for
aircraft engine concept assessment represents a promising area
of development in aircraft engine conceptual design.

Introduction
More and more organizations are adopting a data-informed

approach to decision-making. With the vast amounts of data
collected and tracked in recent times, machine-learning (ML)
applications are gaining popularity across multiple industries.

The aircraft engine industry has amassed and stored significant
quantities of data over the years. These big data sets, sourced
from multiple origins such as the database of currently
manufactured engines, ongoing development projects,
previously completed development projects, and
unmanufactured designs, hold tremendous potential as a
knowledge asset for future engine projects.

Designing an aircraft engine is a complex, interdisciplinary
process that requires significant time and effort. Engine
designers encounter a formidable challenge during the
conceptual design phase - how to rapidly evaluate the
performance of a specific engine design given the aircraft's
mission requirements and various design parameters. The
number of potential engine configurations could be vast,
requiring designers to rely on system analysis and simulation to
estimate performance. Consequently, designers must conduct a
comprehensive propulsion system study for each possible
configuration, which can be time-consuming, particularly when
dealing with a large design space.

By leveraging the power of machine learning (ML)
algorithms to learn from the existing engine data sets, it is
possible to develop ML models that can quickly and accurately
assess new aircraft engine concepts, providing valuable insights
and reducing the time and resources required for the engine
concept assessment process. A ML model can identify patterns
and trends that may not be immediately apparent to human
analysts, leading to more informed decision-making and
ultimately resulting in the development of better aircraft engine
concepts. The ability to assess new engine concepts quickly and
accurately can be a competitive advantage in aircraft engine
development.

Previously, the author focused on training/developing the
ML models that allow for quick estimation of engine TSFC,
system weight, and core size during the conceptual design
phase. The development process and methodology for these
models are described in References 1 to 3. Additional ML
models were developed for the turbomachinery stage count
prediction since then, using the same methodology. This paper
zeros in on the deployment of these trained ML models to assess
aircraft engine concepts, via an app. The development process
of the app, Aero-Engines AI, is described in this paper.

NASA/TM-20230012237 2

Figure 1.—Structure of Aero-Engines AI app.

While the development of ML models is essential for their

applications, the models would only be of value if they are
actively deployed in a production environment where they can
be used to solve practical problems. Thus, effective ML model
deployment is just as important as ML model development. ML
model deployment involves integrating trained ML models,
developed in a R&D environment, into a production
environment. It is a critical step that must be done so an
organization can use the models to solve problems. Seamless
deployment of trained ML models into production is essential
for putting the models to practical use.

Aero-Engines AI, a Windows app, has been created to deploy
the trained ML models for aircraft engine concepts assessment.
It was created using tkinter, a GUI module that is built into the
standard Python library. Employing tkinter greatly facilitates
the sharing of ML application as an executable file which can
be run on Windows machines (without the need to have Python
or any library installed). MS Windows platform was chosen for
the deployment to reduce complexity and for ease of access.
The structure of the app is shown in Figure 1.

The app is user-friendly. It is simple to learn, easy to
navigate, and its use is intuitive enough that it does not require
an instruction manual. The development process of Aero-
Engines AI consists of five steps:

1. Engine data collection, augmentation, and preparation
2. ML models training
3. ML models testing and evaluation
4. App design for ML models deployment
5. Monitoring and updating

Engine Data Collection, Augmentation,
and Preparation
Engine Data Collection

Current version of the app has only turbofan assessment
capability (will be expanded to include other engine types such
as turboshaft, hybrid-turbofan, etc., in the future versions). The
basic engine architecture is an axial-compressor turbofan. The

engine database consists of 145 manufactured (commercial)
engines (Refs. 4 to 10) and 39 engines that were studied
previously in various NASA aeronautics projects. These
commercial engines capture over half-a-century of engine
technology improvements and lessons-learned, which would
minimize the prediction uncertainties of the ML models. The
NASA engine data were the system-study results for various
NASA aeronautics projects (Refs. 11 to 16). The engine
database is shown in Appendix A.

Data Augmentation

Data augmentation is an important technique that is
commonly used in ML to improve the performance and
generalizability of a training model. The process entails
creating additional data points from the existing training data
by applying various transformations and modifications to the
data. Data augmentation increases the diversity and quantity of
training data, improving the model’s performance for its task,
and making it more adaptable to changes in the data. For this
study, the data augmentation was performed by scaling up the
current engines by 10 percent. For example, the sea-level static
(SLS) engine thrust and weight were increased by 10 percent,
while keeping the other operating parameters such as bypass
ratio (BPR), overall pressure ratio (OPR), Mach No., altitude,
and TSFC unchanged, as shown below:

With the data augmentation, the size of the database becomes:

Turbofan type No. of engines
2-spool direct-drive 273
2-spool geared 89
3-spool direct-drive 50

Dataset Preparation

The next step was to prepare the data that would be used to
train the ML models. It involved cleaning and preprocessing the
data to remove errors or inconsistencies and organizing the data
into a format that could be used for the training. The engine
dataset was normalized and shuffled randomly (using pseudo-
random number generator) and divided into two datasets: the
training set and the testing set. The training set was used to train,
cross-validate, and build predictive models. The testing set
consisted of the remaining engines that were unseen by the
training models and was retained for the final evaluation of the
predictive analytics. The dataset preparation is described in
detail in References 1 to 3.

NASA/TM-20230012237 3

ML Models Training
Once the data was ready, the next step was to select the

appropriate algorithms that would be used to train the ML
models. This can involve choosing from a variety of machine
learning algorithms and tuning the parameters and
hyperparameters of the models to optimize their performance
on the specific problem or task.

As reported in References 1 to 3, the ML models for TSFC,
engine weight, and core size predictions were constructed using
supervised deep-learning and K-nearest neighbor algorithms
(Ref. 17), which analyzed patterns in an open-source database
of research and production turbofan engines. Additional ML
models were developed since then for the turbomachinery stage
count prediction, using K-nearest neighbor regression
algorithm. These models were trained, cross-validated, and
tested using Keras, an open-source neural networks API written
in Python, with TensorFlow as the backend engine. These
models were trained and deployed in Keras (Ref. 18), an open-
source neural networks API written in Python, with TensorFlow
(Ref. 19) serving as the backend engine. Keras provided the
building blocks for developing the deep-learning models, and
TensorFlow handled the tensor computations and
manipulations.

Depending on the ML model, either L2 or Dropout
regularization technique (where neuron outputs are dropped out
randomly) (Refs. 20 and 21) was applied to prevent the DNN
from overfitting the training data. A grid-search routine was
used to determine the regularization parameter, dropout rate,
number of epochs, batch size, and the number of ‘neurons’ in
the hidden layers that give the lowest training error. The Adam
optimization algorithm (Ref. 22) was used to update the
network weights during each epoch.

Totally, nine ML models were trained for engine TSFC,
weight, core size (last stage HPC blade height), fan diameter,
and turbomachinery stage count predictions, respectively. The
training and cross validation of these ML models are described
in detail in References 1 to 3.

ML Models Testing
After the ML models were trained, the next step was to test

and evaluate their performances. The trained ML models were
evaluated using a separate set of data, the testing dataset (that
was unseen by the training models). The testing procedures of
these ML models are described in detail in References 1 to 3.
The results showed that these ML models are an effective tool
for predicting engine TSFC, engine weight, core size, and
turbomachinery stage counts. Their performances were
determined, in terms of the means and standard deviations, as
shown in Table I.

TABLE I.—ML MODELS PERFORMANCE
ML model Mean

accuracy,
percent

Uncertainty
95% confidence interval
(2 standard deviations)

TSFC 98 4%

Weight 95 5%

Core size 98 4%

Fan diameter 98 5%

LPC stage count 98 14% (or 1 stage)a

HPC stage count 98 8% (or 1 stage)a

HPT stage count 96 39% (or 1 stage)a

LPT stage count 98 18% (or 1 stage)a

IPT stage count 90 44% (or 1 stage)a
aBased on the current database. 1-stage fan is assumed for all the
engines.

APP Design for ML Models Deployment
After the ML models were developed, trained, and tested,

they were integrated into the user-friendly app, Aero-Engines
AI, that allows for the easy and intuitive assessment of engine
concepts. Aero-Engines AI is a Windows app that deploys
trained ML models to assess aircraft engine concepts. The app
was created using tkinter (Ref. 23), a GUI (graphical user
interface) module that is built into the standard Python library.
And pyinstaller (Ref. 24), a Python package, was used to
convert the python scripts into an executable file that can be run
on Windows machines. The conversion greatly facilitates the
sharing of ML applications with other Windows users (who do
not need to have Python, or any library installed in their
computers).

The app design aimed to provide a user-friendly experience
with a simple point-and-click feature. The input page consists
of three elements:

1. a drop-down menu to select options
2. data entry fields
3. a ‘PREDICT’ button to run the app

These three elements are shown in Figure 2.

The drop-down menu allows users to select different options
for engine architectures, configurations, and timeframe. When a
user selects a tab, the drop-down menu will display the options
that are associated with that tab. Based on the user's selection, the
app would use the trained ML models to analyze relevant data
and make predictions on engine performance, in terms of engine
TSFC, weight, core size, and turbomachinery stage counts.

NASA/TM-20230012237 4

The drop-down menu consists of the following tabs:

Engine type—current version of the app only has the
conventional turbofans option. Turboshaft and hybrid-electric
turbofan are being considered for the future app versions. The
engine-type tab is shown in Figure 3.

Drive system—offers two options: direct-drive or geared. This
tab is shown in Figure 4.

Engine configuration—offers two options: 2-spool or 3-spool
design. This tab is shown in Figure 5.

Engine timeframe—engine certified year. Users can pick a
calendar year or NASA timeframe (N+1, N+2, etc.). This tab is
shown in Figure 6.

Single engine or Multiple engine designs—offers two options:
single engine design or multiple-engine designs analyses. This
tab is shown in Figure 7. If “multiple engine designs” is
selected, the user inputs for bypass ratio, overall pressure ratio,
and engine thrust would be in ranges, as shown in Figure 8.

The data entry fields are provided for the users to input the

engine design parameters. The default entries for the Mach
number and cruise altitude are provided (0.8 and 35000 ft,
respectively), as shown in Figure 2. The users can override
these numbers.

App execution—to run the app, one simply clicks the
‘PREDICT’ button.

Input changes—users can return to the input page and modify
the inputs by clicking the ‘BACK’ button on the output page.
This button is shown in Figure 9.

Example Problems
• Single engine design:

○ input parameters are shown in Figure 7
○ outputs are shown in Figure 9

• Multiple engine designs:
○ input parameters are shown in Figure 8
○ output spreadsheet is shown in Figure 10

Monitoring and Updating

Monitoring and updates are important aspects of ML app
development, as they help ensure that the app continues to
perform well and provide accurate predictions or
recommendations over time. To ensure optimal performance of
the current ML models, it’s crucial to keep track of the changing
engine data and its effect on their overall functionality. While
the commercial engine data in the current database remain
static, the NASA engine data are obtained through research on
aeronautics studies for three generations of aircraft - near, mid,
and far term. Each generation has associated goals for
reductions in noise, emissions, fuel burn, and field length
relative to present-day aircrafts. These aircraft generations are
labeled as 'N+1', 'N+2', and 'N+3', respectively. The research
for 'N+2' and 'N+3' is aimed at enabling new vehicle
configurations that meet NASA’s ambitious technology
objectives. As the NASA engine data could be revised over
time, the ML models must be updated periodically to consider
the impact of such updates.

Figure 2.—User input page for single-engine design.

NASA/TM-20230012237 5

Figure 3.—Engine type option.

Figure 4.—Direct-drive or geared turbofan option.

Figure 5.—Engine configuration options.

NASA/TM-20230012237 6

Figure 6.—Engine timeframe option.

Figure 7.—Single-engine or multiple-engine design option.

Figure 8.—Input page for multiple-engine designs.

NASA/TM-20230012237 7

Figure 9.—Example output of a single-engine design.

NASA/TM-20230012237 8

Figure 10.—Example spreadsheet output of multiple-engine designs.

NASA/TM-20230012237 9

Summary
Aero-Engines AI, a user-friendly Windows app, has been

created using tkinter, a GUI module that is built into the
standard Python library. This app is designed to deploy trained
ML models to assess various aircraft engine concepts. These
ML models were trained, cross-validated, and tested in Keras,
an open-source neural networks API written in Python, with
TensorFlow serving as the backend engine. The assessment
results are presented in terms of engine TSFC, weight, core size,
and turbomachinery stage counts. The seamless deployment of
these ML models through the app demonstrates that Aero-
Engines AI is an efficient and easy-to-use tool for exploring the

design space of aircraft engines during the conceptual design
stage. The current version of the app focuses on predicting the
performance of conventional turbofans. However, the app’s
scope can be easily expanded to include other engine types
(such as turboshaft and hybrid-electric systems), after ML
models are developed for them.

The success of the ML application will depend on the quality
and quantity of data available for training, as well as the
deployment of the ML model itself. Careful consideration of
these factors is crucial to ensure the optimal performance of the
ML system. Overall, the use of a machine-learning app for
aircraft engine concept assessment represents a promising area
of development in aircraft engine conceptual design.

NASA/TM-20230012237 11

Appendix A.—Engine Database

System type: DD = direct-drive system
 G = geared system

NASA/TM-20230012237 12

Appendix A.—Continued

System type: DD = direct-drive system
 G = geared system

NASA/TM-20230012237 13

Appendix A.—Concluded

System type: DD = direct-drive system SFW—Subsonic Fixed Wing project
 G = geared system ERA—Environmentally Responsible Aviation project
 AATT—Advanced Air Transport Technology project

NASA/TM-20230012237 14

References
1. Tong, M. T., “Using Machine Learning to Predict Core

Sizes of High-Efficiency Turbofan Engines,” GTP-19-
1338, ASME Journal of Engineering for Gas Turbines and
Power, Volume 141, Issue 11, November 2019.

2. Tong, M. T., “Machine Learning-Based Predictive
Analytics for Aircraft Engine Conceptual Design,” NASA
TM-20205007448, October 2020.

3. Tong, M. T., “A Machine-Learning Approach to Assess
Aircraft Engine System Performance,” GT–2020–14661,
Proceedings of ASME Turbo Expo 2020, September 21–
25, 2020 (virtual conference).

4. Daly, M., 2018, “Jane’s Aero-Engine,” IHS, London, UK.
5. Meier, N., 2018, “Civil Turbojet/Turbofan Specifications,”

accessed Aug. 8, 2018,
http://www.jet-engine.net/civtfspec.html

6. GE Aviation, 2018, “GE Aviation,” GE Aviation,
Evendale, OH, accessed Aug. 8, 2018,
https://www.geaviation.com/commercial

7. Pratt and Whitney, 2018, “Commercial-Engines,” Pratt and
Whitney, East Hartford, CT, accessed Aug. 8, 2018,
https://www.pw.utc.com/products-and-
services/products/commercial-engines

8. Rolls Royce, 2018, “Rolls Royce,” Rolls Royce, Derby,
UK, accessed Aug. 8, 2018, https://www.rolls-
royce.com/products-and-services/civil-aerospace

9. CFM International, 2018, “CFM International,” CFM
International, Cincinnati, OH, accessed Aug. 8, 2018,
https://www.cfmaeroengines.com/

10. International Civil Aviation Organization, 2018, “ICAO
Aircraft Emissions Databank,” International Civil Aviation
Organization, Montreal, Canada.

11. Guynn, M.D., Berton, J.J., Fisher, K.L., Haller, W.J., Tong,
M., Thurman, D.R., “Engine Conceptual Study for an
Advanced Single-Aisle Transport,” NASA TM-2009-
215784, August 2009.

12. Guynn, M.D., Berton, J.J., Fisher, K.L., Haller, W.J., Tong,
M., Thurman, D.R., “Analysis of Turbofan Design Options
for an Advanced Single-Aisle Transport Aircraft,” AIAA
2009-6942, September 2009.

13. Guynn, M. D., Berton, J.J., Fisher, K.L., Haller, W.J.,
Tong, M., Thurman, D.R, “Refined Exploration of
Turbofan Design Options for an Advanced Single-Aisle
Transport,” NASA TM-2011-216883, January 2011.

14. Guynn, M.D., Berton, J.J., Tong, M.T., Haller, W.J.,
“Advanced Single-Aisle Transport Propulsion Design
Options Revisited,” AIAA 2013-4330, August 2013.

15. Nickol, C.L. and Haller W.J., “Assessment of the
Performance Potential of Advanced Subsonic Transport
Concepts for NASA’s Environmentally Responsible
Aviation Project,” AIAA 2016-1030, January 2016.

16. Collier, F., Thomas, R., Burley, C., Nickol, C., Lee, C.M.,
Tong, M., “Environmentally Responsible Aviation – Real
Solutions for Environmental Challenges Facing Aviation,”
27th International Congress of the Aeronautical Sciences,
September, 2010.

17. Geron, A., “Hands-On Machine Learning with Scikit-
Learn and TensorFlow,” first edition, March 2017.
Published by O’Reilly Media, Inc.

18. Chollet, François and others, “Keras.” accessed February
22, 2019, https://keras.io/

19. Google, “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems.” accessed February
20, 2019, https://www.tensorflow.org/

20. Ng, A., 2004 “Feature selection, L1 vs. L2 regularization,
and rotational invariance,” Proceedings of the twenty-first
international conference on Machine learning, July 4, 2004

21. Hinton, G.E., Krizhevsky, A., Srivastava, N., Sutskever, I.,
& Salakhutdinov, R., “Dropout: A simple Way to Prevent
Neural Networks from Overfitting.” Journal of Machine
Learning Research, 15, 1929-1958. June, 2014.

22. Kingma, D. P. and Ba, J., “Adam: A Method for Stochastic
Optimization,” International Conference on Learning
Representations, May 2015.

23. Van Rossum, G., et al., “The Python Library Reference,
release 3.8.2,” Python Software Foundation, 2020.

24. Cortesi, D., “PyInstaller 5.7.0,” released on December 4,
2022, accessed December 19, 2022.
https://pypi.org/project/pyinstaller/

http://www.jet-engine.net/civtfspec.html
https://www.geaviation.com/commercial
https://www.pw.utc.com/products-and-services/products/commercial-engines
https://www.pw.utc.com/products-and-services/products/commercial-engines
https://www.rolls-royce.com/products-and-services/civil-aerospace
https://www.rolls-royce.com/products-and-services/civil-aerospace
https://www.cfmaeroengines.com/
https://keras.io/
https://www.tensorflow.org/
https://pypi.org/project/pyinstaller/

	TM-20230012237.pdf
	Abstract
	Introduction
	Engine Data Collection, Augmentation, and Preparation
	Engine Data Collection
	Data Augmentation
	Dataset Preparation

	ML Models Training
	ML Models Testing
	APP Design for ML Models Deployment
	Example Problems

	Monitoring and Updating
	Summary
	Appendix A.—Engine Database

	References

