High-Temperature Mechanical Tensile Testing of Unidirectional SiC/SiC Composites using a Versatile Lamp Furnace



11th International Conference on High Temperature Ceramic Matrix Composites August 27-31, 2023 | Jeju, Korea

Christine Brockman<sup>1</sup>

Clinton Switzer<sup>1</sup>, Amjad Almansour<sup>2</sup>, James Kiser<sup>2</sup>, Robert Goldberg<sup>2</sup>, Pankaj Sarin<sup>1</sup>

- 1. School of Materials Science and Engineering, Oklahoma State University, Tulsa OK
- 2. NASA Glenn Research Center, Cleveland OH

Research Sponsors: NASA OSTEM Engagement MUREP Fellowship Award, NASA Oklahoma Space Grant Consortium/NASA EPSCoR, NASA Transformational Tools and Technologies Project (TTT)





- Introduction
- Objectives
- Mechanical Testing Experimental Setup
- High Temperature Experimental Setups
  - Quadrupole Lamp Furnace
  - Conventional Furnace
- Summary

## Introduction



- SiC/SiC ceramic matrix composites (CMCs) are candidates for high-temperature applications including new generation turbine engines due to:<sup>1</sup>
  - Reduced component weight and higher temperature capability when compared to superalloys
  - Improved energy efficiency and fuel consumption
  - Reduced  $NO_x$  and  $CO_2$  emissions
- Further understanding of thermo-mechanical behavior of SiC/SiC CMCs is crucial for the continued implementation into advanced engines



Figure 1. CMC components in an advanced GE jet aircraft engine.<sup>2</sup>



Conduct mechanical tensile testing of SiC/SiC minicomposites at elevated temperatures to gain insight into thermo-mechanical behavior

- Use multi-modal approach to monitor specimen damage progression in-situ
- Implement versatile lamp furnace for high temperature mechanical testing
- Compare two high temperature test setups: lamp furnace and conventional furnace
- Test and analyze temperature dependent mechanical behavior

# SiC<sub>f</sub>/SiC Minicomposite Samples



• Fundamental element of CVI SiC/SiC and Hybrid (CVI + PIP) SiC/SiC CMCs (macrocomposites)



| Sample  | Hi-Nicalon S Content, % | CVI-SiC Matrix Content, % | BN Content, % | BN Thickness, μm | Cross Sectional Area (mm <sup>2</sup> ) |
|---------|-------------------------|---------------------------|---------------|------------------|-----------------------------------------|
| Batch 2 | 20.03                   | 76.59                     | 3.38          | 0.49             | 0.28                                    |

- Hi-Nicalon<sup>™</sup> Type S fiber tow made by NGS (Japan)
- CVI BN interphase and CVI-SiC matrix deposited by Rolls-Royce (RR) HTC
- Same CVI SiC matrix as a CVI SiC/SiC macrocomposite



### **Tensile Testing and Characterization at Room Temperature**

## Mechanical Testing Experimental Setup







- Monotonic tensile testing of minicomposites
- 1 kN load cell and 0.127 mm/min crosshead displacement rate

# Digital Image Correlation (DIC)

CMC 11

- Utilizes successive imaging to gather surface information of a material undergoing deformation
- Often performed at room temperature using a speckle pattern
- Common uses:
  - Unidirectional elongation
  - Strain field mapping of specimen surface
  - Identification of progressing damage



Sample plot of strain data and virtual extensometer applied to captured image created in Correlated Solutions Vic-2D Software

#### Results: Digital Image Correlation & Acoustic Emission





x = distance between AE sensors  $\Delta t$  = difference in event arrival times  $\Delta t_x$  = difference in arrival times





- DIC performed on minicomposite sample during room temperature fracture tests
- Plot of applied stress vs strain of minicomposite created using virtual extensometer

## **Results: Analyzing Specimen Cracking**





Specimen fracture surface showing cracks and fiber pullout, with fibers debonded from the SiC matrix.



#### **Tensile Fast Fracture at High Temperatures**

#### High Temperature Experimental Setup – Lamp Furnace





-CMC 11

## Quadrupole Lamp Furnace (QLF)



- Versatile thermal image furnace
- Uses four halogen lamps with ellipsoidal reflectors
- Hot zone of ~4 mm
- Samples can be heated up to 2000°C in air, 1700°C in inert atmospheres



top view



QLF in operation at the XPD beamline at the National Synchrotron Light Source (NSLS II) at Brookhaven National Laboratory<sup>2</sup>

### **QLF** Thermal Profile





Effect of power and distance from the center on temperature distribution along the z-axis

## High Temperature DIC





- Sample mounted longitudinally through furnace center while subjected to tensile loading
- Furnace geometry allows for line-of-sight view to the specimen and hot zone center
- High temperature DIC technique: observe change in specimen strain based on thermal profile created

## **Results: High Temperature DIC**





- Surface mapping of strain in y direction as load is increased throughout fast fracture test
- Specimen subjected to tensile loading at 1200°C at 0.127 mm/min displacement rate
- Failure at 149 MPa
- Concentrated regions of increased strain near furnace hot zone

#### **Results: Acoustic Emission & DIC**





Global AE activity mapped along sample gage as a function of event time



135 MPa F

- Failure
- Regions of concentrated strain correspond to specimen ultimate failure location
- AE events are localized towards increased DIC strain region and hot zone

#### High Temperature Experimental Setup – Conventional Furnace











- Minicomposite stress as a function of strain for tests conducted at room temperature, 1200°C, 1315°C, and 1482°C
- Ultimate tensile strength and toughness decrease as test temperature is increased
- Matrix cracking strength decreases at higher testing temperatures



• Minicomposite stress as a function of strain for high temperature tests

-CMC 11

- Strain calculated across hot zone length of 1"
- Toughness decreases as testing temperature is increased

### **Results: Temperature Dependent AE Energy**



- Normalized cumulative AE energy vs
  minicomposite stress
- Onset of matrix cracking characterized by first loud AE event
- Onset of matrix cracking decreases as testing temperature increases
- Less number of AE events recorded at higher test temperatures

| Sample ID      | HNS15 | HNS12  | HNS13  | HNS16  |
|----------------|-------|--------|--------|--------|
| Temperature    | 25°C  | 1200ºC | 1315°C | 1482ºC |
| # of AE events | 557   | 138    | 86     | 42     |





| Sample ID | Testing<br>Temperature | Modulus<br>(GPa) | Ultimate<br>tensile<br>strength<br>(MPa) | Onset of<br>matrix<br>cracking<br>(MPa) |
|-----------|------------------------|------------------|------------------------------------------|-----------------------------------------|
| HNS15     | 25°C                   | 247 GPa          | 648 MPa                                  | 220 MPa                                 |
| HNS12     | 1200°C                 | 216 GPa          | 283 MPa                                  | 195 MPa                                 |
| HNS13     | 1315°C                 | 215 GPa          | 241 MPa                                  | 193 MPa                                 |
| HNS14     | 1482°C                 | 225 GPa          | 234 MPa                                  |                                         |
| HNS16     | 1482°C                 | 243 GPa          | 169 MPa                                  | 129 MPa                                 |

- Modulus of specimen tested at room temperature is higher than that of 1200°C, 1315°C, and 1482°C tests
- Ultimate tensile strength and onset of matrix cracking values continue to decrease as test temperature increases



## **Results: Analyzing Specimen Cracking**





- Optical images of specimen tested at 1482°C
- Specimen fracture surface showing cracks and fiber pullout, with fibers debonded from the SiC matrix
- Plan to further analyze cracks along specimen gage length and calculate crack density





- Fracture testing of SiC/SiC minicomposite specimens in ambient and elevated temperatures is being performed
- Multiple damage monitoring techniques were implemented in-situ (AE, ER, DIC)
- Furnace constructed for high temperature minicomposites testing
- Thermal profile measurements of lamp furnace completed
- Two high temperature testing setups compared: lamp furnace and conventional furnace
- Temperature dependence of specimen elastic moduli, ultimate tensile strength, and onset of matrix cracking observed:
  - Moduli of specimens tested at room temperature are higher than for specimens tested at high temperatures
  - Specimen toughness, UTS, and matrix cracking onset values continue to decrease as test temperature increases
- Samples characterized after testing (SEM, µCT, optical microscopy)

## Acknowledgements



#### **Collaborators at NASA Glenn Research Center:**

- Mr. Dan Gorican
- Dr. Wayne Jennings
- Dr. Craig Smith
- Dr. Andrew Ring

#### **Collaborators at Oklahoma State University:**

- Dr. Raman Singh
- Mr. V. V. Rohit Bukka
- Mr. Achyuth T. Guthai
- Mr. Kyle Messer

#### **Research Sponsors:**

- NASA OSTEM Engagement MUREP Fellowship Award
- NASA Oklahoma Space Grant Consortium/NASA EPSCoR
- NASA Transformational Tools and Technologies Project