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Abstract – Here, we develop and test an artificial intelligence (AI)-based approach to 10 

monitor major Brazilian aquifers. The approach combines Gravity Recovery and Climate 11 

Experiment (GRACE) data and ground-based hydrogeological measurements from 12 

Brazil’s Integrated Groundwater Monitoring Network at hundreds of wells distributed in 13 

twelve aquifers across the country. We tested model ensembles based on three AI 14 

approaches: Extreme Gradient Boost, Light Gradient Boosting Model and CatBoost, 15 

followed by a Linear Regression (LR) step. The approach is further boosted with wavelet 16 

and seasonal decomposition processes applied to GRACE data. To determine the AI-17 

based model’s sensitivity to data availability, we propose four experiments combining 18 

hydrogeological measurements from different aquifers. Groundwater storage estimates 19 

from the Global Land Data Assimilation System (GLDAS) are used as benchmark. A 20 

sensitivity analysis shows that the LR-based model ensemble is the best suited and to 21 

reproduce groundwater storage change in all studied Brazilian aquifers. Results show that 22 

the proposed approach outperforms GLDAS in all experiments, with an RMSE value of 23 

2.68cm for the experiment that covers all monitored wells in Brazil. GLDAS resulted in 24 

RMSE=6.76cm. Using our AI model outputs, we quantified the groundwater storage 25 

change of two major aquifers, Urucuia and Bauru-Caiuá, over the past two decades: -26 

31km3 and -6km3, respectively. Water loss is driven by a prolonged drought across most 27 

of the country and intensification of groundwater pumping for irrigation. This study 28 

demonstrates that combining satellite data and AI can be a cost-effective alternative to 29 

monitor poorly equipped aquifers at the continental scale, with possible global 30 

replicability.   31 
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Key Points 32 

• An Artificial Intelligence (AI)-based model was built to monitor groundwater in 33 

Brazilian aquifers using satellite gravimetry data  34 

• AI-based groundwater changes outperformed Global Land Data Assimilation 35 

System (GLDAS) estimates in all proposed experiments 36 

• Results show that satellite-based AI techniques can be an effective solution for 37 

groundwater monitoring in poorly equipped regions  38 



 3 

1. Introduction 39 

Proper aquifer monitoring at different scales faces enormous difficulties related to 40 

geological factors such as the complexity and diversity of formations and their 41 

corresponding structures. Difficulties are accentuated by complexities related to hydraulic 42 

properties of aquifers, recharge zones, groundwater exploration, land use and land cover 43 

change, as well as meteorological and climate variability. There is definitely a demand 44 

for global and operational hydrogeological monitoring, knowing that groundwater is the 45 

largest unfrozen freshwater stock on the planet and tightly connected to surface water, 46 

reservoir and lakes (Condon et al., 2021). In 2002, over 1.5 billion people were estimated 47 

to be directly supplied  by groundwater (Alley et al., 2002). This number has risen to 2 48 

billion people in 2020 (UNESCO, 2022). It is estimated that 43% of the total water used 49 

in irrigation has underground origin (Siebert et al., 2010). Countries such as the United 50 

States and India use approximately 25% and 40% of groundwater resources to supply 51 

their respective needs (Getirana et al., 2021), resulting in significant aquifer depletions 52 

(e.g., Rodell et al. 2018; Nie et al. 2019). In Brazil, about 57% of its municipalities have 53 

groundwater supply to some extent (IBGE, 2020). Human activities and climate change 54 

have been changing the hydrological cycle, which, in turn, may have an impact on 55 

aquifers worldwide (Chagas et al., 2022; Getirana et al., 2021, 2022; Richey et al., 2015; 56 

Rodell et al., 2018). Therefore, it is essential to understand groundwater spatiotemporal 57 

dynamics to ensure its sustainable use, enabling an optimal management that can affect 58 

the various sectors of society such as agriculture, power generation and water supply. 59 

Groundwater monitoring networks have been based on observation wells 60 

associated with the creation of conceptual and mathematical models (Condon et al., 61 

2021). In recent decades, various regional and global hydrogeological models have been 62 

developed and reported in literature (Condon et al., 2021; Gleeson et al., 2021; de Graaf 63 

et al., 2015, 2017; Kollet et al., 2018; Maxwell et al., 2015; Reinecke et al., 2019). In 64 

addition, large-scale hydrological model outputs, such as those produced by the Global 65 

Land Data Assimilation System (GLDAS; Rodell et al., 2003), can be used as a tool to 66 

approximate the hydrogeological behavior in regions with a lack of monitoring. Among 67 

GLDAS models, the Catchment land surface model (CLSM; Koster et al., 2000) uses 68 

atmospheric boundary conditions associated with a partition of the Earth's surface into 69 

defined topographic basins, modeling hydrological processes and explicitly represents the 70 

groundwater dynamics in a simplified way (Getirana et al., 2020; Li et al., 2019). Such 71 
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models are robust in their structure and have the ability to provide the behavior of surface 72 

water and groundwater at continental and global scales. However, these models still need 73 

to be adjusted for optimal regional use (Getirana et al., 2020). 74 

A new frontier has been opened for the study of groundwater by data provided by 75 

the Gravity Recovery and Climate Experiment (GRACE) (Tapley et al., 2004) and 76 

GRACE Follow On (GRACE-FO) missions, which measure changes on global 77 

gravitational forces. Among those changes, there are those promoted by the water cycle. 78 

They can be mapped by satellites and later converted into terrestrial water storage (TWS) 79 

variability. Several studies have used data from GRACE missions to capture  regional 80 

groundwater behavior and to assess measurements related to groundwater levels (Andrew 81 

et al., 2017; Frappart and Ramillien, 2018; Getirana et al., 2020; Scanlon et al., 2012, 82 

2018). In Brazil, the use of GRACE data to understand the water behavior can be found 83 

in recent studies (Getirana, 2016; Hu et al., 2017;  Gonçalves et al., 2020; Getirana et al., 84 

2021).Li et al., (2019)assimilated GRACE data into a hydrological model globally and 85 

analyzed groundwater variations, comparing model results to in situ observations. 86 

There is a clear contribution of GRACE data assimilation (DA) into hydrological 87 

models in the representation and prediction of hydrological processes (Getirana, Jung, et 88 

al., 2020; Getirana, Rodell, et al., 2020; Girotto et al., 2017; Jung et al., 2019; Kumar et 89 

al., 2016; Zaitchik et al., 2008). Nevertheless, new tools based on the so-called artificial 90 

intelligence (AI) algorithms have also proved to be very efficient for the pattern 91 

recognition of groundwater behavior worldwide (Afzaal et al., 2020; Huang et al., 2019; 92 

Iqbal et al., 2021; Lähivaara et al., 2019; Ren et al., 2021; Tao et al., 2022; Zhang et al., 93 

2020). AI algorithms, associated with GRACE-based TWS variations can be of great 94 

value in the survey of aquifers. Groundwater studies using AI and GRACE data have 95 

been carried out for some years (Gemitzi & Lakshmi, 2017; Sun, 2013; Sun et al., 2019). 96 

Wave decomposition methods are also very useful in hydrological studies for flow 97 

prediction, seasonal analysis or even hydrogeological studies (Ashraf et al., 2022; Basu 98 

et al., 2022; Erkyihun et al., 2016; Qi & Neupauer, 2008). Hybrid use of AI and wavelet 99 

decomposition techniques turned out to be an important and active research area, resulting 100 

in more accurate models in water resources applications, due to its great ability to 101 

discriminate non-stationary and nonlinear trends that occur at different scales in 102 

groundwater time series (e.g., Tao et al., 2022). For example, Andrew et al. (2017) 103 
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presented the possibility of disaggregating GRACE data using wavelets as a viable path 104 

to study groundwater under different observational spatiotemporal scales. 105 

Brazil’s Integrated Groundwater Monitoring Network (RIMAS), conceived and 106 

built by the Geological Service of Brazil, initiated in 2010 and is currently composed of 107 

409 wells, monitoring 24 aquifers across the country. The distribution of wells across the 108 

monitoring network is not homogeneous, leading to constraints in monitoring the 109 

spatiotemporal variability of the nation’s aquifers. Also, only porous, free or semi-110 

confined aquifers have been monitored by RIMAS. Such a sparse network is substantially 111 

less dense than those found in other large countries, such as the U.S. and India, which 112 

have more than 16,000 and 22,000 wells, respectively (Getirana et al., 2021). That leads 113 

to a limited groundwater monitoring in Brazil, restricting our knowledge on their 114 

dynamics and limiting the management and optimized use of the nation’s aquifers. The 115 

absence of data also limits the development and parameterization of hydrological and 116 

hydrogeological models to monitor Brazil’s water resources, resulting in inaccurate water 117 

flow and storage calculations, affecting various sectors of society such as agriculture, 118 

energy generation and domestic water supply (Getirana et al., 2021). 119 

Considering the limitations described above, this work presents a methodology 120 

that combines point-based in situ groundwater measurements and spatially distributed 121 

satellite-based TWS, in addition to wavelet and seasonal decomposition techniques and 122 

AI as tools to understand the behavior of large aquifers in Brazil. Complementarily, a 123 

trend analysis was applied allowing us to estimate the water storage change in two major 124 

Brazilian aquifers: the Urucuia and Bauru-Caiuá. The main advantage of the proposed 125 

methodology is the use of a hybrid model (wave decomposition + ensemble model) with 126 

the application of four different AI techniques. Science questions addressed in this paper 127 

focus on (1) whether large-scale groundwater spatiotemporal variability can be estimated 128 

using GRACE data in an AI framework; (2) how accurate these estimates are compared 129 

to existing model-based estimates; and (3) based on such estimates, how major Brazilian 130 

aquifers have changed in the past two decades.  131 

There have been a few attempts to simulate global-scale groundwater dynamics 132 

(Gleeson et al., 2021; de Graaf et al., 2015; Li et al., 2019; Maxwell et al., 2015; Reinecke 133 

et al., 2019). These models vary as a function of the numerical representation of physical 134 

processes and data assimilated into the modeling system. Here, GLDAS-based 135 

groundwater simulations are used as the benchmark to determine the potential of the 136 
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proposed methodology. GLDAS simulations are those derived from CLSM with the 137 

assimilation of GRACE data (Li et al., 2019). We considered such simulations as our 138 

benchmark because they have been comprehensively evaluated globally, are widely used 139 

and easy operational availability. Also, it is currently the only temporally continuous and 140 

spatially distributed groundwater product freely and routinely available over Brazil. We 141 

expect that the proposed methodology can be used for the management of large Brazilian 142 

aquifers, in addition to enabling the monitoring of groundwater in places where 143 

monitoring networks are precarious, inexistent, or with heterogeneous hydrogeological 144 

and climatic conditions.  145 

2. Case study and Datasets 146 

2.1. In situ data from aquifers 147 

Aquifers monitored by RIMAS total 2.84 million km2, or 34% of the Brazilian 148 

territory. Their sizes vary from 884km2 (Missão Velha) to 774,385km2 (Içá), with 149 

monitoring coverage varying from 3 (Ronuro) to 71 (Urucuia) wells. The RIMAS 150 

monitoring began in 2010 and its spatial distribution is shown in Fig. 1. Groundwater 151 

measurements used here spans from August 2010 to June 2020. The monitoring network 152 

density varies significantly, with Missão Velha being the aquifer with the highest density 153 

of wells (180km2/well) and Içá with the lowest density (130,000km2/well). Such a 154 

heterogeneous density is mostly explained by the way the network is installed, based on 155 

the following criteria: sedimentary aquifers, socioeconomic importance, water use for 156 

public supply, natural vulnerability and risk aspects, spatial representativeness of the 157 

aquifer and existence of wells for monitoring (Mourão, 2009). Effective porosity (ne) 158 

values for each aquifer were estimated based on available data found in the literature 159 

(please refer to Supporting Table S1 for a full list), varying from 0.03 in the Cabeças 160 

aquifer to 0.18 in the Alter do Chão aquifer.  161 

RIMAS is designed based on wells equipped with automatic level meters 162 

collecting data at the hourly step, which are subsequently subjected to consistency, 163 

treatment, and availability processes (http://rimasweb.cprm.gov.br/layout/). The 164 

estimated error of the measurements is the minimum resolution of the equipment, which 165 

varies between 0.01cm and 1.5cm. More specifically, porous, free, semi-confined and 166 

wells in areas of crystalline rocks are addressed in this study, focusing on the responses 167 

that different lithologies might produce and how that information could be translated into 168 

the building AI model approach we are developing in-here. Geological and 169 

http://rimasweb.cprm.gov.br/layout/
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hydrogeological description of the aquifers monitored by RIMAS can be found at 170 

http://rimasweb.cprm.gov.br/layout/apresentacao.php. 171 

The RIMAS dataset is available at the hourly time step. Monthly groundwater 172 

level change (dhi) at each well was computed by first converting the time series to 173 

monthly means, then subtracting the value in the previous month (ηi-1) from the 174 

subsequent one (ηi), as follows: 175 

 𝑑𝑑ℎ𝑖𝑖 = ηi − ηi−1 (1) 

where i stands for months of the time series. Each dhi value was then subtracted by their 176 

respective long-term mean, and multiplied by their corresponding aquifer ne value, 177 

resulting in the time series used as input in our approach, named hereafter as ΔGWSOBS 178 

[cm]. ne was used to convert groundwater level measurements to vertical water storage 179 

column. Equation 2 shows the calculation of ΔGWSOBS for each month: 180 

Importantly, the RIMAS data observed here represent the variation in 181 

groundwater storage (ΔGWS). 182 

2.2. Terrestrial water storage 183 

The Gravity and Recovery and Climate Experiment (GRACE) satellites mapped 184 

Earth's gravity field from April 2002. Temporal variations in gravity can be used to infer 185 

changes in total terrestrial water storage (TWS; Li et al., 2019). GRACE RL06 Mascon 186 

data, processed by the Center of Space Research (CSR; Save et al., 2016), is retrieved at 187 

0.25-degre spatial resolution and monthly time step from April, 2002 to present with gaps 188 

throughout the period. Initially, monthly GRACE-based TWS values had uncertainties 189 

estimated at 1cm for areas equal to or greater than 400,000km2 (Swenson et al., 2003). 190 

However, such estimates had a significant improvement, as described in Ditmar (2018), 191 

obtaining more refined results for TWS approximations at 0.25-degree spatial resolution. 192 

Such Mascon-based products have lower errors compared to spherical harmonics 193 

(Rowlands et al., 2010). Even maintaining a resolution limited by the nature of the 194 

GRACE data and uncertainties in the TWS of 1cm, these estimates allow a more detailed 195 

study of hydrological and hydrogeological basins with dimensions smaller than those 196 

 ΔGWSOBS(i) =  [𝑑𝑑ℎ𝑖𝑖 − mean(𝑑𝑑ℎ)].𝑛𝑛𝑒𝑒 (2) 

http://rimasweb.cprm.gov.br/layout/apresentacao.php
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indicated by Save et al. (2016) as demonstrated in Melati et al. (2019) and Gonçalves et 197 

al. (2020), both carried out in Brazil. 198 

2.3. GLDAS-based groundwater 199 

The CLSM with GRACE-DA was chosen among the different GLDAS products 200 

for presenting an explicit and more accurate representation groundwater storage (GWS). 201 

CLSM is a state-of-the-art energy and water balance model of the Earth's surface, 202 

designed for use in models of global earth systems. The model simulates a dynamic water 203 

table with a spatial distribution related to the topography of the basin (Bechtold et al., 204 

2019). CLSM does not model variations in the water table. Instead, GWS is derived from 205 

the subtraction of the water stored in the root zone from that stored in the vertical soil 206 

profile, whose capacity is determined by the CLSM bedrock depth parameter. The model 207 

returns GWS anomalies, among other hydrological variables (Li et al., 2019). CLSM 208 

outputs are available daily at 0.25°. CLSM-based GWS (GWSCLSM) was also converted 209 

to variations in storage (ΔGWSCLSM), following the approach applied to RIMAS. Details 210 

about the model configuration and global evaluation can be found in  Li et al. (2019). 211 

3. Methodology 212 

Briefly, the methodology follows four steps. First, wave decomposition (wavelet 213 

and seasonal) on the TWS values for Brazil. Second, interpolation of the values obtained 214 

by the wavelets for the original time scale. Third, the decomposition results are associated 215 

with the RIMAS measurements, according to latitude, longitude and time. 216 

Hydrogeological characteristics derived from the Hydrogeological Map of Brazil (HMB) 217 

(Diniz et al., 2014) are also associated with RIMAS wells according to latitude and 218 

longitude. Finally, the dataset is inserted into an AI model to approximate the 219 

groundwater storage (ΔGWSOBS) values obtained by the RIMAS wells (Fig. 2). The input 220 

data in the model are GRACE-based TWS, TWS decompositions (wavelet and seasonal) 221 

and HMB’s hydrogeological description. ΔGWS estimates from the CLSM GRACE-DA 222 

(ΔGWSCLSM) are used as the benchmark. Here, we considered the nearest CLSM grid 223 

point of each well. 224 

A sensitivity analysis of AI models was conducted, looking for models that best 225 

represent the groundwater storage change from GRACE satellite observations. The 226 

metrics used in selecting the models are described in Section 3.2. The sensitivity test 227 
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evaluated 40 different architectures for twelve AI models (Fig. 3) and the architecture 228 

with the best calibration metrics was selected for further evaluation.  229 

GRACE-based TWS can be decomposed into five main components: snow water 230 

equivalent, canopy interception, soil moisture, surface water and groundwater. Previous 231 

studies have attempted to decompose GRACE signals using hydrological models (e.g., 232 

Getirana et al., 2017; Scanlon et al., 2018).  Here, we assume that GRACE components 233 

can be disaggregated and studied through data decomposition techniques. 234 

Wavelet transform (WT) is a technique that has proven to be effective for 235 

capturing nonlinear relationships in time series (Tao et al., 2022). It removes noise in the 236 

data and allows a better performance in AI models. Several hydrogeological studies have 237 

combined these techniques and demonstrated the ability to approximate variations in 238 

groundwater levels from different data sources (Barzegar et al., 2017; Ebrahimi & Rajaee, 239 

2017; Khalil et al., 2015; Moosavi et al., 2013, 2014; Yosefvand & Shabanlou, 2020; Zare 240 

& Koch, 2018). Here, GRACE-based TWS was decomposed using two techniques: the 241 

wavelet transform and the seasonal decomposition.  242 

WT is a mathematical tool to decompose functions hierarchically, and can be 243 

considered as a technique for transforming a signal, sampled in the time domain, into a 244 

frequency-scaled domain, defining different components of the signal frequency 245 

spectrum (Stollnitz et al., 1995). WT consists of approximating a function by a linear 246 

combination of basic functions (also called wavelets), obtaining a representation of the 247 

original function. The application of wavelets does not necessarily require the stationarity 248 

of the time series as a prerequisite, being appropriate for the analysis of irregularly 249 

distributed and extreme events (Torrence & Compo, 1998). For non-continuous 250 

functions, the use of the discrete wavelet decomposition (DWT) is recommended 251 

(Daubechies, 1992), as in the case of this study. To apply the wavelet transform, the 252 

highest possible decomposition level of the TWS signal was tested, resulting in five 253 

levels. The wavelet family chosen for the decomposition was db3 (Daubechies, 1992). 254 

The signal extension model was observed, seeking the best possible application of DWT. 255 

The data normalization mode adopted for the WT was the antireflect, signal is extended 256 

by reflecting anti-simmetrically about the edge sample (PyWavelets, 2022). After 257 

decomposing the TWS with DWT, the results are a sequence compressed in one of the 258 

dimensions. As the TWS is being treated in three dimensions (i.e., latitude, longitude and 259 

time), and decomposed into the time dimension, the transform results reduce the time 260 
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dimension. The time scale reduction occurs because DWT employs a grid where the 261 

mother wavelet is scaled by power two, expressing the results of each decomposition 262 

level as half of the previous level. Details on the DWT approach adopted here can be 263 

found in Rhif et al. (2019). As the TWS input data has 194 data points per time series, 264 

DWT returns the approximation values A5 (194 values) and details, namely D1 (96 265 

values), D2 (48 values), D3 (24 values), D4 (12 values) and D5 (6 values). This method 266 

adapts a smooth variation of values for locations without data. This procedure requires 267 

the application of a mathematical function that minimizes the curvature of the surface, 268 

obtaining a result where the response is smooth and the surface passes exactly through 269 

the given entry points (Dierckx & Schumaker, 1994; Marcuzzo et al., 2012).  270 

TWS time series has also passed through the seasonal decomposition method, 271 

which returns a moving average around an established window value. The chosen 272 

window size was 12 months, seeking to observe the annual variations in the data. The 273 

model is additive and suggests that the components are added together as follows 274 

(Perktold et al., 2022): 275 

    𝑇𝑇𝑇𝑇𝑇𝑇[𝑡𝑡] =  𝑇𝑇[𝑡𝑡] + 𝑇𝑇[𝑡𝑡] + 𝑒𝑒[𝑡𝑡] (3) 

The results are represented in three outputs at each time step [t], seasonality (S), 276 

trend (T) and residual (e). T is an increasing or decreasing value in the series, S is the 277 

short-term repetitive cycle in the series, and e is the random variation of the series. 278 

HMB-based hydrogeological characteristics inserted into the model are: 279 

geological group, lithological description of the group, the type of aquifer, the degree of 280 

fracturing and the productivity of the aquifer. These non-numerical data were converted 281 

into zero and one values (0, 1) by the one-hot function (Scikit-learn, 2021) to be better 282 

used in the model.  283 

Finally, the assessment of groundwater dynamics in two major aquifers in Brazil 284 

(Bauru-Caiuá and Urucuia) involved the application of statistical tests, Mann-Kendall 285 

(Kendall, 1948; Mann, 1945; Sneyers, 1991) and Sen (Sen, 1968), at a confidence level 286 

of 95%. The tests were applied over the RIMAS measurements between the years 2010 287 

and 2020. The Sen test provided slope values for the observed data in the wells, which 288 

were subsequently interpolated using the ordinary kriging method (Ahmed et al., 2008; 289 

PyKrige, 2022) onto the GRACE data grid. Kriging was chosen because it is a regression 290 

method widely used in geostatistics. It assumes data collected from a given population 291 
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are correlated in space (Peeters et al., 2010; Ruybal et al., 2019; Verdin et al., 2015). The 292 

change in groundwater volume was determined by multiplying the trends based on Sen's 293 

test and the simulated values for each aquifer, resulting in groundwater storage from 2002 294 

to 2022. 295 

3.1. Ensemble model 296 

 AI models were used in this research due to their flexibility to handle diverse data 297 

inputs, such as satellite data (GRACE) and the hydrogeological map of Brazil. AI models 298 

possess the capability to model nonlinear relationships and approximate any nonlinear 299 

mapping with high accuracy, without any prior assumptions about data properties 300 

(Khosravi et al., 2011). Previous studies have shown that AI techniques are effective in 301 

groundwater analysis (Malakar et al., 2021; Razavi et al., 2012; Sun, 2013; Tao et al., 302 

2022). 303 

As an attempt to identify the most effective AI model for simulating changes in 304 

groundwater storage based on GRACE data, a sensitivity analysis was performed. 305 

Various models and combinations of AI models were tested and evaluated (refer to 306 

section 4.1 for more details). The models examined include the Multi-Layer Perceptron 307 

(MLP), Long Sort-term Memory (LSTM), Bidirectional LSTM, Random Forest (RF), 308 

Support-vector Machine (SVM), Extreme Gradient Boosting (XGB), Light Gradient 309 

Boosting Model (LGBM), and CatBoost Model (CtB). Additionally, linear models such 310 

as Ordinary Least Squares (OLS), Linear Regression (LR), Bayesian Ridge (BR), and 311 

Stochastic Gradient Descent (SGDRegressor) were also assessed. Despite unsatisfactory 312 

outcomes from individual models, ensemble models were constructed, demonstrating 313 

superior metrics in terms of calibration and validation. Consequently, a ensemble model 314 

was chosen for the study, based on the AI principle that combining weaker models can 315 

yield a stronger model (Géron, 2019). 316 

The ensemble model is composed of three different AI models. They are the 317 

Decision Tree (DT technique); the Extreme Gradient Boost (XGB; Chen and Guestrin, 318 

2016), the Light Gradinet Boosting Model (LGBM; Ke et al., 2017) and the CatBoost 319 

(CtB; Prokhorenkova et al., 2017), followed by a Linear Regression (LR; Sklearn, 2023a) 320 

step. Fig. 2 shows the data processing flow and the architecture of the ensemble model. 321 

The input data in the model are the TWS, decompositions (wavelet and seasonal), the 322 

hydrogeological characteristics depicted by the hydrogeological map and the position of 323 

the well in space (latitude and longitude). The extreme values are removed from the input 324 
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dataset by quantile threshold evaluation, respecting the criteria of being greater than 99% 325 

and less than 1% of the ΔGWSOBS. Finally, the data are normalized. It should be noted 326 

that the ΔGWSOBS values are not normalized. After the initial processes, the data are 327 

inserted into the DT models for the first approximations of the ΔGWSOBS values from the 328 

input data. The results obtained after processing in the DT models are then inserted into 329 

the Linear Regression that finalizes the approximations of the ΔGWSOBS observed in the 330 

wells. It is important to note that the model architecture presented in this research is not 331 

the only feasible design and was established through experimentation. 332 

The architecture of the AI models used was: 333 

XGB: estimators 3000; learning rate 0.001; sampling set 1; maximum depth 7; 334 

XGBRegressor – gbtree; early stop 150 steps. 335 

LGBM: regression boosting_type gbdt; l1 and l2 metrics; learning rate of 0.001; layer 336 

fraction of 0.9; bagging_fraction 0.7; bagging_freq 20; maximum depth 8; number of 337 

sheets 128; max_bin 512; number of interactions 3000; early stop 150 steps. 338 

CtB: number of iterations 3000, learning rate 0.01, depth 7, RMSE rating metric, 339 

bagging_temperature 0.01, od_type: Iter and od_wait: 20. 340 

The data entered in the models are divided into two sets. The first set is composed 341 

of 80% of the data for model calibration (i.e., training and testing) and the second one is 342 

composed of the remaining 20% of the data for model validation. Note that the second 343 

set was selected from the initial data set at random. The calibration data is divided into 344 

80% for training and 20% for testing. After training and testing with the first set, the 345 

model is retested with the validation wells. This procedure was performed to observe the 346 

real capacity of the model to adapt to different datasets. The hyperparameters of the 347 

models had their initial adjustment by the Hyperactive algorithm (Blanke, 2021). 348 

However, the final adjustment was done manually.  349 

3.2. Evaluation of the ensemble model 350 

The RIMAS network monitors the largest porous aquifers in Brazil, as illustrated 351 

in Fig. 1. To assess the ability of the proposed model to reproduce observed groundwater 352 

storage change, the metrics described in this section were used. In seeking a realistic 353 

comparison for the study areas with results obtained from a robust and widely tested 354 

model, ΔGWSCLSM was used as baseline. Four experiments were carried out, all using the 355 

same model described in the previous section. The experiments were designed to quantify 356 
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the model's ability to adjust to different datasets, training and test batch sizes, and 357 

different hydrological and hydrogeological conditions. The experiments are described 358 

below. 359 

Experiment E1: RIMAS and GRACE data used in Li et al. (2019), plus data obtained 360 

from the HMB. For this experiment, 60 wells with 4504 monthly in situ measurements 361 

were used. 362 

Experiment E2: In this experiment, all wells contained in the RIMAS database with more 363 

than 24 months of measurements were analyzed, as well as GRACE-based TWS and 364 

HMB data referring to the wells. In this experiment, 373 wells were used, resulting in 365 

16,487 monthly in situ measurements. 366 

Experiment E3: RIMAS and GRACE data used in the work by Li et al. (2019), plus MHB 367 

data and selected the wells by monitored aquifer. Eight aquifers were selected, as follows: 368 

Alter do Chão, Parecis, Urucuia, Bauru-Caiuá, Guarani, Cabeças, Poti and Serra Grande. 369 

The Cabeças, Poti and Serra Grande aquifers were included in the same model as Poti 370 

and Serra Grande present similar effective porosity (ne) and close spatial distribution, 371 

renamed Cabeças/Serra Grande. Experiment E3 was not performed in the Içá, Missão 372 

Velha, and Mauruti aquifers, as there are only two wells in this aquifer in the dataset used 373 

by Li et al. (2019), which made it not possible to execute the model. 374 

Experiment E4: In this experiment, all wells contained in the RIMAS database with more 375 

than 24 months of measurements were analyzed, in addition to the GRACE and HMB 376 

data referring to the wells. Groundwater data was separated by monitored aquifer. Eleven 377 

aquifers were selected, as follows: Alter do Chão, Parecis, Urucuia, Bauru-Caiuá, 378 

Guarani, Cabeças, Poti, Serra Grande, Içá, Missão Velha and Mauruti. As in experiment 379 

E3, the Cabeças, Poti and Serra Grande aquifers were included in the same model as Poti 380 

and Serra Grande present similar effective porosity and close spatial distribution. The 381 

same procedure was performed for the Missão Velha and Mauruti aquifers, included in 382 

the same model, as they have a very close spatial distribution, wells in the same GRACE 383 

pixel, renamed as Araripe. 384 

In experiments E3 and E4, not all monitored aquifers were considered, as the 385 

number of wells used in Li et al. (2019) is very small or non-existent in several of them. 386 

However, aquifers were selected in all Brazilian regions. It is worth noting that the input 387 

data in the model is related to the RIMAS data in spatial and temporal scales, since each 388 
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input data in the model has as reference the location of a well on a given date. Therefore, 389 

the input variables agree in temporal and spatial scales with the target variable 390 

(ΔGWSobs). These used the 20% subset of the validation data. 391 

The following statistical metrics were adopted for error evaluation of experiments: 392 

the mean absolute error (MAE), the root mean square error (RMSE),  the Nash-Sutcliffe 393 

Efficiency (NSE) and the Kling-Gupta Efficiency (KGE) were selected. The metrics are 394 

defined in the equations below. 395 

    
MAE =  �|xi −  yi|

n

i=1

 (4) 

 396 

     
RMSE =  �

∑ (xi −  yi)2n
i=1

n
 (5) 

 397 

     
NSE =  1 −  

∑ (𝑥𝑥i −  yi)2n
i=1
∑ (𝑥𝑥i − y�i)2n
i=1

 (6) 

where xi stands for the in situ measurements, yi the estimated values by the model, y�i the 398 

average of the model estimates, and n is the number of observations. For MAE and 399 

RMSE, the ideal values are zero. For the NSE, values closer to one indicate a better 400 

adjusted model. The KGE is a reformulation of NSE, according to the expression:  401 

     KGE =  1 −  �(𝑟𝑟 − 1)2 + (𝛼𝛼 − 1)2 + (𝛽𝛽 − 1)2 (7) 

where r is the Pearson correlation coefficient between the model results and the observed 402 

values, β is the ratio of the mean of the calculated values to the mean of the observations, 403 

and α is the ratio of the standard deviation of the calculated values to the observed. The 404 

optimal values for r, 𝛼𝛼, β and KGE is one. KGE values above -0.41 indicate that the model 405 

presents better results than the long-term average of the evaluated series. 406 

4. Results and Discussion 407 

4.1. Sensitivity analysis 408 



 15 

The sensitivity analysis of AI models indicates the feasibility of approximating 409 

groundwater storage values using GRACE data, as previously demonstrated by Sun 410 

(2013). While these models do not explicitly account for the interaction process between 411 

groundwater and the medium, they are capable of tracking storage variations and 412 

qualitatively and quantitatively indicating areas with groundwater gains or losses. LR-413 

based ensemble model show the best results for both calibration and validation steps. 414 

Such models were not subjected to the stochastic process associated with the neural 415 

networks, and had a lower computational cost compared to DT models. 416 

 The combined performance of the ensemble models surpassed that of the 417 

individual AI models, as depicted in Figure 3. All models were tested using the same 418 

calibration and validation datasets obtained from E2, which encompassed the largest 419 

available dataset (Supporting Table S2 summarizes the results of the sensitivity analysis).  420 

The sensitivity analysis shows that individual linear models and neural networks 421 

performed less effectively compared to the DT models. The relatively inferior 422 

performance of the individual linear models can be attributed to the non-linear 423 

relationship between the GRACE data and ground-based measurements. Regarding the 424 

neural networks, it is plausible that stochastic processes during model execution, the 425 

selected model architectures, or even the specific neural network models themselves may 426 

have contributed to the relatively lower performance observed. The SVM, RF, 427 

SGDRegressor, and OLS models were not efficient in the simulations performed in 428 

calibration. 429 

The superior performance of DT models (i.e., LGBM and CtB) may be associated 430 

with recursive nature of models, which can be regarded as representations of the decision-431 

making process, where a dataset is depicted by a tree-like structure  (Negnevitsky, 2002). 432 

Moreover, DT models demonstrate robustness in handling insufficient training data and 433 

categorical variables, such as data derived from HMB . As evidenced by RMSE results 434 

(see Fig. 3a), there is a significant improvement in overall performance when DT models 435 

are integrated with other models. This reinforces the idea that the combination of weaker 436 

models can lead to the development of a robust and improved model (Géron, 2019).  437 

KGE values show that even if some models present an underestimation, most of 438 

the simulations are above the -0.41 value, indicating that they exceed the long-term 439 

average of the series under study (Fig. 3b). The r values indicate that the evaluated models 440 

can effectively reproduce the gain/loss between the simulated and observed values in the 441 
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phase (Fig. 3d). The α values demonstrated a high standard deviation for neural networks 442 

(i.e., MLP, LSTM) (Fig. 3e). Finally, the RMSE, NSE, and MAE (Figs. 3a, 3f and 3g) 443 

values indicate that as DT models are added to the joint model the metrics are improved. 444 

It worth noting that the LR-based ensemble model (i.e., LR[XGB, LGBM, CtB]) 445 

selected for simulating experiments E1, E2, E3, and E4, exhibited overall superior 446 

performance metrics. This model combines three models that employ the decision tree 447 

technique followed by LR. Although the individual LR model may not produce strong 448 

results when directly processing the input data, its effectiveness in refining the accuracy 449 

of the ensemble model is demonstrated. This can be attributed to the initial step 450 

undertaken by the decision tree models, which excel at capturing complex nonlinear 451 

relationships with greater capacity compared to other models. Consequently, the decision 452 

tree models provide the linear regression model with input data that exhibit a closer linear 453 

relationship, resulting in enhanced model performance. 454 

4.2. Experiments E1 and E2 455 

In experiments E1 and E2, the small errors were concentrated in the central and 456 

northeastern region of Brazil (Figs. 4a-4b), areas with a greater number of wells, while 457 

the largest errors were concentrated in the northern portion of the country, where there 458 

are fewer RIMAS wells inserted into the models. Experiments E1 and E2 presented MAE 459 

values below 2cm and RMSE below 3cm, in water column. The validation of these 460 

experiments resulted in MAE below 3cm and RMSE below 4.5cm. An interesting aspect 461 

that draws special attention in examining such results is the model’s ability to simulate 462 

ΔGWSOBS in wells inserted in an environment of crystalline rocks in southeastern Brazil, 463 

presented in the E2 results (Fig. 4b), where validation wells have RMSE below 3cm. NSE 464 

values for E1 and E2 were 0.87 and 0.65, and KGE values of 0.34 and 0.64, respectively 465 

(Figs. 4a-4b). These values indicate a good fit of the models to the datasets. However, 466 

those results make clear that not all the dependent variables were explained with 467 

precision. On the other hand, low RMSE and MAE values show that the prediction errors 468 

presented for large areas are much lower than those derived from ΔGWSCLSM. Also, the 469 

correlation between RIMAS and GRACE-based TWS demonstrates the mismatch 470 

between their time series (see Supporting Table S3). Despite the great variability of the 471 

GRACE signal in both experiments E1 and E2, which used data from all regions of Brazil, 472 

the average results show the great approximation of the simulated values ΔGWSSIM and 473 

ΔGWSOBS (Figs. 5a-5h), demonstrating the low variance of the presented results achieved 474 
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by the constructed model. The validation results of E1 and E2 (Figs. 5c, 5d, 5g and 5h), 475 

show that the averages observed by the model have a good approximation with the in situ 476 

observations. To measure the influence of the decompositions on the TWS data, 477 

experiment E2 was performed using only the TWS data and HMB data, the metrics are 478 

RMSE=4.0cm, MAE=2.5cm, NSE=0.02 and KGE=0.5. The validation results are 479 

RMSE=3.8cm, MAE=2.3cm, NSE=0.11 and KGE=-1.1. 480 

Artificial intelligence models tend to perform better with larger batches of training 481 

and testing (Lecun et al., 2015). Due to the large concentration of data in the central and 482 

northeast regions of Brazil, the model may have presented a biased result (Figs. 4a-4b), 483 

that is, with a tendency to present better results in areas with greater amount of data, 484 

demonstrated validation wells. In addition, there is a greater variability of GRACE signals 485 

in the north of the country. 486 

As for the variability of the GRACE signal, it is expected that groundwater will 487 

present a different participation in each region of Brazil and in each aquifer studied. 488 

Signal variability is related to the hydrological processes of each region, as well as types, 489 

cover and land use. The northern region of Brazil has large bodies of surface water such 490 

as the Tocantins, Solimões, Negro and Amazon rivers, in addition to extensive floodable 491 

areas in the Amazon region, indicating a large contribution of surface water to the region's 492 

TWS signal (A. Getirana et al., 2017; Melo & Getirana, 2019). Unlike the northern region 493 

and the swamps of the Brazilian Pantanal, the other regions of the country have a smaller 494 

amount of large surface water bodies. Even with the water filled up reservoirs built for 495 

the hydroelectric plants in these regions, a smaller component of surface water in the 496 

TWS signal is expected. Complementarily, these areas other than the northern regions 497 

have a higher groundwater extraction rate compared to the northern region of Brazil 498 

(IBGE, 2020). These factors may help to explain greater errors in the northern region of 499 

Brazil. 500 

4.3. Experiments E3 and E4 501 

Experiment E4 denotes that the highest values for RMSE are in Alter do Chão 502 

(Fig. 6b), Parecis (Fig. 6h) and Guarani (Fig. 6f) aquifers. Although featuring RMSE 503 

values of 3.1cm and MAE of 2.4cm, Alter do Chão aquifer has an NSE value of 0.89 and 504 

KGE 0.35. This result may occur due to the proximity of the wells to the Amazon River, 505 

which would affect the static water level fluctuations according to the water level 506 

variation of the river.  In addition, many of these wells are inserted in an urban context, 507 
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where land use and land cover jointly with underground water exploitation water can 508 

interfere in the results achieved by the models. In the case of the Parecis aquifer, 509 

calibration results are RMSE=2.4cm, MAE=1.4cm, NSE=0.71 and KGE=0.80, and 510 

2.9cm, 2.3cm, 0.41 and 0.6, respectively, for validation. 511 

For the Guarani aquifer, the variability of the GRACE signal associated with 512 

extraction processes might have hindered the best convergence of the models. The aquifer 513 

extends over thousands of kilometers and has experienced increasing groundwater 514 

pumping in its recharge areas for many years, as described by Takahashi (2012). 515 

Areas with a higher concentration of monitoring wells return lower error values for 516 

each aquifer. Such a relationship is more visible in the results for the Cabeças/Serra 517 

Grande aquifers (Fig. 6c) and Urucuia (Fig. 6e). Errors of the test wells present lower 518 

values in these areas. Içá and Alter do Chão aquifers do not have as much data for training, 519 

resulting in higher model errors. However, results of all the aquifer models still return 520 

ΔGWSSIM values better than ΔGWSCLSM. 521 

As noted by Brookfield et al. (2018), linear correlation analyses have limited ability 522 

to derive relationships between the TWS and in situ groundwater measurements in areas 523 

with deep vadose zones, hence deep static levels. Such a limitation is not observed in non-524 

linear models, such as the one adopted here. This is highlighted in the responses of the 525 

proposed ensemble model, mainly for the Urucuia aquifer (Fig. 6e), an area of significant 526 

groundwater extraction and deep static water levels. Our model also has the ability to 527 

provide accurate estimates over areas with low thickness of the vadose zone and with 528 

great influence of surface waters, as observed in the wells in the Içá (Fig. 6a) and Alter 529 

do Chão (Fig. 6b) aquifers. 530 

The difference in scale between satellite data and in situ measurements is addressed 531 

in many works, which may use statistical, dynamic methods (Gaur & Simonovic, 2019; 532 

Sehgal et al., 2021; Yin et al., 2018) and more recently artificial intelligence (Ali et al., 533 

2021; Liu et al., 2020; Miro & Famiglietti, 2018). This issue was well solved by our 534 

model, as demonstrated in the results. Calibration results are above expectations in the 535 

Araripe aquifer (Fig. 6d), with RMSE, MAE, NSE and KGE of 0.27cm, 1.6cm, 0.92 and 536 

0.86, respectively, and 2.1cm, 1.7cm, 0.11 and -0.11 for validation. This shows that small 537 

aquifers and wells located within the same GRACE pixel were not a problem for the 538 

approximations made by the model.  539 
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Experiment E4 (Fig. 7) shows that, when the input data is concentrated in the same 540 

aquifer (e.g., Guarani, Urucuia and Bauru aquifers), ΔGWSSIM provides more stable 541 

results. This is expected due to the lower TWS variability, as well as to the constant 542 

geological characteristics of those aquifers. However, there is a small improvement in 543 

simulations which can be explained by the reduced amount of training data for the models. 544 

Fig. 7 shows averaged ΔGWSOBS , ΔGWSSIM  and ΔGWSCLSM over the Guarani, 545 

Bauru-Caiuá and Urucuia aquifers. For Guarani, E4 shows that the model can predict the 546 

averaged behavior of the aquifer with good accuracy. Validation wells have better results 547 

than ΔGWSCLSM. However, these wells depict a deviation from the expected response 548 

obtained for the wells included in the validation group for testing. This could indicate that 549 

the smallest number of values for training the series might have directly interfered in the 550 

result. In Bauru-Caiuá, the model presents results very close to in situ measurements, and 551 

validation wells average RMSE=0.23cm, MAE=0.11cm, NSE=0.98 and KGE=0.43. The 552 

model's response could be associated with the spatial distribution of in situ data within 553 

the aquifer (Fig. 6g), which covers almost the entire aquifer with a relatively constant 554 

spacing between the wells. In that aquifer, the model can reproduce observations with 555 

good precision for E4. For experiment E3, our model outperforms GLDAS in all metrics. 556 

This may have occurred because the wells included in this experiment are concentrated 557 

in an area of intense underground water extraction. 558 

Differences between test and validation GWSCLSM values in Figure 7 are attributed 559 

to the selection of validation wells in each experiment. These wells may represent very 560 

distant areas within the same aquifer, as the aquifers under investigation cover vast areas. 561 

CLSM simulates different processes in such distant areas, leading to different storage 562 

results. These variations in the simulated processes can generate differences between test 563 

and validation results if the wells selected in each set are in very distant regions within 564 

the study area. 565 

For the Urucuia aquifer, results were above expectations. However, the great 566 

variability of the GRACE-based TWS estimates at each studied point, associated with 567 

different responses in each monitoring well to the groundwater extraction processes in 568 

the region, might contribute to a small departure of the predicted data with respect to in 569 

situ data in the validation, even though this area presented the best results in the study. 570 

Small variations in ΔGWSOBS and ΔGWSSIM could indicate a constant loss of water along 571 

the column in the aquifer, as reported by the work of (Gonçalves et al., 2020). 572 
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4.4. Statistic tests and storage 573 

Using two decades of AI-based groundwater estimates, we attempted to quantify 574 

the spatiotemporal variability of the Urucuia and Bauru-Caiuá aquifers. Besides their 575 

socioeconomic importance, these two aquifers were selected for their good results in the 576 

model fit and data availability (70 and 60 wells are distributed across their respective 577 

domains). First, trends at individual wells were computed using the Mann-Kendall  and 578 

Sen tests. The tests were applied to both model outputs and in situ measurements, 579 

adopting a confidence level of 0.95%. Trend slopes were then  interpolated using the 580 

ordinary kriging approach  for each GRACE grid within the aquifers. Groundwater 581 

volume change was determined by integrating grid-based trends over aquifers.  582 

Both model estimates and in situ measurements show decreasing trends across the 583 

Urucuia aquifer (see Figs. 8a-8b). Sen's test shows a decreasing trend for the simulation 584 

and RIMAS observations averages (Fig. 8a), -0.36cm/year and -0.1cm/year for ΔGWSSIM 585 

and ΔGWSOBS, respectively. The longer time series derived from the model allows us to 586 

observe the behavior of the aquifer even before the installation of the monitoring network. 587 

The simulation shows a continuous water loss in the aquifer (Fig. 8a), with an 588 

intensification in 2006. Based on these trends, we estimate that the Urucuia aquifer has 589 

lost about 36km3 of water during 2002-2021, which is about the regulatory reserves of the 590 

aquifer (Gaspar, 2006). Such a water loss can be explained by an extended drought that 591 

has been impacting the region for over a decade (Getirana, 2016; Rodell et al., 2018; 592 

Getirana et al., 2021) combined with groundwater overexploitation (Vieira, 2021).  593 

In Bauru-Caiuá, groundwater loss is concentrated in the northern portion of the 594 

aquifer (Fig. 8c), also impacted by the extended drought. It is worth noting that the area 595 

with the greatest water gain, in the southern part of the aquifer. The result of the Mann-596 

Kendall test shows no trend and the Sen’s test indicates a very smooth slope of both in 597 

situ and simulated groundwater time series (Fig. 8d), -0.02cm/year and -0.03cm/year for 598 

ΔGWSOBS and ΔGWSSIM, respectively. For the RIMAS wells, the results of the Mann-599 

Kendall test show a good relationship with the process of gain and loss of water column 600 

(Fig. 8c) with decreasing results concentrated in the northern portion of the aquifer and 601 

increasing concentrations in the southern portion. The approximate water change across 602 

the aquifer is -6km3, indicating a small change during the study period.  603 

5. Conclusions and recommendations 604 
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Here, we demonstrate the viability of satellite-based monitoring of Brazilian 605 

aquifers. A novel artificial intelligence model was conceived and built by employing 606 

GRACE-based TWS data and its decomposition using wavelet and seasonal techniques, 607 

jointly with point-based in situ hydrogeological data. As a benchmark for our results, we 608 

used GLDAS outputs, specifically, groundwater change derived from CLSM with 609 

GRACE data assimilation (ΔGWSCLSM). The validation results of the proposed 610 

methodology over all selected aquifers showed good groundwater estimates, 611 

outperforming GLDAS.  612 

The TWS signal decomposition process proved to be very useful for the model, 613 

which adequately approximates the variations in groundwater storage in the different 614 

experiments. The proposed methodology can be applied in areas with a short history of 615 

groundwater monitoring and discontinuous time series, since aquifers such as Parecis, Iça 616 

and Cabeças/Serra Grande have less than ten years of static water level measurements 617 

and all wells in the RIMAS have gaps in their time series. 618 

 It is important to emphasize that the proposed models are representing the sample 619 

space inserted in the dataset. Differences between scales of GRACE data with a resolution 620 

of 0.25° and in situ measurements collected at an approximate point scale were overcome 621 

by the models. Furthermore, more than one well per pixel was also not a problem, as 622 

demonstrated by the results for the aquifers Içá, Parecis, Araripe and Urucuia. It is 623 

expected that the proposed model can be applied in areas with physical and geological 624 

characteristics similar to the training region, since the response of GRACE-based TWS 625 

signals tend to be similar. This feature can help to spatialize the storage of groundwater 626 

to unmonitored areas, being very useful for large aquifers. We demonstrate that it is 627 

possible to extend the groundwater monitoring period back to 2002, when GRACE was 628 

launched. As a result, we obtained groundwater information over eight additional years, 629 

which resulted in a more complete picture of water loss across the Urucuia and Bauru-630 

Caiuá aquifers. This proves that the proposed methodology can provide important 631 

information for the management of groundwater resources.  632 

As a model constraint, aquifers with short measurement periods are difficult to 633 

approximate. Regions with great variation in physical characteristics, such as soil type, 634 

geology, land use and occupation, precipitation rates or groundwater extraction, can 635 

create situations in which the proposed model does not respond as expected. Another 636 

limitation of the model is the spatial resolution for unmonitored areas, which initially 637 
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depends on the resolution of the GRACE data. In experiment E2, which contains all 638 

monitored wells, some wells are inserted in an environment of crystalline rocks. Despite 639 

the good results, the model has not yet been properly adjusted for such a geological 640 

environment, as well as for karstic aquifers, being the subject of future investigation. 641 

Additionally, the proposed methodology can be applied to other aquifers, assuming that 642 

the aforementioned limitations are respected and the input data is sufficient for an 643 

adequate adjustment of the model.  644 

Groundwater monitoring using satellite data and artificial intelligence can be a 645 

solution to spatialize groundwater storage values with good accuracy. Additionally, it is 646 

possible to make predictions for storage in different scenarios and with low computational 647 

costs, modifying only TWS values. This approach can also help in understanding aquifer 648 

dynamics, since, after the initial adjustments, the model can evaluate the past groundwater 649 

behavior using the GRACE data that started in 2002. The proposed methodology can be 650 

replicated in other aquifers globally with sufficient data for adequate model adjustment. 651 
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 661 

Figure 1. Geographical location of Brazilian aquifers and spatial distribution of the RIMAS 662 
groundwater monitoring network. RIMAS wells colored in red are those used in Li et al. (2019). 663 

 664 

  665 
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666 
Figure 2. Processing flow diagram and ensemble model architecture. Both DT models and Linear 667 
Regression model use observed groundwater storage change (ΔGWSOBS) as the target. 668 

669 
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 670 

Figure 3. Sensitivity test of models in experiment E2: (a) root mean square error (RMSE) [cm], 671 
(b) Kling-Gupta efficiency (KGE) and its three components (c) α [-], (d) r [-] and (e) β [-], (f) 672 
Nash-Sutcliffe efficiency (NSE) [-] and mean absolute error (MAE) [cm]. Models are: Extreme 673 
Gradient Boosting (XGB), Light Gradient Boosting Model (LGBM), CatBoost Model (CtB), 674 
Random Forest (RF), Ordinary Least Squares Model (OLS), Linear Regression (LR), Bayesian 675 
Ridge Model (BR), Stochastic Gradient Descent (SGDRegressor), Support-vector Machine 676 
(SVM), Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM). The acronyms in 677 
parentheses in the upper right table indicate that the results of the models were used as input to 678 
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the external model. Red ticked lines in (b) indicate KGE=-0.41. Values above these lines indicate 679 
models with better fit than long-term averaged observations.  680 
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681 
Figure 4. Results for experiments E1 and E2 using the ensemble model Linear Regression [XGB, 682 
LGBM, CtB]: spatial distribution of root mean square error (RMSE) [cm] for model calibration 683 
using (a) wells considered in Li et al. (2019) and (b) all RIMAS wells. Averages of metrics 684 
considered in this study are provided in the upper left boxes. 685 

  686 
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687 
Figure 5. On the left side, averaged groundwater storage change time series derived from 688 
observations (ΔGWSOBS), AI simulations (ΔGWSSIM) and GLDAS (ΔGWSCLSM) for experiments 689 
E1 and E2. On the right side, scatter plots between monthly ΔGWSOBS and ΔGWSSIM and metrics 690 
considered in the model evaluation: Nash-Sutcliffe efficiency (NSE), root mean square error 691 
(RMSE), mean absolute error (MAE) and Kling-Gupta efficiency (KGE).  692 
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693 
Figure 6. Results for experiment E4. Maps show the spatial distribution of root mean square 694 
errors (RMSE) [cm] over different aquifers. The scatter plots represent the 20% simulated test 695 
values (ΔGWSSIM) and observed values (ΔGWSOBS) in each aquifer. Averages of metrics 696 
considered in this study are also provided.  697 
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 698 
Figure 7. Aquifer-averaged time series of the groundwater storage change (ΔGWS) derived from 699 
experiments E3 and E4, over Guarani, Bauru-Caiuá and Urucuia aquifers, considering in situ 700 
values (ΔGWSOBS). Time series correspond to observations (ΔGWSOBS), simulations (ΔGWSSIM) 701 
and GLDAS outputs (ΔGWSCLSM). Metrics considered in this study are provided.  702 
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 703 

Figure 8. Spatiotemporal groundwater storage change (ΔGWS) in the Urucuia and Bauru-Caiuá 704 
aquifers: (a) aquifer-averaged ΔGWS time series and (b) spatially distributed trends over the 705 
Urucuia aquifer; (c) spatially distributed trends over the Bauru-Caiuá aquifer and (d) aquifer-706 
averaged ΔGWS time series. Time series show experiment E4 outputs over 2002-2021 and 707 
RIMAS measurements over 2011-2020. ΔGWS trends over the Urucuia aquifer are -0.08cm/year 708 
from experiment E4 and 0.10cm/year from RIMAS. Over the Bauru-Caiuá aquifer, values are -709 
0.03cm/year and -0.05cm/year, respectively. The dots on maps indicate results of the Mann-710 
Kendall test for the RIMAS wells. 711 

  712 
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