GC45C-09: Machine learning emulators and empirical models combining climate and global crop models for seasonal agricultural production

Alex Ruane¹, Andres Castellano¹, and Jonas Jägermeyr^{2,1}

¹NASA Goddard Institute for Space Studies, New York City

²Columbia University Climate School, Center for Climate Systems Research

AGU Fall Meeting – Chicago – December 15th, 2022

Climatic Impact-Drivers and Crop Modeling

CIDs identify the specific climatic conditions associated with biophysical responses: Ruane et al., 2022: The Climatic Impact-Driver Framework – Earth's Future

															Clin	natic	Impa	ict-d	river														
ipcc	Heat and Cold			Wet and Dry						Wind				Snow and Ice					Coastal				Open Ocean				Other						
Asset	Mean air temperature	Extreme heat	Cold spell	Frost	Mean precipitation	River flood	Heavy precipitation and pluvial flood	Landslide	Aridity	Hydrological drought	Agricultural and ecological drought	Fire weather	Mean wind speed	Severe wind storm	Tropical cydone	Sand and dust storm	Snow, glacier and ice sheet	Permafrost	Lake, river and sea ice	Heavy snowfall and ice storm	Hail	Snow avalanche	Relative sea level	Coastal flood	Coastal erosion	Mean ocean temperature	Marine heatwave	Ocean acidity	Ocean salinity	Dissolved oxygen	Air pollution weather	Atmospheric CO ₂ at surface	Radiation at surface
Crop systems																																	

None/low confidence Low/moderate High

Impacts and risk relevance

Assessment of all impact sectors and climate changes in each region:

Ranasinghe et al., 2021: IPCC AR6 WGI Chapter 12

Synthesis outputs from AgMIP Global Gridded Crop Model Intercomparison using weather indices

GGCMI Phase 2 (Franke et al., 2020a,b):

- 12 models harmonized for planting date, fertilizers, cultivars
- Sensitivity tests across CO₂, Temperature, Water and Nitrogen (+/- 1°C tests with high N)
- Maize, wheat, rice and soy; global 0.5° x 0.5° resolution; 30 years

40 seasonal weather indices:

- Mean temperature and precipitation
- High heat days (30°C and 35°C) and cold day thresholds (5°C, 0°C)
- Number of rainy days, consecutive dry days
- 5 growing season periods (full GS, planting, pre-anthesis, anthesis, post-anthesis)

Extreme Gradient Boosting (XGBoost) Machine Learning model

3 features targeting yield outputs independently at each grid cell

GGCMI Emulators

All Features

Most Important Rainfed Maize Feature (pDSSAT)

GGCMI Emulators

Seasonal Timing

Phenology of Most Important Rainfed Maize Feature (pDSSAT)

- Post-Anthesis

Anthesis

Pre-Anthesis

- Planting window

- Growing Season

GGCMI Emulators Primary Variable

Most Important Rainfed Maize Variable (pDSSAT)

T<5 °C

T<0 °C

T>35 °C

T>30 °C

Mean T

Consecutive Dry Days

Wet Days

Mean Precipitation

GGCMI Emulators **Model differences**

pDSSAT Rainfed Maize top predictor variable:

LPJmL Rainfed Maize top predictor variable:

T<5 °C

T<0 °C

T>35 °C

T>30 °C

Mean T

Consecutive **Dry Days**

Wet Days

Mean Precipitation

GGCMI Emulators

Crop Species differences

pDSSAT Spring Wheat *** top predictor variable:

pDSSAT Winter Wheat top predictor variable:

T<5 °C

T<0 °C

T>35 °C

T>30 °C

Mean T

Consecutive **Dry Days**

Wet Days

Mean Precipitation

ML emulators can capture bulk of historical crop model simulations with as few as 3 climate variables

Leading predictor features vary across region, system and model

Results point to common climate drivers for regional responses

Models respond most strongly to mean climate conditions

- Likely underestimate role of extreme events

GGCMI Hybrid Historical Models Methods

Outputs from AgMIP Global Gridded Crop Model Intercomparison compared against reported production

GGCMI Phase 3 (Jägermeyr et al., 2021) / ISIMIP Phase 3a:

- 10 harmonized GGCMs
- Maize, wheat, rice and soy; global 0.5° x 0.5° resolution
- 1980-2100 (SSP1-2.6, SSP3-7.0, SSP5-8.5)
- Focus here on 1980-2010 period

FAOStat Country-Level Production

Reports for top 20 producers for each crop species

Extreme Gradient Boosting (XGBoost) Machine Learning model

- 5 features targeting yield outputs independently at each grid cell
- 5-fold cross-validation
- 40 climate variables (8 variables x 5 seasonal timings)
- 10 GGCMs aggregated to country level

Hybrid Weather and GGCM Models

Shedding new light on missing climate responses

5 feature model fit to FAO yields – size of circle represents prominence of features

Top 16 Maize producing countries

Continuing Work

Models need enhanced cold and flood hazard responses

Agricultural decision support

- Seasonal detection and attribution
- Resilience planning and disaster risk reduction
- Suitability analysis for management and breeding approaches
- Climate change adaptation and risk management

Agricultural Model Intercomparison and Improvement Project (AgMIP) Machine Learning Team

AgML launching soon!

Machine Learning Applications

- Determination of model parameters
- Crop model emulators
- Model diagnostics and improvement prioritization
- Hybrid model development and applications
- Combine with remote sensing and additional predictors

Join us at AgMIP Town Hall Friday to learn more

Ag MP The Agricultural Model Intercomparison and Improvement Project AgMIP9 Global Workshop

SAVE THE DATE!

9th AgMIP Global Workshop June 26-30, 2023 Columbia University, New York, NY

Learn more at www.agmip.org

Model ensemble performance and climate information influence

