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Climatic Impact-Drivers 

and Crop Modeling
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CIDs identify the specific climatic conditions associated with biophysical responses:

Ruane et al., 2022: The Climatic Impact-Driver Framework – Earth’s Future

Assessment of all impact sectors and climate changes in each region:

Ranasinghe et al., 2021: IPCC AR6 WGI Chapter 12



GGCMI Emulators
Methods
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Synthesis outputs from AgMIP Global Gridded Crop Model 

Intercomparison using weather indices

GGCMI Phase 2 (Franke et al., 2020a,b): 

• 12 models harmonized for planting date, fertilizers, cultivars

• Sensitivity tests across CO2, Temperature, Water and Nitrogen 

(+/- 1℃ tests with high N)

• Maize, wheat, rice and soy; global 0.5˚ x 0.5˚ resolution; 30 years

40 seasonal weather indices: 

• Mean temperature and precipitation

• High heat days (30℃ and 35℃) and cold day thresholds (5℃, 0℃)

• Number of rainy days, consecutive dry days

• 5 growing season periods (full GS, planting, pre-anthesis, anthesis, 

post-anthesis)

Extreme Gradient Boosting (XGBoost) Machine Learning model

• 3 features targeting yield outputs independently at each grid cell



Emulator Skill
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pDSSAT

EPIC TAMU

LPJML

R2 vs. underlying GGCM

Rainfed Maize



GGCMI Emulators
All Features
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Most Important Rainfed Maize Feature (pDSSAT) 



GGCMI Emulators
Seasonal Timing
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Phenology of Most Important Rainfed Maize Feature (pDSSAT) 



GGCMI Emulators
Primary Variable
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GGCMI Emulators
Model differences
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LPJmL Rainfed Maize
top predictor variable:

pDSSAT Rainfed Maize
top predictor variable:
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GGCMI Emulators
Crop Species differences
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pDSSAT Winter Wheat
top predictor variable:

pDSSAT Spring Wheat
top predictor variable:
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GGCMI Emulators
Key Findings
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ML emulators can capture bulk of historical crop model 

simulations with as few as 3 climate variables

Leading predictor features vary across region, system and model

Results point to common climate drivers for regional responses

Models respond most strongly to mean climate conditions

- Likely underestimate role of extreme events



GGCMI Hybrid Historical Models
Methods
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Outputs from AgMIP Global Gridded Crop Model 

Intercomparison compared against reported production

GGCMI Phase 3 (Jägermeyr et al., 2021) / ISIMIP Phase 3a: 

• 10 harmonized GGCMs

• Maize, wheat, rice and soy; global 0.5˚ x 0.5˚ resolution

• 1980-2100 (SSP1-2.6, SSP3-7.0, SSP5-8.5)

• Focus here on 1980-2010 period

FAOStat Country-Level Production 

• Reports for top 20 producers for each crop species

Extreme Gradient Boosting (XGBoost) Machine Learning model

• 5 features targeting yield outputs independently at each grid cell

• 5-fold cross-validation

• 40 climate variables (8 variables x 5 seasonal timings)

• 10 GGCMs aggregated to country level
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Hybrid Weather and GGCM Models
Shedding new light on missing climate responses
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Crop Models

Top 16 Maize producing countries

5 feature model fit to FAO yields – size of circle represents prominence of features

Ruane and Castellano, in prep.

USA

South Africa



Continuing Work
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Models need enhanced cold and flood hazard responses

Agricultural decision support
• Seasonal detection and attribution

• Resilience planning and disaster risk reduction

• Suitability analysis for management and breeding approaches

• Climate change adaptation and risk management

Agricultural Model Intercomparison and Improvement 

Project (AgMIP) Machine Learning Team
• AgML launching soon!   

Machine Learning Applications
• Determination of model parameters

• Crop model emulators

• Model diagnostics and improvement prioritization

• Hybrid model development and applications

• Combine with remote sensing and additional predictors

Join us at AgMIP Town Hall 

Friday to learn more



AgMIP9 Global Workshop

Learn more at www.agmip.org

http://www.agmip.org/
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Thanks for your 

attention!

alexander.c.ruane@nasa.gov

www.agmip.org



Model ensemble performance and 
climate information influence
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Ruane et al., 2021 – Agricultural and Forest Meteorology


