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1. Abstract  
Invasive species within desert riparian environments significantly affect ecosystem function by overtaking 
native species and altering the fluvial geomorphology. The Paria River, a sediment-heavy river and watershed, 
flows through the Grand Staircase-Escalante National Monument (GSENM) before its confluence with the 
Colorado River. Due to its heavy sediment load, it provides an important habitat for various species of native 
fish and amphibians. Grand Staircase Escalante Partners (GSEP) noticed an increased presence of invasive 
tamarisk (Tamarix ramosissima) and Russian olive (Elaeagnus augustifolia) plants along the Paria River watershed; 
however, the extent of both species is largely unknown. Using field survey data from the Grand Staircase 
Escalante Partners and remote sensing data from Landsat 8 Operational Land Imager (OLI), Landsat 9 OLI-
2, Shuttle Radar Topography Mission (SRTM), and Light Detection and Ranging (LiDAR), we performed a 
Random Forest classification model to identify the presence of these invasive species. We used Tasseled Cap 
indices to create a time series phenology for 2022, which helped us identify our predictor variables for the 
random forest classification model. We found that the limited Russian olive cover reflected in the field survey 
data, and the low spectral and height differentiation from other species, resulted in a classification model not 
strong enough to make a reliable prediction map. The tamarisk data, however, was abundant enough to 
produce a marginally reliable prediction map of presence in the watershed. Our results and tamarisk 
prediction map will help our partners at GSEP make informed decisions about future funding and 
management efforts.   

Key Terms 
invasive species, Russian olive, tamarisk, remote sensing, Random Forest, Tasseled Cap 
 
2. Introduction 
2.1 Background Information 
Riparian zones occur along the boundary of terrestrial and aquatic ecosystems. These areas provide water in 
arid regions, control sediment, and contain valuable habitats for both aquatic and terrestrial animals (Gregory 
et al., 1991). Productivity and species diversity is typically much higher in riparian areas when compared to 
surrounding areas that are water limited (Lesica & Miles, 2001). Invasive species within desert riparian 
environments significantly affect ecosystem function by altering fluvial geomorphology (Hood & Naiman, 
2000). A combination of satellite imagery and in-situ field data allow researchers to train models that predict 
locations of invasive vegetation that were not originally sampled through field work. Recent literature 
provides information on predictor variables such as elevation or distance to streams. While higher spatial 
and/or spectral resolution imagery such as WorldView-2 or AVIRIS provides a more detailed view of exact 
vegetation differences at any given time (Bransky et al., 2021; Martin et al., 1998), higher temporal resolution 
imagery provides more comprehensive information on phenological differences (Aghababaei et al., 2021).   
  
Originally from Eurasia, the United States introduced tamarisk to the Southwest for erosion and drought 
control in the early 1900s (Chew, 2009). Tamarisk is a perennial woody shrub with brown to reddish-brown 
bark, green scaly leaves and distinct pink and white flowers during the growing season (Spellenberg et al., 
2014). It is estimated to be the second most common woody riparian species in the western United States 
(Friedman et al., 2005), and due to its excessive salt secretions, which increase the soil salinity, it can 
outcompete native vegetation for space along the riverbank (Nagler et al., 2018). Areas that have both 
tamarisk and native species may result in an overall unsuitable habitat for sensitive species (such as butterflies) 
that depend on one specific host plant (Nelson & Wydoski, 2013). Friedman et al. (2005) found that tamarisk 
plants can flower and disperse seeds in their first year, spreading rapidly over long distances through air and 
water.   
  
Like tamarisk, Russian olive (Elaeagnus augustifolia) came to the United States in the early 1900s for erosion 
control and wind management in riparian areas (Lesica & Miles, 2001). This plant is a small deciduous tree 
that has reddish bark with some thorns and silvery-gray leaves (Katz & Shafroth, 2003). The species is 
drought tolerant, and spreads through an individual yellow seed (Nagler et al., 2011). Russian olive is more 
tolerant to environmental conditions such as flooding, drought, and shade, giving it the ability to live in 
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varying environments (Nagler et al., 2011). Russian olive is the fourth most frequently occurring woody 
riparian plant and the fifth most abundant plant along rivers throughout the western United States based on 
canopy cover (Friedman et al., 2005).  
   
The Grand Staircase-Escalante National Monument (GSENM), located in southern Utah, was established in 
1996 (Waters et al., 2004). Within the monument are two main rivers, the Escalante River and the Paria River, 
both of which feed into the Colorado River (Simpson, 2019). The Paria River is in the western portion of 
GSENM and contributes a large amount of sediment to the Colorado River (Thieme et al., 2001). The Paria 
River’s riparian area is home to many species of trees, including native cottonwood and willow trees, as well 
as (invasive) tamarisk and Russian olive plants (Simpson, 2019). In partnership with the Grand Staircase 
Escalante Partners (GSEP), our team is aware of efforts made to identify, map, and remove invasive Russian 
olive plants along the Escalante River, as well as the minimal efforts made for invasive species management 
along the Paria River. As such, we limited our study area to just the Paria River (Figure 1).  
 

 
 

Figure 1. This map shows the Paria River Watershed in reference to the American Southwest region 
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2.2 Project Partners & Objectives 
Established in 2004, the Grand Staircase Escalante Partners (GSEP) is a non-profit that aims to sustainably 
manage the monument through conservation, science, and education. We worked with GSEP to map 
invasive species in the Grand Staircase-Escalante National Monument along the Paria River watershed. 
Beginning in 2009, GSEP focused their efforts on eradicating invasive species of Russian olive and tamarisk 
in the Escalante River basin (GSEPartners, 2022). GSEP sought to conduct a wide scale eradication effort in 
the Paria River watershed, however there was little information available regarding the spatial extent and 
spatial cover of Russian olive and tamarisk. This project informed monitoring and management approaches 
along the Paria River. Additionally, the team generated species extent maps to help inform partners of where 
to focus for project budgeting and management efforts. 
  
This study aimed to demonstrate the feasibility of using remotely sensed data to detect invasive plants along 
remote riparian zones. Using Landsat 8 and 9 and Sentinel 2A imagery, we implemented a variety of bands 
and spectral indices to quantify the percent cover of invasive (Russian olive and tamarisk) and native 
(cottonwood and willow) riparian plants within our study area through the production of species extent maps. 
Moreover, to complement our detection maps, we conducted time series analyses to monitor phenological 
differences between the species.   
 
3. Methodology 
3.1 Data Acquisition  
To begin this study, GSEP and associated volunteers collected field data on vegetation and substrate cover 
throughout the Paria River watershed. The field data collected in May 2023 consists of 345 10-meter diameter 
plots that measure different types of biotic and abiotic cover, including percent Russian olive cover and 
percent tamarisk cover as well as categories for native vegetation and sediment cover. The data also includes 
latitude, longitude, tributary, and Paria River watershed reach (i.e., upper, middle, or lower).  
 
GSEP approached NASA with this project and this data, and our team received the csv file of the field data, 
as well as a shapefile of the study area location (Table 1). We aggregated satellite imagery in Google Earth 
Engine (GEE) from Landsat 8 OLI tier 1 Top of Atmosphere (TOA), Landsat 9 OLI-2 tier 1 TOA, and 
SRTM digital elevation model (DEM) data (USGS, 2018a; USGS, 2018b; USGS, 2018c; Table 2). We also 
incorporated LiDAR data into our model, which was collected using the Leica CityMapper and Leica 
TerrainMapper. Moreover, we filtered our study area to the riparian corridor of the Paria River and 
surrounding tributaries using the Valley Bottom Extraction Tool (VBET), which delineates the valley bottom 
using slope and valley width data (Gilbert et al., 2016). 
 
Table 1.  
Ancillary Data 

Data Type Source Data Product  Extent Collection Date 
Percent cover In-situ data from 

Grand Staircase 
Escalante Partners 

Percent cover data 
of various plant 
and soil types 

345 10m plots May 2023 

Shapefile Grand Staircase 
Escalante Partners 

Paria River study 
area shapefile 

Paria River 
watershed 

May 2023 
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Table 2. 
Remote Sensing Data Sources 

Sensor / Source Data Products Acquisition Method Spatial 
Resolution 

Dates 
Used 

Landsat 8 OLI 
Collection 2 Tier 1 
TOA 
 

Tasseled Cap 
Brightness, Tasseled 
Cap Greenness, 
Tasseled Cap Wetness 

Google Earth Engine 30m 2022 

Landsat 9 OLI-2 
Collection 2 Tier 1 
TOA 

Tasseled Cap 
Brightness, Tasseled 
Cap Greenness, 
Tasseled Cap Wetness 

Google Earth Engine 30m 2022 

LiDAR Canopy height Utah Geospatial 
Resource Center 

1m 2019 

SRTM Elevation, slope, aspect Google Earth Engine 30m 2000 
 
3.2 Data Processing  
3.2.1 Landsat Data 
Of the 345 in-situ field measurements that we received from our partners at GSEP, only 302 were usable due 
to data collection issues. We converted this CSV to a point-shapefile in ArcGIS Pro 3.1 and added it to 
Google Earth Engine. We imported Landsat 8 OLI and Landsat 9 OLI-2 2022 images and clipped them to 
cover the entire Paria River basin study area. The team created a function that masked out all cloudy, cloud 
shadowed, and snowy pixels in all images. Using the collection of 2022 images, we calculated the Tasseled 
Cap Index for each available date. The Tasseled Cap transformation is a weighted sum of six spectral Landsat 
bands that provides more information on vegetation characteristics (Baig et al., 2014). We implemented 
Tasseled Cap brightness, greenness, and wetness values into our random forest model as predictor variables 
(Table 3). We created a time series plot of brightness, greenness, and wetness for each species to provide 
insight into phenological differences between the invasive plants and native cottonwood and willow plants. 
Finally, our team extracted Tasseled Cap values as well as individual band values for blue, green, red, NIR, 
SWIR1, and SWIR2 wavelengths at all field data points for all Landsat scenes.  
 
Table 3. 
Tasseled Cap Weighted Sum Equations 

Parameter Equation 

Tasseled Cap 
Brightness (0.2381)(B1)+(0.2576)(B2)+(0.2934)(B3)+(0.5599)(B4)+(0.508)(B5)+(0.1872)(B6) 

Tasseled Cap 
Greenness (-0.2941)(B1)+(-0.243)(B2)+(-0.5424)(B3)+(0.7276)(B4)+(0.0713)(B5)+(-0.1608)(B6) 

Tasseled Cap 
Wetness (0.1511)(B1)+(0.1973)(B2)+(0.3283)(B3)+(0.3407)(B4)+(-0.7117)(B5)+(-0.4559)(B6) 

 
3.2.2 Geographic Data 
We obtained approximately 7000 first-return (DSM) and bare-earth (DEM) LiDAR tiles at 1m spatial 
resolution from the Utah Geospatial Resource Center (2019). The team mosaicked the 1000m2 tiles to the 
extent of the Paria Watershed using the Mosaic to New Raster tool in ArcGIS Pro. We calculated the 
difference between our first-return and bare-earth mosaics to derive canopy height at the initial 1m resolution 
and a resampled 10m resolution (Figure 2). As for data in 1m resolution, we needed to obtain the average 
canopy height value at our field data plots so we added a 10m buffer to the plots in ArcGIS Pro, and then 
calculated the average canopy height for the buffered plots using the zonal statistics tool. Finally, our team 
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extracted 1m averaged and 10m canopy height values for our field data plots and exported these to a CSV 
format. As 20 of the remaining 302 plots were outside of the available LiDAR data bounds (and did not have 
high percentage cover of the target species), we completed the rest of our processing based on 282 plots.  
 
Additionally, we incorporated SRTM data to create additional predictor variables. In GEE, we used the DEM 
raster to derive the slope and aspect of each plot. We also converted all aspect values from degrees to 
northness and eastness, where –1 equals due south and due west, and 1 equals due north and due east. 
 

 
Figure 2. These are canopy height outputs at 1m (A) and 10m (B) resolution respectively with field data plots 
overlaid (red). The images are zoomed into the Paria River in a central region of the watershed. Areas with a 

large extent of white symbolized are representative of no data, as we sought to eliminate canopy height values 
below zero. 

 
3.3 Data Analysis 
3.3.1 Predictor Variable Selection   
The first step of our data analysis required selecting the variables to use as predictors in our random forest 
model. To begin this step, we produced a time series graph of Tasseled Cap brightness, greenness, and 
wetness for the entirety of the available field data over the 2022 calendar year using combined Landsat 8 and 
Landsat 9 satellite data (Figure 3).  
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Figure 3. 2022 Tasseled Cap Greenness in the Paria River Watershed. 

 
From these time series plots we sought to identify key dates of interest where Russian olive and tamarisk 
peaked relative to other species, allowing us to extract remotely sensed Tasseled Cap data that best represents 
the occurrence of Russian olive or tamarisk. To aid in this date identification process and identify significant 
predictor variables, we utilized the Variable Selection Using Random Forest (VSURF) algorithm in R to select 
the most important variables (Genuer, R., Pggi, J.-M., & Tuleau-Malot, C., 2015). This algorithm eliminates 
irrelevant variables, selects variables that relate to the response variables of Russian olive and tamarisk cover, 
and finally eliminates redundancy within those selected variables. We input every date in the Tasseled Cap 
time series, along with topographic variables, canopy height, and distance to stream variables. The output 
selected by VSURF is listed below in Table 4. 
 
Table 4. 
Predictor Variables 

Response Variable Predictor Variables 

% Russian Olive Cover 
July 12th Tasseled Cap Wetness, May 2nd Tasseled  
Cap Wetness, July 12th Raw Band 2, April 8th Raw 
Band 2 

% Tamarisk Cover 
October 25th Tasseled Cap Wetness, May 2nd Raw 
Band 5, July 12th Raw Band 6, Elevation, Canopy 
Height 

 
 
3.3.2 Random Forest Modeling 
With our predictor variables selected, we performed a random forest classification model using the 
randomForest (Liaw and Wiener, 2002) algorithm tool in R to predict the presence and absence of Russian 
olive and tamarisk, as well as rank the variables’ importance as predictors. To use the classification model, we 
converted the field data from percent cover to presence/absence data. To run the model, we imported raster 
data layers for each of the predictor variables as well as the vector shapefile containing data on the presence 
and absence of Russian olive and tamarisk response variables and set the model parameters to 5000 trees with 
5 trees tried at each split. To assess model performance, we tested four minimum thresholds of 10%, 20%, 
30% and 40% cover to classify a species as present/absent. We then plotted the predicted presence/absence 
values against actual presence/absence values and produced a confusion matrix to identify the model’s ability 
to identify presence and absence points. Once the random forest model was optimized, we created a 
predictive raster of tamarisk presence and absence across the entire Paria River Watershed (Figure 6).  
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4. Results & Discussion 
4.1 Analysis of Results 
4.1.1 Russian Olive Random Forest Model Performance 
The highest performing Russian olive random forest model produced an out of bag (OOB) error of 19.15% 
and a true class error of 0.73. This model included all plots with 10 percent or higher cover of Russian olive 
and included the predictor variables from Table 4. We also ran the model multiple times, with each instance 
using a slightly different set of predictor variables and % cover thresholds (Table B2). The performance of 
this model was not strong enough to warrant the next step of producing an occurrence map of predicted 
Russian olive presence.  
 
Table 5. 
Russian Olive Random Forest Model Confusion Matrix 

 False True Class 
Error 

False 209 13 0.059 
True 44 16 0.733 

 
 

 
Figure 4: Russian olive predicted vs observed presence. 

 
4.1.2 Tamarisk Random Forest Model Performance 
The random forest model predicted tamarisk distribution with low accuracy across the study area. The best-
performing tamarisk random forest model used the predictor variables in Table 4, with the number of trees 
(ntree) set to 5000, and the number of variables randomly sampled as candidates at each decision tree split 
(mtry) set to 5. This model also included field data plots that had 10% or higher canopy cover. This yielded 
an OOB of 24.82% and a true class error of 0.63, as seen in Table 6. This means that of the 79 plots with 
above 10% tamarisk, our model correctly identified 29 of them. We also ran the model with slightly different 
predictor variables and percentage cover thresholds (Table B1).  
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Table 6. 
Tamarisk Random Forest Model Confusion Matrix 

 False True Class 
Error 

False 177 26 0.128 
True 50 29 0.633 

 
 

 
Figure 5: Tamarisk predicted vs observed presence. 

 
 
4.1.2 Random Forest Model Results 
In Figure 6 we see the predicted tamarisk occurrence map produced as a result of our random forest model. 
Note that there are regions of the watershed with limited LiDAR data coverage, and therefore the model was 
unable to predict tamarisk presence or absence in these regions. These areas can be seen as two gaps in 
predicted presence maps, located in the northern reach of the main stem of the Paria River as well as across 
the southern portion of the watershed that falls within Arizona. In the regions that the model was able to 
predict onto, the results indicate widespread distribution of tamarisk throughout each reach of the watershed. 
By examining the map, we see certain reaches of the river predicted to have high tamarisk abundance, as 
displayed in yellow below. In the zoomed-in inset map on the top right, we see the predicted occurrence area 
in yellow, demonstrating the maps capability to aid in classifying even the smallest reaches in the watershed by 
their tamarisk abundance.  
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Figure 6: Paria River Watershed Tamarisk Occurrence Prediction Map. 

 
4.2 Caveats and Uncerta inties 
Our study was based on field observations which were insufficient in representing the phenology of the target 
species. For example, there were only six field data plots that had higher than 40% Russian olive cover, 
leaving us with very few viable training data points. This is congruent with information from our partner, who 
mentioned that Russian olive plants were not as abundant along the Paria River. In addition to this, using 
plots with 10% cover for training data may improve the model’s performance, but it also decreases our 
confidence in the results of our model. For example, our tamarisk model predicts tamarisk presence with 
37% accuracy, but the model is predicting if there is anywhere from 10% to 100% tamarisk cover. In other 
words, in any given predicted pixel, we are 37% confident that there is at least 10% tamarisk cover for that 
pixel, leaving a lot of room for imprecision.  
 
4.3 Feasibility Assessment 
When conducting the time series portion of our project, we observed no significant spectral differences 
between the Russian olive, tamarisk, and native vegetation. This is because many of the plants display similar 
colors, such as the silvery colors of both Russian olive and sagebrush plants. The plants’ spectral similarities 
made it difficult to isolate, and therefore, predict individual plant species. There were no specific dates where 
tamarisk or Russian olive species had distinct differences from each other and local flora, which meant that 
their phenology was roughly identical in this watershed. While we did succeed in making a predictive map of 
tamarisk occurrence from the field data and subsequent remote sensing imagery, we do not have high 
confidence in its accuracy.  
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Our partner could potentially employ ocular sampling from higher spatial resolution imagery, such as 
National Agriculture Imagery Program (NAIP), to identify Russian olive and tamarisk species. They will also 
be able to view their in-situ field data on the maps that we created to view their collected field data, which will 
help them to better understand spatial distribution of the invasive and native species.  
 
4.4 Future Work 
Our methods can be translated and recreated in other riparian areas to inform future invasive species studies. 
Future studies will require abundant field data, but they could also incorporate ocular sampling of high-
resolution imagery to create additional data points. This will give the random forest model more training 
points, and therefore, increase its accuracy and predictive capacity. Plotting percent species cover in 30-meter 
plots, as opposed to 10-meter plots, to better match the spatial resolution of Landsat imagery may assist the 
Landsat-derived variables’ predictive capacity in the random forest classification model. 
 
Another way to improve our methods is by implementing alternative modeling processes. A two-step model 
would use our current model as the first step, and then manipulate the percent cover data for the second step 
because it is zero-inflated. A habitat suitability model would allow us to use similar predictor variables but 
also give specific weights to each variable. Adding in other metrics to measure vegetation health, such as the 
Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI), may 
also improve the Random Forest Model, or could be utilized in the habitat suitability model.  
 
5. Conclusions 
Landsat 8 and 9’s combined high temporal resolution together with LiDAR’s high spatial resolution 
demonstrate promise for mapping invasive species, especially in the American Southwest region. The 
challenges that exist in this endeavor are rooted in the spectral and phenological similarities of the native and 
invasive species, as well as in the limited coverage of field survey data. By running two random forest 
classification models with varying abundance of field data coverage, one for Russian olive with less data and 
another for tamarisk with more, we observed that the model improves when provided with more field data. A 
low quantity of field data with high percentage cover of the target species would likely improve the model’s 
capabilities, and ocular sampling from a trained botanist using higher spatial resolution imagery (such as 
National Agriculture Imagery Program) would supplement the field data. This contributes to the conclusion 
that the outlook for mapping invasive species in this region is optimistic, despite the challenges faced in this 
study. 
 
Due to tamarisk’s long roots and its elevated water consumption, we expected to find tamarisk present along 
the riparian corridor. The tamarisk model only predicted with limited accuracy, but it did predict tamarisk to 
be present throughout the entire watershed. The Grand Staircase Escalante Partners can use this study’s 
tamarisk prediction map to identify and prioritize treatment areas, as well as get an approximation of the 
acreage of tamarisk present along the Paria River. This data will also support any grant or funding 
applications for GSEP and facilitate coordination with other partners such as the Bureau of Land 
Management (BLM). While the purpose of the map is to predict the spatial extent of tamarisk occurrence, the 
model was much more accurate when predicting the absence of tamarisk. This information is still helpful to 
our partners, as it can be used to select areas with less invasive species and deprioritize them for management. 
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7. Glossary 
BLM – Bureau of Land Management 
Canopy Height – How tall local vegetation is when compared to the bare earth elevation. Derived from 
LiDAR data 
DEM – Digital Elevation Model, the bare-earth topographic surface collected by LiDAR  
DSM – Digital Surface Model, the first-return collected by the LiDAR sensor, which includes object height 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
Fluvial Geomorphology – The study of rivers, their shape, and how streams interact with sediment and 
their physical environment to create landforms 
GEE – Google Earth Engine 
GSENM – Grand Staircase-Escalante National Monument 
GSEP – Grand Staircase Escalante Partners, our partner organization 
Invasive species – A species not native to an ecosystem that can cause harm 
LiDAR – Light detection and ranging. A remote sensing method used to inspect the surface of the Earth.  
NAIP – National Agriculture Imagery Program 
NIR – Near infrared radiation 
OLI – Operational Land Imager (OLI for Landsat 8 and OLI-2 for Landsat 9).  
OOB – Out-of-bag error, a composite measure of the predictive error of a Random Forest Model 
Phenology – The study of a plant’s life cycle 
Random Forest Model – A machine learning classification model that can predict vegetation presence using 
decision trees.  
Riparian – Relating to the area on or near riverbanks.  
SRTM – Shuttle Radar Topography Mission. Used to gather elevation and other spatial data.  
SWIR – Short-wave infrared radiation 
Tasseled Cap Index – A transformation of raw satellite data into vegetation brightness, greenness, and 
wetness indicators 
TOA – Top of Atmosphere. A dataset type for Landsat satellite imagery 
UGRC – Utah Geospatial Resource Center, a database used to download LiDAR data 
VBET – Valley Bottom Extraction Tool, an ArcGIS package for delineating riparian corridor 
VSURF – Variable Selection Using Random Forests, an R package for variable importance analysis 
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9. Appendices 
 

Appendix A: Additional Time Series Plots 
 

 
Figure A1. Tasseled Cap Wetness Time Series Plot 

 
 

 
 

Figure A2. Tasseled Cap Brightness Time Series Plot 
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Appendix B: Model Performance Tracking 
Table B1.  
Tamarisk Random Forest Model Performance Tracking 
Description Predictor Variables % Cover 

Threshold 
OOB Error True Class Error 

N/A TCW_Oct.25, 
B5_May.2, 
B7_Jul.12, B6_Jul.12, 
Elevation, 
1m_CanopyHeight 

40 10.28 0.72 

N/A TCW_Oct.25, 
B5_May.2, 
B7_Jul.12, B6_Jul.12, 
Elevation, 
1m_CanopyHeight 

30 12.18 0.70 

N/A TCW_Oct.25, 
B5_May.2, 
B7_Jul.12, B6_Jul.12, 
Elevation, 
1m_CanopyHeight 

20 22.34 0.65 

Same Predictor 
variables with 
10% tamarisk 
cover 

TCW_Oct.25, 
B5_May.2, 
B7_Jul.12, B6_Jul.12, 
Elevation, 
1m_CanopyHeight 

10 24.82 0.58 

Split % cover into 
3 categories 

TCW_Oct.25, 
B5_May.2, 
B7_Jul.12, B6_Jul.12, 
Elevation, 
1m_CanopyHeight 

0-30 = 0 
40-60 = 1 
70-100 = 2 

12.41 0 = 0.02 
1 = 1.00 
2 = 0.92 

Included select 
differenced 
values 

TCW_Oct.25, 
B5_May.2, 
B7_Jul.12, B6_Jul.12, 
Elevation, 
1m_CanopyHeight, 
TCG Jul – Nov  

10 25.89 0.65 
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Table B2. 
Russian Olive Random Forest Model Performance Tracking 
Description Predictor 

Variables 
% Cover 
Threshold 

OOB Error True Class Error 

Includes many 
topographic 
variables 

TCW July 12, B2 
April 8, Elevation, 
B2 July 12, TCW 
May 2, Canopy 
Height, aspect e and 
n, slope fill, dist to 
stream 

class=10% and 
above 

21.28 0.87 

Only includes 
elevation as 
topographic 
variable 

TCW July 12, B2 
April 8, Elevation, 
B2 July 12, TCW 
May 2, Canopy 
Height,  

class=10% and 
above 

21.28 0.76 

Cover threshold is 
40% and above 

TCW July 12, B2 
April 8, Elevation, 
B2 July 12, TCW 
May 2, Canopy 
Height,  

class=40% and 
above 

6.38 1.00 

Cover threshold is 
20% and above 
 

TCW July 12, B2 
April 8, Elevation, 
B2 July 12, TCW 
May 2, Canopy 
Height,  

class=20% and 
above 

17.73 0.84 
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