

Life Cycle Cost Modeling of High-Speed Commercial Aircraft

Final Review – Executive Summary

August 3rd, 2023 | NASA Langley Research Center

John Bradford, Ph.D. Principal Engineer john.bradford@spaceworks.aero | 770-379-8007

Hayden Magill PI & Economic Analyst

Aaron Boysen Sr. Economic Analyst

Ami Patel Software Technical Director & Senior Software Engineer

NASA SBIR Contract #80NSSC22C0008

Agenda

11:00 – 12:15	Executive Summary	John Bradford
12:15 – 1:00	Lunch	
1:00 – 1:45	MIDAS Development & Demonstration	Ami Patel
1:45 – 3:50	Key Findings Detailed	Hayden Magill & Aaron Boysen
3:50 - 4:30	Recommendations & Discussion	Hayden Magill & All

All times Eastern

Introduction

For several years, SpaceWorks has been supporting NASA's effort to better understand the future passenger market and potential economic business cases for supersonic and/or hypersonic commercial flight. Key questions...

Does a reliable passenger demand exist for commercial supersonic / hypersonic flight?

If so, can it result in profitable business cases for companies in the manufacturing and operating sectors?

SpaceWorks[,]

Introduction

b This presentation is the culmination of a 9-month research and development effort

- Follow-on to a 9-month Base effort from SpaceWorks ("Life Cycle Cost Modeling of High-Speed Commercial Aircraft"), which followed the 2021 "Commercial Hypersonic Transportation Market Study" effort led by Deloitte, the NIA, and SpaceWorks
- Based in part on the recommendations of the prior studies, the objectives of this current effort were to:
 - 1) Expand the trade space to include Mach 1.5 aircraft
 - 2) Evaluate various operating scenarios such as tech stop utilization and demand-based mixed fleets
 - 3) Update the market research data driving the model to produce new elasticity curves, market growth rates,
 & development costs
 - Use the new data to reevaluate alternative fuel business cases
 - 4) Continue to improve and develop the modeling & simulation tool to evaluate behaviors like flight scheduling & multiple operator scenarios

Value Proposition of High-Speed Travel

SpaceWorks[®]

High-Speed Aircraft Landscape – Then (2020)

Aerion [Mach 1.6]

Boom [Mach 1.7]

Hermeus [Mach 5]

Spike [Mach 1.7]

HyperMach [Mach 3.6]

Virgin Galactic [Mach 3]

Boeing [Mach 5]

Reaction Engines [Mach 5+?]

Exosonic [Mach 1.8]

High-Speed Aircraft Landscape – Then (2020) vs. Now

Aerion [Mach 1.6]

Boom [Mach 1.7]

Hermeus [Mach 5]

Destinus [Mach 5]

Spike [Mach 1.7]

HyperMach [Mach 3.6]

Virgin Galactic [Mach 3]

Venus Aerospace [Mach 9]

Boeing [Mach 5]

SpaceWorks[®]

Reaction Engines [Mach 5+?]

Exosonic [Mach 1.8]

EON Aerospace [Mach ~2]

NASA SBIR Contract #80NSSC22C0008

FLASHBACK: 2020 Commercial Hypersonic Transportation Study

Deloitte.

- <u>Market Segmentation</u> analyzed current trends in the aviation market for scheduled service, private-owner operations, and air cargo
- <u>City Pairing</u> determined the most viable routes for high-speed passenger travel by analyzing industry data and selected routes based on route-by-route economic and technical viability. Emphasis was placed on transoceanic routes die to sonic boom challenges for overland flight
- <u>Market Demand</u> developed ticket price elasticity curves based on direct customer surveys to quantify passenger willingness to pay for high-speed travel
- <u>Barriers Assessment</u> characterize key policy, regulatory, and technical barriers to future high-speed flight operations

SpaceWorks

- <u>ROSETTA Model Development</u> built on existing ROSETTA model to integrate flight performance, aircraft sizing environment impact, airframe costing, engine costing, manufacturer and operator economic modules
- <u>Optimize Business Cases</u> implemented ticket price elasticity curves from Deloitte and optimize model inputs to determine best business cases across *Mach, range, and passenger count*
- <u>Investigate Sensitivities</u> characterized sensitivity of aircraft design parameters and business case assumptions

• Project Review and Guidance- provided expert review and study guidance throughout the study

Select US-Based Transoceanic Flight Routes

90 Key Transoceanic Routes with 39.6M total annual passengers in 2019

Annual Passenger Market by Route Distance

Route Demand for Every 100 nmi (Cumulative Total Market Captured on Secondary Axis)

2020 Commercial Hypersonic Transportation Study Findings

- Multiple aircraft configurations and market approaches resulted in positive business cases for their manufacturers (engine & airframe), as well as operators (assuming IRR > 25%)
 - Smaller aircraft (20-50 pax) tend to be favored over larger aircraft for several factors, including sales synergies with the private/charter market and higher average passenger load factors on thin routes
 - Slower cruise speed aircraft (Mach 2-3) in the 4,000-4,500 nmi class are also slightly favored and result in lower ticket prices and therefore larger market sizes. This appeared to be a more robust part of the market
 - North-Atlantic markets remain the largest economic prize, but longer trans-Pacific ranges remain interesting for smaller Mach 2-3 vehicles that can reach to 6,000 nmi+
- **Results are most sensitive to potential reductions in estimated passenger market size**
 - Fuel cost increases, engine development cost increases, and loss of private/charter sales are also important
- **Government contributions via non-recurring offsets or "anchor buys" are helpful**
 - More beneficial for 1) smaller overall aircraft development program (gov't contributes a larger percentage of the total cost) or 2) higher speed aircraft where predicted annual airframe sales are not as large. However, government contributions are not required for success
- Ultimately, this study determined that there are viable business cases for high-speed aircraft but left us with the question of what those business cases may look like

2021-'23 Life Cycle Cost Modeling of High-Speed Commercial Aircraft Study

- Based on the 2021 study findings, several areas were identified for further analysis and subsequently have been conducted under a new effort
- This included improving the HCSA ROSETTA Model & development of MIDAS for advanced Modeling & Simulation (M&S) of the market dynamics. Specific activities included:
- 1. Further characterize the business case viability in the Mach 1.5 to 5.0 speed regime, for 20-50 passenger configurations, and maximum aircraft ranges of 3,500-7,000 nmi.
 - Evaluating short-range aircraft in this trade space that could utilize tech stops to reach long-range routes
 - Conducting market research to update existing model assumptions with current passenger survey data post-COVID
 - Developing baseball cards with details on individual point designs in this space

2. Explored alternative business case and economic scenarios

- Analyzing <u>mixed fleet</u> solutions with short- and long-range aircraft that split demand based on distance
 - o Additional analysis was conducted for demand-based mixed fleet solutions that split demand based on route size
- Analyzing competitive operator scenarios to determine if splitting the market was beneficial
- Evaluating <u>alternative fuels</u> to Jet-A: sustainable aviation fuel (SAF), liquified natural gas (LNG), and liquified hydrogen (LH2)
- Evaluating the impact of allowing overland routes over the continental United States
- Assessing the impact of delaying initial operating capability (IOC) date
- Implementing <u>flight scheduling</u> to improve the fidelity of aircraft utilization within the constraints of fixed flight times and time zones

Modeling & Simulation Data Flow

SpaceWorks developed aircraft sizing and business modules for high-speed simulations

MIDAS | Generalized Simulation Environment

Multi-Market Integrated Dynamic Aerospace Simulation

NASA SBIR Contract #80NSSC22C0008

MIDAS | Scenario Based Analysis

MIDAS Simulation | Preview

MIDAS | Comparison of Capabilities

- **Core capability is captured by both the ROSETTA and MIDAS models**
- MIDAS offers greater resolution into fleet operations and annual metrics

	Feature	ROSETTA	MIDAS
Scenarios	Ability to model multiple aircraft (e.g., short-range, long-range)	\checkmark	\checkmark
	Ability to model multiple operators	\checkmark	\checkmark
	Incorporate tech stops in routes	\checkmark	\checkmark
	Model alternative fuels (e.g., SAF, LNG, LH2)	\checkmark	\checkmark
	Vary IOC year for aircraft	\checkmark	\checkmark
	Flight scheduling scenario		\checkmark
	Extensibility to new modules and scenarios		✓
Metrics	Detailed annual tracking metrics for operators and manufacturers	\checkmark	\checkmark
	Determine environmental (emissions) metrics	\checkmark	\checkmark
	Provide metrics for individual airplanes (maintenance checks, TOLs)		✓
	Variable airplane retirement rates based on Mach number		\checkmark
	Track airplane deliveries based on priority status		✓
	Track unsatisfied demand		\checkmark
Market	Allow markets to grow annually	\checkmark	\checkmark
	Add routes as markets become viable due to growth		\checkmark
Simulation	Incorporates aircraft sizing in the loop	\checkmark	
	Graphical User Interface (GUI)		\checkmark
	Allow variability and randomness in simulation		\checkmark

Key Findings | Overall

- Economic metrics resulted in ticket price premiums of 2 to 2.5 times over business class tickets in order to capture ~10% of the market currently serviced by hundreds of subsonic aircraft.
- Given our key findings with respect to market demand, aircraft technical specifications/capabilities, financial considerations, and various environment factors:
 - We believe there is a high-speed PTP market, but it is <u>relatively small</u> for the foreseeable future due to a combination of challenging factors
 - The <u>environmental issues must be solved</u> without significantly impacting the design and capabilities of the aircraft in order for this market to be realized
 - Small improvements in the aircraft (i.e., engine TSFC, structural mass reductions, etc.) can have a <u>significant</u> <u>positive impact on financial viability</u> due to impacts on \$/RPM

Key Finding | Market

The average airline passenger remains too price sensitive for high-speed flight, but premium passengers are still willing to pay for speed/time

- Worsening macro-economic factors have caused increased price sensitivity, however long-term market growth has improved
- High-speed flight will marginally grow the overall commercial air passenger market (by accessing a small, untapped market for unrealized travel due to current time constraints)
- Surveys confirmed that additional factors such as degree of cabin outfitting/amenities (i.e., the experience) and the environmental impact of the travel are considerations/concerns in willingness to travel

Key Finding | Aircraft

Mach 1.5-2, 40-50 pax, 4,500-5,700 nmi range were the preferred aircraft configuration that kept masses and complexity low, enabling lower development and production costs

Key Features of Mach 1.5-2 Aircraft

- "Best" fuel option of Jet-A to SAF or straight to SAF, relative to LNG or hydrogen
- Least technical hurdles and complexity
- Lower masses
 - < 200klb MTOW
 - < 90klb MEW
- Long ranges more feasible from vehicle closure sensitivity
 - Up to 5,700-6,100 nmi
- **Lowest emissions**
 - 0.25 0.40 CO₂e kg/km/pax (still ~5x higher than subsonic A/C)
- **Lowest noise level for takeoff**
 - < 92 EPNdB

Key Finding | Financials

For the optimal aircraft configuration, spreading the financial risk between <u>multiple</u> <u>operators</u> enables improved business cases for all stakeholders

- Splitting demand tempers initial investments by the <u>operators</u> while still enabling a high production rates by the <u>manufacturer</u>
 - Reduces maximum exposures for both operators and is therefore a less risky venture overall
- This enables the engine and airframe manufacturer to reduce their list prices, resulting in operators breaking even sooner
 - Faster break-even points are driven by lower ticket prices that generate higher market capture and revenue

Key Finding | Environment

SpaceWorks[.]

Takeoff noise, sonic booms, and emissions continue to pose a major challenge to highspeed flight and will need to be addressed before a high-speed market can be realized

- High-speed aircraft are chasing regulations that continue to become more stringent as climate concerns become more prevalent
- Advanced technology will help address these issues - but requires time and money
- Alternative fuels can mitigate the emissions challenge, but production scale of these fuels need to be <u>significantly</u> higher
- Shorter flight times appear to offer benefits with regard to radiation exposure compared to longer duration subsonic travel

Recommendations

1. NASA and FAA should continue their efforts to enable and permit overland supersonic flight

- Potential to drastically increase market size by six-fold and increase access to providers
- Provides more robust business cases for supersonic / hypersonic developers and operators

2. In the meantime, enact a two-phased "leader-follower" strategy to allow markets and technology to mature

- First-to-market transoceanic "leader" aircraft in Mach 1.5-2 range aimed at addressing high demand routes
- "Follower" aircraft designed to address growing and/or newly emerging markets via further technology improvements (longer range, higher speeds, etc.)
- Allows for initial regulatory requirements and certification processes to be established and matured for lower speed systems (Mach 1.5 to 2) before attempting higher speeds (Mach 3+)

3. Continue investments in supersonic and hypersonic aircraft technologies, particularly in the areas of:

- Engine fuel efficiency and emissions
- Takeoff noise
- Aircraft and engine structures/materials

4. Continue investment in SAF with further exploration of LNG and LH2 viability

- Supply of all alternative fuels needs to be orders of magnitudes greater
- LNG shows promise while LH2 is economically viable for some simulated solutions

NASA SBIR Contract #80NSSC22C0008

Future Work

Economic Model Improvements (for MIDAS)

- Enable more refined route-based ticket pricing
- Permit dynamic ticket pricing in competitive environments
- Incorporate more ground operations details for pre-flight/post-flight maintenance and/or overhaul

Environmental Impact Factors

- Enable technology modeling for noise reduction, sonic boom mitigation, and improved emissions to be implemented into the aircraft design & sizing process/model
- Evaluate high-fidelity HSCEV reference vehicles that are more explicitly addressing these challenges and benchmark against vehicle sizing models used to date

Additional Scenario Studies

- Evaluate PTP scenarios with staggered aircraft retirement rates that would more easily enable block upgrades
- Perform more refined analysis of the "leader-follower" scenarios
 - o Consider more synergies between manufacturers
 - o Combine trade/sensitivity studies to evaluate multiple scenarios
- Reduce trade space to focus on specific aircraft
 - o Target more company-specific economic metrics and include more risk factors for each operator and manufacturer
- Conduct further analysis into the airport operations that would make the most sense for high-speed aircraft and the expected passenger class that would be served

Market Ideation

- Evaluate integration with Regional Air Mobility (RAM) transportation through hub-spoke architecture
- Continue to investigate and characterize the market and public interest

SPACEWORKS.AERO

info@spaceworks.aero | 3980 Dekalb Technology Parkway Suite 760 | Atlanta, GA 30340 USA | 770.379.8000

