

The Marshall 100-meter X-ray Beamline: description and update (The Stray Light Test Facility)

Nicholas E. Thomas(1)

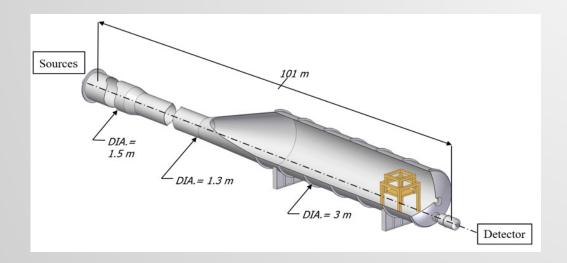

W.H.Baumgartner(1), S.D.Bongiorno(1), P.R.Champey(1), S.P.Cheney(1), C.G.Davis(2), J.A. Gaskin(1), J.Kolodziejczak(1), P.Panini(3), D.D.Smith (1)

(1)MSFC (2)Polaris Sensor Technologies (3) Oak Ridge Associated Universities

X-ray Beamlines

The Marshall 100 Meter

- >X-ray optics, collimators, grating spectrometers, and detectors
- ➤ Parallel beam, characterized spectrum, polarized source
- ➤ High vacuum
- > Facility detectors and stages
- > Flexible for small and large projects
- ➤ Cleanroom, laser alignment, lifting
- Focal length, plate scale/PSF size, and effective area



The Stray Light Test Facility

- Constructed in 1963 to test stray light suppression
- Large Space Telescope (Hubble)
 Stray Light Suppression System
 designs compared to analytical
 models (1970s)
- Remains useful for optical testing

C. L. Wyman, et al. "Analysis and Experimental Measurement of Straylight Suppression Systems for the Large Space Telescope," Optical Engineering 14(6), pp. 528 – 532, 1975.

Total facility: 101 meters long

• Beam pipe: 1.3 meter-wide

• Detector chamber: 3 meter-wide, 8 meters-long

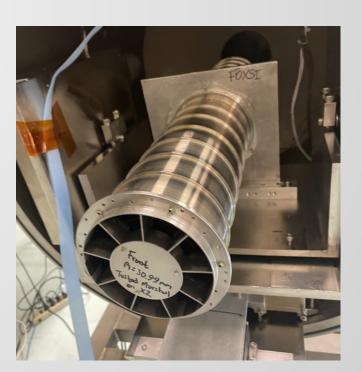
Previous Missions Tested at the Marshall 100-Mete

HERO/HEROES (balloon)

- ➤ High Energy Replicated 5 flights, latest Optics/to Explore the Sun
- ➤ 8 Mirror Module Assembly (MMA), 13/14 shell
- ➤ Last fling in 2013
- ➤ Pathfinder for MSFC X-ray optics.

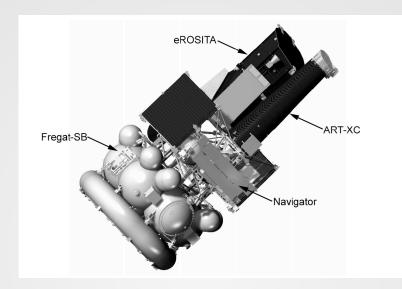
FOXSI (Sounding Rocket)

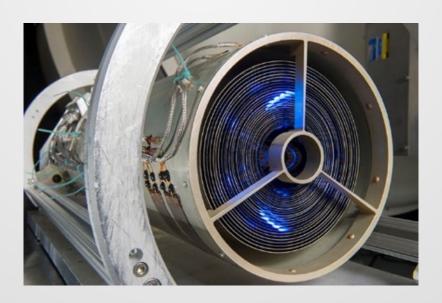
- Previous Focusing Optics Xray Solar Imager
- > 7 MMA, 7/10 shells
- > Three previous flights
- ➤ Next flight March 2024


HERO and HEROES

FOSXI

Space Telescope tested at the Marshall 100-Meter


ART-XC


- ➤ Astronomical Roentgen
 Telescope X-ray
 Concentrator
- ➤ 8 MMA qualified, 28 shells, qualified
- Launched with eROSITA on the Spektr-RG (SRG) space observatory in July 2019.
- ➤ Hard X-ray observatory 6 to 30 keV

IXPE (SMEX)

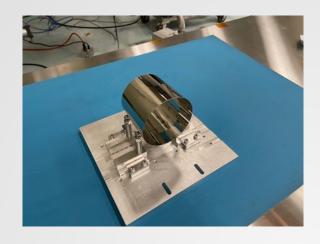
- > 4 Modules, 24 shells
- Polarization sensitive, 2 to 8 keV
- ➤ Launched 12/9/21

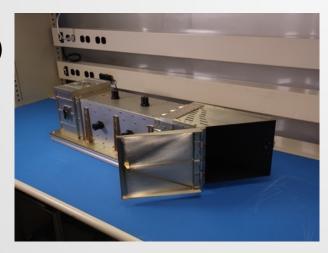
ART-XC

IXPE

https://ixpe.msfc.nasa.gov/multimedia/images/

Recent Programs


NASA


MiXO

- ➤ Miniature X-ray Optics
- Center for Astrophysics-Harvard & Smithsonian (PI Romaine- SAO)
- Develop lightweight Wolter-l optics for Small-Sat through PICASSO
- S. Romaine Wed 3:00 RM 17A

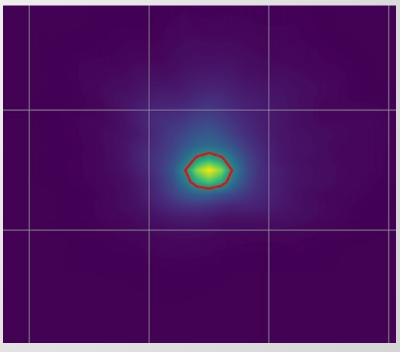
LEXI

- Lunar EnvironmentHeliospheric X-ray Imager
- (PI Wash Boston University)Spring 2022
- Full instrument calibration
- Lunar lander mounted Launched set for 2024

SSAXI

- SmallSat Solar Activity Xray Imager
- > (PI Moore, SAO) Spring 2023
- Flying with Hi-C from Poker Flat, Alaska as a sounding rocket mission in the spring of 2024.

- (PI Glesener University of Minnesota)
- Extensively calibrated at the over the last year.
- FOXSI-IV will also launch from Poker Flat in the spring of 2024.
- Baumgartner Wednesday2:20 RM 17A
- S. Bongiorno Wednesday2:40 RM17A

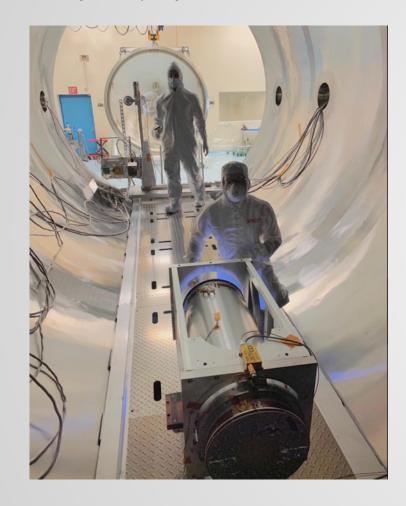


On Going

Project	Institution	Dates
FOXSI-4 with	Nagoya University	July 2023
Nagoya University		
Gravity-sag of	MSFC	July 2023
light-weighted		
optics		
Facility	MSFC Beamline	August 2023
Maintenance	Team	
Neutron	NIST and MSFC	September 2023
Microscope single		
shell Concentrator		
optic		
MIXO gravity	SAO and MSFC	September 2023
compensation test		
ISFM high	MSFC	October-November
resolution shell		2023
MaGIXS	MSFC	December 2024



General facility information


- \triangleright Gets chamber to 10^{-3} Torr in \sim 1.5 hours
- 10" Varian turbo pump
 - \triangleright Operates from 10^{-3} Torr and can pull the chamber to 10^{-5} Torr (takes several hours)
 - Not necessary but helps reduce gas load on cryo pumps to allow longer and lower pump downs

• 3 Cryo pumps

- ➤ 2 cooled by compressed helium
- ➤ 1 cooled by compressed helium and LN2 shroud
- \triangleright Normal Operation is with two cryo pumps 10^{-6} Torr
- \triangleright With 3rd cryo we can do 10^{-7} Torr
- ➤ 48 hours of LN2 supply for 3rd cryo before needing to refill tank (1000 gallons) to keep it within "safety" margins.
- If all components are operating nominally chamber can be pumped to:
 - Low 10^{-5} Torr in less than 4 hours
 - 10^{-6} Torr in approx. 4-6 hours
 - 10^{-7} Torr in approx. 6-8 hours

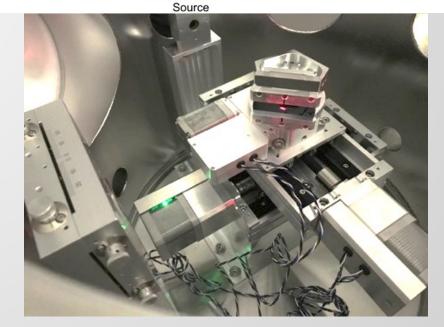
General facility information

- Cleanrooms
 - 10 K instrument chamber with flow bench
 - 100 K work/staging area (control room)
 - Gowning facility
 - Hermetic electronic feed through flanges (No Cadmium)
- Loading dock accessible

Source Room

- Sub arcsecond sources
- Flange alignment stage
- Controlled from detector room
- Filters available (Lebow Company, XRCF)

Tube Brand	Anode	Line (keV)	Max Voltage (kV)	Max Current (mA)
TruFocus 6050	Мо	2.2(l), 17.5(ka)	50	1
(Be window)	Rh	2.7(l), 20.2(ka)	50	2
	Ti	4.5(ka)	50	2
	Fe	6.4(ka)	50	1
	Cu	8.1(ka)	50	1
TFX3110EW	W	8.4(I), 59(ka)	110	2.5
TruFocus-10-2-AL	Al	1.49(ka)	8.5	0.5
Manson Source	var	var	10	1


Source Room

Trufocus 30kV/30mA Source

Anode	Line (keV)	Max Voltage (kV)	Max Current (mA)	Crystal
Rh	2.7	30	30	Ge(111)
Ti	4.5	30	30	Si(220)
Fe	6.4	30	30	aSi(400)

Gas Gauge CF 2.75 10 Pin Electrical Feedthrough CF 2.75 Translation Stage Port ISO 200K Detector ~ 100 m Non-Polariz ed Source CF 4 5/8 Detector Box/ Stray Light Facility CF 8 Glass View Port ISO 160K Turbo Pump CF 4.5 CF 2.75

Vacuum motion stages

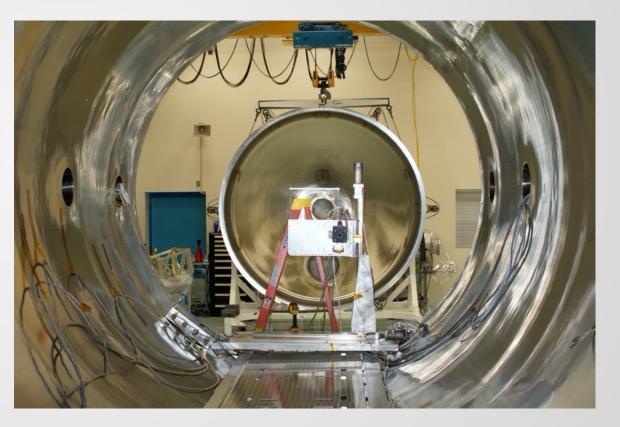
Hexapod (H-850)

Load: 80 kg

• Range: +/- 30 degrees

Optic/Collimator stage

Programable motion


Parker X-Y Stage

• Load: 100 kg

Area for additional detectors

Connected to external chiller (5 C, Water/Ethylene glycol)

Facility Detectors

• CCD

- > Andor DW436, SN 10513
- > 2048 X 2048 array of 13.5 μ m pixel
- ➤ Optical blocking filter and shutter
- ➤ Operates at -45 deg C
- ➤ Characterize point spread function of beam.

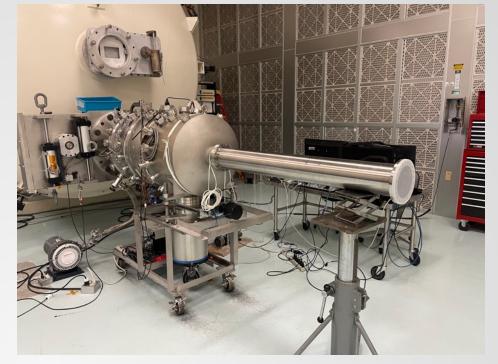
• SDD

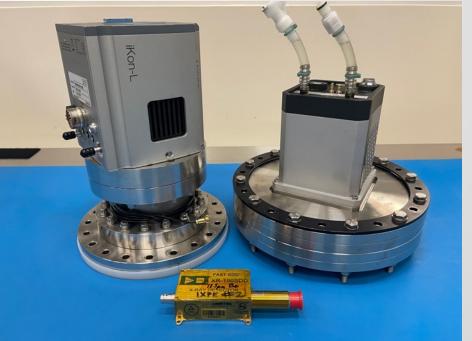
- > Amptek Fast-SDD (50 mm²)
- \geq 12.5 μ m Be window
- > Si3N4 'C-I' window (17 mm²)
- > Fast count rate/low deadtime
- > Effective Area

Two detectors mounted both on focal plane and near optical node

• CdTe

- > Amptek XR-100 CdTe (25 mm²)
- > For hard X-ray experiments

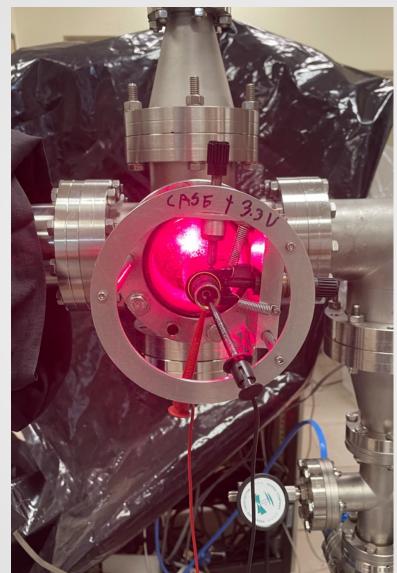


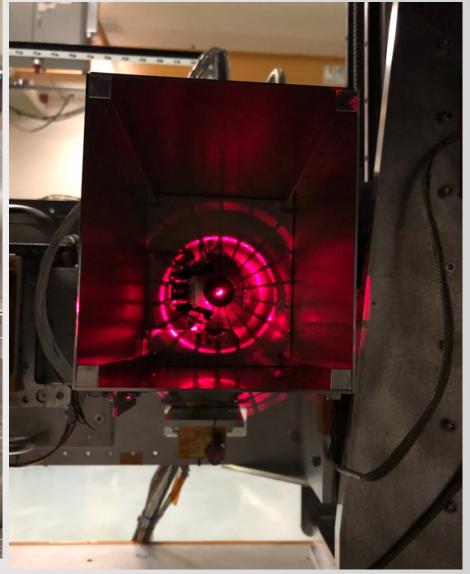


Bell housing

The Bell Housing

- External vacuum chamber, co-linear to the beamline
- ➤ Quick turnaround on test optics
- ➤ Internal Tip, Pan, and linear Z-stage (Arc minute res/ 0.1 mm res)
- External Andor CCD camera 2048 X 2048 array of 13.5 μm pixel 5 MHz pixel readout speed Air cool, -45 C
- External Marana-X sCMOS camera 2048 X 2048 array of 6.5 μm pixel 100 MHz pixel readout (high dynamic range 16-bit) 310 MHz pixel readout (fast high dynamic range 16-bit)* (coming soon) Air cool -25 C, water cool -45 C
- ➤ Be window allows for SDD measurements
- Additional tubing added for longer focal length optics





Laser alignment and reference

- Laser alignment
 - Laser reflected off retractable mirror at source end.
 - ➤ Diffuses to ~ 1 m diameter at detector end
 - ➤ Allows for rough focus and alignment of X-ray optic
- Laser optical axis reference

Amenities

- Overhead gantry chain in cleanroom
- Full access to beam-pipe when vented
- Leica laser range tracker
- Temperature housekeeping
- Electronic feed through flanges
- Highly motivated assistance from team of scientist and engineers

Summary

- The Marshall 100 Meter X-ray Beamline (aka The Stray Light Test Facility) is a world class X-ray optic test facility. It is capable of calibrating projects ranging from student lead experiments, MSFC's ISFM optic development program, going all the way to Explorer size missions.
- The Marshall 100 Meter is advertised to all successful APRA funded projects. For additional community support (NASA Centers, Universities, and Industry) please contact:

nicholas.e.thomas@nasa.gov wayne.baumgartner@nasa.gov stephen.p.cheney@nasa.gov jessica.gaskin@nasa.gov

8/24/23 Tech Day 2021

Back-Up filters

- Filters bought for AXAF
 Project at XRCF, on loan.
- Johnston, D.D., MSFC memo EL71 (27-95), "Procurement of XSS Point Electron Impact Source (PEIS) Targets and Filters" (11 April 1995).
- Manufactured by the Lebow Company

Filter	Thickness (µm)	
Element		
Al	18	
	38	
Со	46	
Cu	1.4	
	100	
Fe	1.2	
	2.4	
	37	
	75	
Mg	25	
	50	
Мо	3	
	6	
Nb	5	
	10	
Ni	50	
	100	
Pb	5.3	
Ti	1.2	
	2.6	
	41	
	81	

