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CIDs identify the specific climatic conditions associated with biophysical responses:
Ruane et al., 2022: The Climatic Impact-Driver Framework — Earth’s Future
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Assessment of all impact sectors and climate changes in each region:
Ranasinghe et al., 2021: IPCC AR6 WGI Chapter 12



Ag qrM|pTh;gp GGCMI Emulators

Synthesis outputs from AgMIP Global Gridded Crop Model
Intercomparison using weather indices

GGCMI Phase 2 (Franke et al., 2020a,b):

12 models harmonized for planting date, fertilizers, cultivars

« Sensitivity tests across CO,, Temperature, Water and Nitrogen
(+/- 1°C tests with high N)

« Maize, wheat, rice and soy; global 0.5° x 0.5 resolution; 30 years

40 seasonal weather indices:

« Mean temperature and precipitation

* High heat days (30°C and 35°C) and cold day thresholds (5°C, 0°C)

 Number of rainy days, consecutive dry days

5 growing season periods (full GS, planting, pre-anthesis, anthesis,
post-anthesis)

Extreme Gradient Boosting (XGBoost) Machine Learning model
« 3 features targeting yield outputs independently at each grid cell
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i All Features
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Most Important Rainfed Maize Feature (pDSSAT)

Count T < 5 Post-Anthesis

Count T < 5 Anthesis

Count T < 5 Pre-Anthesis

Count T < 5 Planting Window

CountT<5GS

Count T < 0 Post-Anthesis

Count T < 0 Anthesis

Count T < 0 Pre-Anthesis

Count T < 0 Planting Window

CountT<0GS

Count T > 35 Post-Anthesis

Count T > 35 Anthesis

Count T > 35 Pre-Anthesis

Count T > 35 Planting Window

CountT > 35GS

Count T > 30 Post-Anthesis

Count T > 30 Anthesis

Count T > 30 Pre-Anthesis

Count T > 30 Planting Window

CountT > 30 GS

Mean T Post-Anthesis

Mean T Anthesis

Mean T Pre-Anthesis

Mean T Planting Window

Mean T GS

Maximum Consecutive Days P < .01 Post-Anthesis
Maximum Consecutive Days P < .01 Anthesis
Maximum Consecutive Days P < .01 Pre-Anthesis
Maximum Consecutive Days P < .01 Planting Window
Maximum Consecutive Days P < 01 GS
Count P Above 1mm Post-Anthesis

Count P Above 1mm Anthesis

Count P Above 1mm Pre-Anthesis

Count P Above 1mm Planting Window

Count P Above 1mm GS

Mean P Post-Anthesis

- Mean P Anthesis

- Mean P Pre-Anthesis

Mean P Planting Window

Mean P GS
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Seasonal Timing

Phenology of Most Important Rainfed Maize Feature (pDSSAT)
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Primary Variable

Most Important Rainfed Maize Variable (pDSSAT)
T<5°C

T<0 °C

T>35 °C

Mean T

Consecutive
Dry Days

Mean
Precipitation
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Model differences
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T<5°C
T<0 °C
pDSSAT Rainfed Maize
top predictor variable:
T>35 °C
Mean T
Consecutive
LPJmL Rainfed Maize Drv D
top predictor variable: ry bays
Mean

Precipitation
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Crop Species differences
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T<5°C
T<0 °C
pDSSAT Spring Wheat
top predictor variable:
T>35 °C
Mean T
pDSSAT \!Vinter \I\!heat Consecutive
top predictor variable: Dry Days
Mean

Precipitation
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4 DA GGCMI Emulators
Ag ~i:§M|P Key Findings

ML emulators can capture bulk of historical crop model
simulations with as few as 3 climate variables

Leading predictor features vary across region, system and model
Results point to common climate drivers for regional responses

Models respond most strongly to mean climate conditions
- Likely underestimate role of extreme events

10
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Outputs from AgMIP Global Gridded Crop Model
Intercomparison compared against reported production

GGCMI Phase 3 (Jagermeyr et al., 2021) / ISIMIP Phase 3a:
« 10 harmonized GGCMs

* Maize, wheat, rice and soy; global 0.5 x 0.5° resolution
e 1980-2100 (SSP1-2.6, SSP3-7.0, SSP5-8.5)

 Focus here on 1980-2010 period

FAOStat Country-Level Production
 Reports for top 20 producers for each crop species

Extreme Gradient Boosting (XGBoost) Machine Learning model

« b5 features targeting yield outputs independently at each grid cell
« b5-fold cross-validation

40 climate variables (8 variables x 5 seasonal timings)

« 10 GGCMs aggregated to country level



Hybrid Weather and GGCM Models

Shedding new light on missing climate responses
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Crop Models
& Top 16 Maize producing countries
South Africa =

Ruane and Castellano, in prep.
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Models need enhanced cold and flood hazard responses

Agricultural decision support

« Seasonal detection and attribution

* Resilience planning and disaster risk reduction

« Suitability analysis for management and breeding approaches
« Climate change adaptation and risk management

Agricultural Model Intercomparison and Improvement

Project (AgMIP) Machine Learning Team

« AgML launching soon!

Machine Learning Applications Jom,:ﬁzg tAog:\g;F:nT?nV;?eHa”
 Determination of model parameters

« Crop model emulators

 Model diagnostics and improvement prioritization

 Hybrid model development and applications

« Combine with remote sensing and additional predictors
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SAVE THE DATE!

9th AgMIP Global Workshop
June 26-30, 2023
Columbia University, New York, NY

Learn more at www.agmip.org



http://www.agmip.org/

Thanks for your
attention!

alexander.c.ruane@nasa.gov

www.agmip.org




Model ensemble performance and
climate information influence
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Ruane et al., 2021 — Agricultural and Forest Meteorology 16



