

Progress in Magnetic Gearing for Aeronautics and Space Applications

Justin J. Scheidler

NASA Glenn Research Center Rotating and Drive Systems Branch justin.j.scheidler@nasa.gov

The research presented herein was conducted with multiple NASA colleagues, notably Thomas Tallerico, Zachary Cameron, and Vivake Asnani

This work was funded by:

NASA's Aeronautics Research Mission Directorate – Revolutionary Vertical Lift Technology Project NASA's Space Technology Mission Directorate – Game Changing Development Program

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

Why Gears?

- + Optimized motor & fan
- More complex
- Potentially less reliable

Aero applications	Space applications
 Electric machines op Sized primarily by torque → high tip spect Fans / props optimize to relatively low speeds Higher efficiency by moving more air slower Tip speed < Mach 1 & can't block air flow 	ed maximizes specific power, minimizes size
• The speed < Mach T & can't block all now Direct drive often heavier and/or less efficient	Direct drive very often impractical

Geared drive

fan /

prop

Magnetic Gears vs Mechanical Gears

Mechanical gearing Magnetic gearing Pros Pros Mature technology Non-contact + High to very high No lubrication torque/mass Low maintenance (specific torque) High to very high efficiency High to very high Easily integrated in electric efficiency machines (magnetically-geared Cons motor) Contact-related wear Potentially low vibration & failure Cons Requires Magnet temperature limit lubrication system(s) Individual magnet interaction Routine & costly maintenance weaker than 1 gear tooth pair Strong tonal vibration & cabin noise Specific torque lower than mechanical

- Meshing gear teeth replaced by non-contacting permanent magnets
- 1st invented in 1901
- A stronger magnet = higher torque capacity

Historical development of permanent magnets

Magnetic spur gear

demo showing very low torque capacity (magnet type/grade unknown)

What are Magnetic Gears?

- Can only compete with mechanical gears if multiple magnets engaged simultaneously
 - Concentric-type magnetic gear invented in 2001

Analogy between mechanical planetary gear and concentric magnetic gear

National Aeronautics and Space Administration

NASA's R&D for Aeronautics Applications

	Prototype			
	PT-1	PT-2	PT-3	PT-4
Magnetic Gear Type	Concentric			
Gear Ratio	4.25 : 1	4.83 : 1	4.83 : 1	12.1 : 1
Rated Output Speed, rpm	4,500	4,500	4,500	661
Peak Output Torque, Nm	34	124	112	226 (<mark>est.</mark>)
Size, mm	Ø141 x 92	Ø154 x 114 Ø2		Ø212 x 131
Specific Torque, Nm/kg	20	46	42	49 (<mark>est.</mark>)

NASA's R&D for Aeronautics Applications

Historical view of NASA's advancement

Answer: very efficient when carefully designed

- Laminate Electrical Components
 - Laminated Electrical Steel
 - Laminated Magnets
 - Increases effective (Bulk) resistivity
- Use non-electrically-conductive (non-metallic)
 Structures
 - Plastics
 - Composites
 - Ceramics (\$\$)
- 1. Tallerico, T.F. et al., In *Proc. AIAA/IEEE Electrified Aircraft Technologies Symposium*, 2019. https://ntrs.nasa.gov/citations/20190030509

Example optimization results with 2 mm magnet laminations [1] (gear with 120 Nm output @ 4,000 rpm [50 kW])

- Measurements of NASA's prototype PT-3 [2]
 - 0.1 mm iron lamination
 - 1 mm magnet lamination
 - Downside: only 80% magnet fill factor
- Extrapolated efficiency exceeds 99.5% at low speeds
- > 99% efficiency up to about 1,300 rpm output speed
- ~97% efficiency at max operating torque & speed

2. Scheidler, J.J. et al., VFS Propulsion & Power Technical Meeting, 2019. https://ntrs.nasa.gov/citations/20190032574

National Aeronautics and Space Administration

Are They Temperature Sensitive?

- Answer: Yes
- As magnet temperature *increases*...
 - Magnets Weaken
 - Torque Decreases
 - Efficiency Increases (at a given operating point)
 - Eventually magnets demagnetize
- Losses are distributed over gear volume (not line contact)
- Lubrication/Liquid cooling not needed
 - NASA's prototype PT-4 is self cooled with centripetally-pumped flow, but magnets predicted to stay ≤ 80 °C
- 3. Tallerico, T.F. et al., In *Proc. AIAA/IEEE Electrified Aircraft Technologies Symposium*, 2019. https://ntrs.nasa.gov/citations/20190030679

Example: NASA's PT-4 with neodymium magnets [3]

Temperature (°C)	Torque, Nm (2D est.)	PT-4 Total Efficiency	
20	370	98.5%	
80	303	99%	
100	270	-	

Can mitigate the problem up to ~350 °C with proper magnet selection

Answer: it's complicated

- NASA has improved SOA of magnetic gear specific torque
- Magnetic gears are light compared to electric motors
 - Magnetic gear ~ 35 kW/kg
 - Motor ~ 10 kW/kg

Prototype	Specific Torque, Nm/kg
Previous SOA	~20
PT-1	20
PT-2	46
PT-3	42
PT-4	49 (<mark>est.</mark>)

11

Scaling with size [4]

Magnetic specific torque (torque / magnetic mass) scales linearly with radius

Scaling with torque

Specific torque (torque / total mass)

12

4. Tallerico, T.F. et al., VFS Propulsion & Power Technical Meeting, 2019. https://ntrs.nasa.gov/citations/20190033112

National Aeronautics and Space Administration

How Do They Compare To Mechanical Gears

Example: magnetic gear vs mechanical gear [4]

(OH-58 helicopter, final planetary stage)

- <u>Mechanical active mass</u>: 8.0 kg (gears + planet bearings)
- Active mass 2-3 x heavier with current capabilities
 - Improve by: thinner modulator or air gaps, stronger magnets

OH-58 Magnetic Gear			
Level of Tech	Mechanical Airgaps	Modulator Thickness	Magnetic Mass
NASA Current Aero Prototype	1 mm	2 mm	22.0 kg
Improved Modulator Design	1 mm	1.3 mm	20.3 kg
Improved Manufacturing	0.5 mm	2 mm	16.4 kg
Improved Manufacturing & Design	0.5 mm	1.3 mm	12.0 kg
Highly Improved Manufacturing	0.25 mm	1.3 mm	8.7 kg

5. Tallerico, T.F. et al., In *Proc. AIAA/IEEE Electrified Aircraft Technologies Symposium*, 2023. https://ntrs.nasa.gov/citations/20230006121

National Aeronautics and Space Administration

Example: magnetically-geared motor vs alternatives [5]

(Quadrotor, 100 kW hover, 1,000 rpm)

• Lack of gear lubricant in magnetic gears is a significant benefit for space applications

Current approaches	Current penalty
Use dry film lubricant on contacting surfaces	(often significant) reductions in life & efficiency
Heat the gearbox/motor to ≥ -60 °C & use grease	Increased complexity & mass; less power for
lubrication	science

Temperature of space environments compared to grease lubrication regime

14

NASA's Motors for Dusty & Extremely Cold Environments (MDECE) Project

- R&D & ground test project, Oct 2020 Sep 2024
- **Goal:** Develop 2 <u>unheated</u> rotational actuators that can operate for a <u>long duration in extreme cold</u> (ambient temperature of -243 °C (30 K))
 - Evaluate life in controlled, representative lunar dust environment with and without lunar simulant
- **Approach:** Eliminate gear lubrication 1 actuator with non-contact gearing, 1 actuator with no gears
- Key Performance Parameters: Min. operating temperature

 dust-free life
 efficiency of magnetic actuator
 output resolution of piezoelectric actuator
- **Relevant environment:** Broadly applicable; focusing on lunar PSR
- Promising applications:
 - <u>Magnetic actuator</u>: rover mobility in-situ resource utilization robotic arm joints • rotors for powered flight
 - <u>Piezoelectric actuator</u>: precision pointing (e.g., laser communication) • low power robotic arm joints

NASA's Motors for Dusty & Extremely Cold Environments (MDECE) Project

- Expect actuator to be operable over full predicted internal temperature range: -249 °C (24 K) to 98 °C (371 K)
 - Notional mission to lunar south pole in and out of permanently shadowed region
- Materials selection
 - Strongest permanent magnets (NdFeB) susceptible to radiation- & cryogenic temperature-induced degradation; SmCo better choice
 - Eliminate or carefully design composite materials
 - Anisotropic and non-homogeneous thermal expansion
 - Epoxy/varnish selection not trivial
 - Outgassing, cryo rating, softening at above room temperature, thermal expansion
- 0.25 mm air gaps are achievable with careful structural & mechanical design
- Cryo-capable bearings are life limiting component, but magnetic gear design can have strong influence on bearing loads

16

MDECE Project – Development Status

- Critical Design Review completed July 2023
- Predicted actuator life (over 150 K to upper limit)
 - 46,500 output revolutions (bearing limited)

Specific	cation	Unit	Threshold	Goal	Predicted
Torque	Continuous	Nim	≥ 10	5	105
output	Short duration	INIII	≥ 20	8	≥ 208
Speed	Continuous	rom	≥ 2	≥2	2
Output	Short duration	rpm	> 0	1.5	1.5
Maaa		kg	g ≤ 4.73 ≤ 3.15	< 0.45	4.55 [†]
Mass	5.30 [‡]				
Physica	Physical size aspect ratio - 0.50 to 1.75		1.75	1.44	
Envelop	e volume	cm ³	≤ 1,440	≤ 960	2,317

Key specs

[†] No resolver

[‡] With resolver (may not be needed)

Steady state condition	Efficiency	
	Early in life	Later in life
Goal cold operation (-243 °C regolith, shadowed)	88.4%	78.3%
Goal hot operation (40 °C regolith, in sun at 85 °S)	85.1%	75.4%

- Assembly of proof-of-concept actuator in progress [6]
- Procurement of hardware for fully-functional actuator in progress

Sun gear for proof-of-concept actuator's magnetically-geared motor

proof-of-concept cycloidal magnetic gear

18

5. Scheidler, J.J. et al., In *Proc. European Space Mechanisms Symposium*, 2023.

National Aeronautics and Space Administration

	 2019-2020 / Phase 1 / FluxMagic, Inc. & Portland State University 		
	Magnetically Geared Aircraft Drivetrain [1]		
Aero	 Design, manufacture, & testing of magnetic gear with 12.1 : 1 ratio 		
applications . 2019-2020 / Phase 1 / US Hybrid Corp. & Texas A&M University			
	 Robust, Compact, and Low-Maintenance Magnetic Gear System [2] 		
	 Design of magnetically-geared motor for electrified aircraft propulsion 		
 2020-2021 / Phase 1 / US Hybrid Corp. & Texas A&M University 			
	 Magnetic Gearing Applications for Space [3] 		

Space applications

- Design magnetic gearbox with 1000 : 1 ratio for extremely cold space environments [4,5]
- 2023-2024 / Phase 1 / FluxWorks LLC & University of Texas at Dallas
 - Scalable Magnetically Geared Actuator for Future Missions in Dusty & Extremely Cold Environments [6]
- 1. https://sbir.nasa.gov/SBIR/abstracts/19/sbir/phase1/SBIR-19-1-A1.04-3853.html
- 2. https://sbir.nasa.gov/SBIR/abstracts/19/sbir/phase1/SBIR-19-1-A1.04-3812.html
- 3. https://sbir.nasa.gov/SBIR/abstracts/20/sbir/phase1/SBIR-20-1-Z5.05-5968.html
- 4. Praslicka, B. et al., 2021 IEEE International Electric Machines & Drives Conference (IEMDC), Hartford, CT, 2021. https://doi.org/10.1109/IEMDC47953.2021.9449504
- 5. Hasanpour, S. et al., 2023 IEEE International Electric Machines & Drives Conference (IEMDC), San Francisco, CA, 2023.
- 6. https://sbir.nasa.gov/SBIR/abstracts/23/sbir/phase1/SBIR-23-1-Z13.05-1119.html

Comments on feasibility

- Feasible for aero applications, although some applications will hinge on mechanical design & manufacturing improvements or better understanding of required torque margin
- More feasible for space applications, because it enables cold actuation

Technical barriers to adoption

- Need to demonstrate life & eventually reliability
- Need to mitigate life limitations of cryo-capable bearings
 - Improve bearing tech or further evaluate alternative magnetic gear configurations

Potentially fruitful areas of future research

- Design & demonstration of high efficiency with minimal reduction in magnet fill factor
- New magnetic gear configurations (e.g., ones tailored for high gear ratio that avoid high bearing loads)

20

THANK YOU

