
Monte Carlo Tree Search Methods for the Earth-Observing
Satellite Scheduling Problem

Adam P. Herrmann∗ and Hanspeter Schaub†

University of Colorado, Boulder, Colorado 80303

https://doi.org/10.2514/1.I010992

This work explores on-board planning for the single spacecraft, multiple ground station Earth-observing satellite

scheduling problem through artificial neural network function approximation of state–action value estimates

generated by Monte Carlo tree search (MCTS). An extensive hyperparameter search is conducted for MCTS on

the basis of performance, safety, and downlink opportunity utilization to determine the best hyperparameter

combination for data generation. A hyperparameter search is also conducted on neural network architectures.

The learned behavior of each network is explored, and each network architecture’s robustness to orbits and epochs

outside of the training distributions is investigated. Furthermore, each algorithm is compared with a genetic

algorithm, which serves to provide a baseline for optimality. MCTS is shown to compute near-optimal solutions

in comparison to the genetic algorithm. The state–action value networks are shown to match or exceed the

performance of MCTS in six orders of magnitude less execution time, showing promise for execution on board

spacecraft.

Nomenclature

A = action space
a = semimajor axis, km
B = spacecraft body-fixed coordinate frame
b = percent fill of the data buffer
e = eccentricity
f = true anomaly, deg
G�⋅� = generative transition function
Hi = data downlinked over planning interval, MB
h = percent of planning interval spent downlinking data
i = inclination, deg
j = ground station number
k = eclipse indicator
N = planet-centered inertial coordinate frame
P = planet-centered, planet-fixed coordinate frame
Q�⋅� = state–action value function
qj = access indicator for ground station j
p = percent of the planning horizon passed
R = reference frame of a given operations mode
R�⋅� = reward function
P r̂ = spacecraft position unit vector expressed in the planet-

centered, planet-fixed coordinate frame
S = state space
T�⋅� = explicit transition function
tmax = maximum planning horizon, minutes
tmode = planning interval length, minutes
V�⋅� = value function
P v̂ = spacecraft velocity unit vector expressed in the planet-

centered, planet-fixed coordinate frame
z = percent charge of the battery
γ = discount factor
π�⋅� = policy
σB∕R = modified Rodrigues parameter attitude error, rad

τext = external disturbance torque, N ⋅m
Ω̂ = normalized reaction wheel speeds
BωB∕N = angular velocity of the spacecraft expressed in the

body-fixed coordinate frame, rad∕s
Ω = longitude of the ascending node, deg
ω = argument of periapsis, deg

Subscript

θ = neural network approximation

I. Introduction

AUTONOMOUS spacecraft operations is an enabling capability
for future spacecraft missions [1]. In deep space, challenging

environments and mission architectures will require autonomous
exploration as the round-trip light-time communication delay will
constrain maneuvers and prevent opportunistic science collection.
Uncertain gravity fields about small bodies limit the amount of
planning that may be done before arrival to the body, and even
proximity operations about the target body are constrained by the
uncertainty in the gravity field or navigation solution. Low-cost
spacecraft such as CubeSats may necessitate on-board replanning
due to uncertain spacecraft performance or mismodeling. Further-
more, automated planning solutions will become a requirement
for certain missions due to the complexity of the planning problem
for large constellations [2]. Several challenges must be addressed
to enable automated, on-board planning. On-board planning algo-
rithms must be safe and verifiable in order to guarantee the longev-
ity of spacecraft. Additionally, the computational overhead of
on-board planning algorithmsmust be addressed.Although advances
in radiation hardened processors can be expected to increase on-
board computational resources, current missions rely on limited
processing solutions such as the RAD750 [3]. On-board solutions
for operations should also use the full capability of the spacecraft.
Planning solutions should be optimal or near-optimal in terms of
maximizing science return while meeting science and resource
constraint requirements. Finally, on-board task schedulers should
have the capability to dynamically respond to last-minute target
requests, ground station outages, or mismodeled dynamics without
rerunning computationally intensive scheduling algorithms. To
address these challenges, thiswork proposes amethod for on-board,
closed-loop planning in the context of the single spacecraft, multi-
ple ground station Earth-observing satellite (EOS) scheduling
problem.
State-of-the-art solutions to the EOS scheduling problem for real

spacecraft missions are typically ground-based. Spacecraft tasking

Received 23 March 2021; revision received 27 July 2021; accepted for
publication 31 July 2021; published online 31 August 2021. Copyright ©
2021 byAdamHerrmann. Published by theAmerican Institute ofAeronautics
and Astronautics, Inc., with permission. All requests for copying and permis-
sion to reprint should be submitted to CCC at www.copyright.com; employ
the eISSN 2327-3097 to initiate your request. See also AIAA Rights and
Permissions www.aiaa.org/randp.

*Graduate Research Assistant, Ann & H. J. Smead Department of Aero-
space Engineering Sciences, 3775 Discover Drive, AERO 446; adam
.herrmann@colorado.edu. Member AIAA.

†Glenn L. Murphy Chair of Engineering, Ann & H. J. Smead Department
of Aerospace Engineering Sciences, 3775 Discover Drive, AERO 446;
hanspeter.schaub@colorado.edu. Associate Fellow AIAA.

70

JOURNAL OF AEROSPACE INFORMATION SYSTEMS

Vol. 19, No. 1, January 2022

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 

https://orcid.org/0000-0001-6179-7728
https://orcid.org/0000-0003-0002-6035
https://doi.org/10.2514/1.I010992
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.I010992&domain=pdf&date_stamp=2021-09-06


plans are generated on the ground, sequenced, and uplinked to the
spacecraft for execution. A notable example for autonomous plan-
ning is the Automated Planning/Scheduling Environment (ASPEN)
software architecture [4]. ASPEN is an autonomous, ground-based
planning and scheduling architecture used for a variety of spacecraft
missions. Significant work has also been performed to develop on-
board systems that give spacecraft the ability to iteratively repair a
ground-based plan if a resource constraint violation or unexpected
science opportunity occurs. Continuous Activity Scheduling, Plan-
ning, Execution, and Replanning (CASPER) addresses this need by
continually checking an existing plan for resource constraint viola-
tions andmodifying the plan on-board the spacecraft if necessary [5].
CASPER and ASPEN have been applied to several missions, such as
Earth Observing 1 (EO-1) [6,7] and Intelligent Payload Experiment
(IPEX) [8], to demonstrate on-board schedule modification of
ground-based plans. These systems operate in combination with
science detection algorithms and sensor webs to mark future science
targets [9,10]. Although state-of-the-art solutions to spacecraft plan-
ning have decreased the burden on operators and enabled the collec-
tion of opportunistic science data, algorithms with more control over
operational decisions are required for full autonomy.
In literature, multiple targets variants of the EOS scheduling prob-

lem are often formulated as optimization problems [11]. These
approaches find optimal solutions for large sets of ground targets,
but are brittle to uncertainty, ground station outages, and last-minute
target requests. They do not generalize to initial conditions that have
not been solved for. Spangelo et al. formulate the EOS scheduling
problem as an optimization problemwhere operational decisions such
as collecting imagery, downlinking data, and charging batteries are
considered to maximize downlinked data and manage spacecraft
resources [12]. Cho et al. apply a two-step binary linear programming
algorithm to solve the EOS scheduling problem for a constellation of
agile spacecraft imaging a set of targets by scheduling observation and
downlink tasks [13]. Nag et al. account for uncertainty in attitude
estimation and solve the multiple targets EOS scheduling problem for
an agile spacecraft using dynamic programming to maximize the
weighted sum of captured images, demonstrating large performance
improvements over nadir-pointing instruments and a huge speed-up in
computation due to the use of dynamic programming [14]. In a real
operational scenario, the solutions generated by the aforementioned
algorithms are executed open-loop on board spacecraft. Replanning
must occur in the event of a resource constraint violation, change in the
target requests, or a ground station outage. Future planning solutions
should operate in a closed-loop implementation to minimize the
impacts of mismodeling and respond to new targets requests without
having to rerun computationally intensive optimization algorithms. It
should also be noted that the majority of the literature for the EOS
scheduling problem considers large sets of ground targets for imaging.
Thiswork focusesoncollecting nadir-pointing, target-agnostic science
data while managing resource constraints in closed-loop manner. No
specific imaging targets are considered. However, the nadir-pointing
science mode can be fed with a new target request each planning
interval.
Recent work has proposed reinforcement learning (RL) as a viable

alternative to state-of-the-art spacecraft operations and guidance
algorithms due to its speed of execution after training and ability to
generalize across training data. In the small-body domain, RL iswell-
suited to solvemany challenging problems that require fault handling
or rigorous treatment of unknown or uncertain dynamics. Gaudet
et al. develop an adaptive guidance system using recurrent neural
networks to respond real-time to faults or unknown dynamics in
landing scenarios [15]. Hockman and Pavone apply policy iteration
for hopping rover motion planning on the surface of an asteroid,
rigorously handling the uncertainty of the dynamics on the surface of
small bodies [16]. Chan and Agha-mohammadi solve the small-body
mapping problem by formulating it as a partially-observableMarkov
decision process (MDP) and applying the REINFORCE algorithm
to maximize map quality by learning when to execute thrust and
imaging commands [17]. In the EOS domain, Harris et al. train deep
Q-learning or shielded proximal policy optimization agents on the
ground and execute them real-time on board simulated spacecraft

[18–20]. These techniques allow operators to forgo the arduous
ground-based planning process by developing generalized plans
through RL policies or value functions that may be rapidly executed
on board spacecraft. However, deep Q-learning requires many mod-
ifications to achieve good performance as it suffers from maximiza-
tion bias, single-step learning, etc. [21]. Although policy gradient
methods offer several benefits, such as stochastic policies and good
performance in continuous state and action spaces [22], only con-
vergence to local maxima can be guaranteed because they funda-
mentally rely on gradient ascent, which can result in training and
initialization sensitivities. Furthermore, stochastic policies can take
unsafe actions and necessitate the use of a shield to safely bound the
behavior of the agent.
To address these problems, this work focuses on a class of tech-

niques that use Monte Carlo tree search (MCTS) to compute policies
that can be generalized using state–actionvalue function regressionvia
neural networks to produce generalized, deterministic, and optimal
behavior for on-board spacecraft planning. Kocsis et al. propose a
variant of MCTS, the upper confidence bound for trees (UCT), that
converges to the globally optimal action as the number of simulations-
per-step approaches infinity [23]. Shah et al. propose a variant of UCT
with a polynomial bonus and pose that this algorithm holds the
property that Kocsis et al. claim [24]. Silver et al. demonstrate that
MCTS combined with a state–action value and policy network can
achieve superhuman performance in the game of Go [25]. MuZero, a
model-based variant of AlphaZero, also demonstrates the power of
MCTS methods on a myriad of canonical RL problems [26]. Fedeler
and Holzinger extend MCTS to the space situational awareness
domain, demonstrating telescope tasking for tracking space objects
using a novel MCTS algorithm [27]. Eddy and Kochenderfer formu-
late a multiple targets EOS tasking problem as a semi-MDP and apply
MCTS to compute planning solutions, which are compared with rule-
based and mixed-integer programming solutions [28]. Although these
methods demonstrate the ability to generate solutions to spacecraft
planning problems, none have considered the use of MCTS as a form
of data generation for state–action value function neural networks.
AlphaZero takes a similar approach for the game of Go, but uses the
state–action value and policy network to replace MCTS rollouts and
augment the exploration bonus because of the large action space in the
game of Go [25]. In this work, the relatively small action space does
not necessitate the use of a value and policy network to be executed
within MCTS. Therefore, state–action value estimates are computed
byMCTS and regressed over using neural networks. The state–action
value function neural networks provide a compact representation of
planning solutions that may be generalized over a range of low Earth
orbits for rapid execution on board spacecraft.
In this paper, the formulation and implementation of the EOSMDP

is first described in detail.MCTS, training data generation, and state–
action value function neural network regression are then discussed.
The results from hyperparameter searches of both MCTS and neural
network architectures are presented. The MCTS hyperparameter
search investigates different combinations of the exploration bonus,
number of simulations-per-step, and rollout policy. A low-fidelity
safety MDP is constructed to form a safety-aware rollout policy that
can avoid resource constraint failures and find downlink opportuni-
ties. The neural network architecture search investigates how the size
of the networks, activation functions, and other parameters specific to
the activation functions affect performance. The learned behavior of
each neural network architecture is investigated, and the sensitivities
of each trained neural network to orbital parameters and epochs
outside of training distributions are explored to determine the effects
of an erroneous orbit insertion and performance months after train-
ing. A genetic algorithm is implemented to provide a baseline for
determining the optimality of each algorithm, and a comparison
between each MCTS method is made on the basis of optimality,
execution time, and generalizability to determine which algorithms
are good candidates for execution on-board spacecraft.

II. Markov Decision Process

In this formulation of the EOS scheduling problem, a satellite in a
500-km-altitude orbit makes operational decisions to collect and

HERRMANN AND SCHAUB 71

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 



downlink science data to any of seven different ground stations

around the Earth as shown in Fig. 1. A decision-making agent steps

through the planning horizon, which is defined as the total length of

the simulation, tmax. The planning horizon is broken into several

planning intervals of length tmode. The planning intervals are

defined as the discrete decision-making intervals at which the agent

takes actions. The objective of EOS scheduling problem is to

maximize the total amount of science data downlinked over the

length of the planning horizon while safely managing the resources

on-board the spacecraft (i.e., the battery level, data buffer level, and

reaction wheel speeds). Science data are collected by pointing an

imager in the nadir direction toward Earth. Specific imaging targets

are an interesting extension of this work but are beyond the scope of

this paper.
The EOS scheduling problem is formulated as a finite-horizon,

deterministic MDP. An MDP is a sequential decision-making prob-

lem in which an agent selects an action ai, in state si, following some

policy, π∶S → A, that maps states to actions. At the next state si�1,

the agent receives a reward ri based on a reward function R∶S×
A → R. An MDP follows the Markov assumption, which states that

the next state is conditionally dependent only on the current state and

action. This is represented by Eq. (1), where T�si�1jsi; ai� represents
the probability of transitioning to state si�1 conditioned on state si
and action ai.

T�si�1jsi; ai� � T�si�1jsi; ai; si−1; ai−1; : : : ; s0; a0� (1)

An MDP is defined by the five-tuple �S;A; T; R; γ�. The state

space, action space, and reward function are described in detail in the

following subsections. The transition function T�si�1jsi; ai� is rep-
resented by a generative modelG�si; ai�. Because of the complexity

of the underlying problem dynamics, an explicit transition function

using conditional probabilities cannot be constructed for this prob-

lem. A spacecraft dynamics simulator is used to generate the next

state and reward based on the dynamics of the underlying problem, as

shown in Eq. (2).

si�1; ri � G�si; ai� (2)

A. State Space

The state space for the problem, S, is given by

S:
n
P r̂; P v̂; σB∕R; BωB∕N ; Ω̂; z; k; b; h; q1∶7; p

o
(3)

To help with convergence during function approximation, all states
are normalized between the range of �0; 1� or �−1; 1�. Planet-centered,
planet-fixed position and velocity vectors normalized by their mag-
nitude, expressed in planet-centered, planet-fixed frame P compo-

nents as P r̂ and P v̂, are included in the state space of this MDP. The
reason for this is twofold. First, the state–action value function
approximators can correlate the orbital parameters of the satellite to
high-value states when ground station access is approaching. Ground
station access qj is defined for each ground station location j as the
percentage of the planning interval i that the ground station was
visible to the spacecraft. Because access is computed at the end of the
interval, the position and velocity vectors provide function approx-
imators with a state that indicates a high-value state if ground station
access is approaching. Second, the position and velocity of the
spacecraft may give function approximators additional information
on the type of orbit the spacecraft is in, so decision-making agents can
make more nonintuitive decisions related to resource management or
data collection. Theoretically, radius and velocity allow function
approximators to generalize behavior to all orbits within the training
distributions. Although the agent will not have state information on
altitude because radius and velocity are normalized, the small range
of altitudes (due to eccentricity and perturbations alone) renders this
lack of state information relatively inconsequential in terms of the
stationarity of the transition function.
To keep the satellite within resource constraints, several other

states are included in S. The modified Rodrigues parameter (MRP)

[29] attitude error σB∕R, the angular velocity BωB∕N , and reaction

wheel velocities over the maximum allowable velocities, Ω̂, are
included to manage the attitude determination and control system.
The percent charge of the battery, z, an eclipse indicator, k, and the
percent fill of the data buffer, b, are included in the state space, so the
function approximator can correlate other constraint violations with
low-value states. The percentage of the planning interval spent down-
linking data, h, is also included in the state space to represent how
much of the access time is used by the satellite. The percentage of the
total planning horizon that has already passed, p, is included in the
state space because the problem is finite horizon. Two identical states
that only differ in pwill not have equal value because the state closer
to the end of the planning horizon will not be able to use downlink
opportunities past the end of the planning horizon. By including
p, the function approximator can compute more accurate value
estimates.

B. Action Space

The action space A includes four separate flight modes: image,
downlink, charge, and desaturate.

A:fImage;Downlink;Charge;Desaturateg (4)

The action space is constructed following a mode-based planning
approach, abstracting high-level behaviors whose low-level behavior
is dictated by the interaction between different subsystems in the
simulation. The mode-based planning approach breaks the complex,
continuous behavior into a set of discrete actions to make the plan-
ning problem tractable [18]. When a mode is selected, the dynamics
are propagated using RK4 integration at a 1 s time step, Δt � 1 s. A
time step of 1 s is required to accurately propagate the nonlinear
attitude dynamics. For each mode, the dynamics propagation occurs
for a 6-min planning interval, tmode. Six minutes is selected to ensure
that attitude tracking errors have converged and are negligible by the
end of the planning interval and to give the satellite enough time to
remove the momentum in the reaction wheels during desaturation. If
the planning window is too short, the flight modes may become
unstable. If the windows are too large, the safety constraints may
be missed.

C. Reward Function

The reward function is formulated to reflect an EOS scheduling
problemwhere the objective is to maximize the science data returned
while managing resource constraints. The reward function is defined

1. Charging
Mode

2. Downlink
Mode

3. Imaging Mode

4. Desaturation
Mode

Fig. 1 Scheduling of flight modes.

72 HERRMANN AND SCHAUB

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 



as the amount of data downlinked over each planning interval in
megabytes, Hi, if no resource management failure occurs. A �1
success bonus is included in the reward if the agent reaches the end of
the planning horizon without failing. In the EOS MDP, a failure
constitutes a violation of resource constraints. The failure modes
considered are zero charge in the battery, reaction wheels exceeding
their maximum speeds, or an overflow in the data buffer. Failures are
evaluated at the end of a planning interval i.

failure if z � 0; any �Ω̂ ≥ 1�; or b ≥ 1 (5)

If the agent does fail at any point during planning, a reward of−1000
is returned and the episode terminates immediately. The reward
penalty for failure was sized such that it is larger than the maximum
amount of positive reward the agent can receive due to downlinking
over the entire planning horizon. Because the problem is finite
horizon, a γ � 1.0 is used.

R�si; ai; si�1� �

8>><
>>:
Hi if !failure

Hi � 1 if t ≥ tmax and !failure

−1000 if failure

(6)

III. Earth-Observing Satellite Simulation

A. Simulation Architecture

The EOS scheduling problem is simulated using the Basilisk
Astrodynamics Software Framework [30] (http://hanspeterschaub.
info/basilisk). The modularity and speed of Basilisk allows for a
high-fidelity simulation with cross-couplings between spacecraft
subsystems to be constructed and quickly executed. The use of a
complex simulation provides a realistic dynamics environment that
the algorithms discussed in this paper can learn from and be validated
on. Furthermore, the framework provides the opportunity to simulate
real flight software used on board spacecraft, which lends itself to
future autonomy work that may fly on board a real spacecraft.
A complete diagram of the associated Basilisk modules may be

found in Fig. 2. Each module in the diagram represents a distinct,
modularized block of code that receives inputs from other modules,
performs computations, and sends outputs to modules subscribed to
its messages. The Basilisk simulation includes a full attitude control
system to simulate a representative spacecraft missionwhere systems
are coupled to the physical attitude dynamics. The Hill and inertial
reference frames are switched between based on the specific flight
mode and passed to an attitude error computation module as the
reference attitude state message. Next, the attitude tracking error
message is evaluated and passed on to an MRP feedback control
law. The MRP feedback control law sends motor torque commands
to reaction wheels to change the dynamics of the spacecraft. The
reaction wheels are modeled after the Honeywell HR16 reaction
wheels. A momentum dumping module is implemented as well. It
maps reaction wheel momentum to thruster on-time commands to
remove momentum from the reaction wheels. The thrusters are
modeled after the Moog Monarc-1 thrusters. Attitude perturbations
are incorporated through the use of a faceted drag model and random
external disturbance torques to build up momentum in the reaction
wheels. Orbital perturbations like multibody gravity effects (includ-
ing Earth, sun, and the moon) and Earth J2 perturbations are also
implemented. A summary of the dynamics models and the relevant
states they impact are provided in Table 1.
The parameters of the spacecraft subsystems are found in Table 2.

A power system is simulated in Basilisk, leveraging Basilisk’s high-
fidelity dynamics capabilities to accurately compute power con-
sumption and generation. Simulated solar panels generate power
based on incidence angle relative to the sun location, panel area,
and efficiency. Earth eclipse effects are also considered when deter-
mining solar panel performance. Generated power is stored in a
modeled battery, and the imager, transmitter, and reaction wheels
all consume power from the battery. Similarly, an on-board data
management system ismodeled.An instrument generates data during

the imaging mode, which is stored in a data buffer. In the communi-
cations mode, a transmitter downlinks data from the buffer to ground
stations located on the Earth. The spacecraft antenna is omnidirec-
tional, and it is assumed that nadir pointing will suffice to commu-
nicate with a ground station that is within line of sight. The location
and parameters of each ground station are provided in Table 3. The
ground stations are selected from a list of stations used by NASA’s
Near EarthNetwork [31].ABoulder, Colorado, ground station is also
included. The ground stations are selected from the list such that they
are located within the minimum and maximum boundaries of the
randomly generated orbits.

B. Spacecraft Modes

A mode-based planning approach is taken to transform complex
spacecraft behavior into discrete actions. Table 4 provides the
details of the four flight modes of the spacecraft. The Basilisk tasks
and models are provided in the left-hand column. Enabling or
disabling tasks and setting different models on or off dictates the
behavior of each flight mode. During the observation mode, the
spacecraft points in the nadir direction and the instrument data and
power models are turned on. During the downlink mode, the space-
craft points in the nadir direction and the transmitter data and power
models are turned on. The transmitter will downlink data only if a
ground station is accessible. A ground station is accessible if the
spacecraft is within the minimum elevation listed in Table 3. This is
continually checked during the propagation of the dynamics. If the
ground station is not accessible, the transmitter remains on and
consumes power until a ground station becomes available. In the
charging mode, the spacecraft points the solar panels in the direc-
tion of the sun. All power and data models are turned off. Lastly, in
the desaturation mode, the spacecraft points its solar panels toward
the sun while the thrusters are used to remove momentum from the
reaction wheels. Like the charging mode, all power and data models
are turned off.

C. Gym Environment

To complete the construction of the generative transition model,
the Basilisk simulation is wrapped in a Gym environment, build-
ing upon previous open-source work (http://github.com/atharris/
basilisk_env) from the AVS Laboratory. Gym environments provide
a standardized interface and set of test environments that decision-
making algorithms can act on and learn from (https://gym.openai.
com/). A simple depiction of this interface is provided in Fig. 3. At
each step through the environment, the agent takes an action and
receives a reward and a new observation. The agent uses the new
observation to take the next action, and the process continues until the
finite time-horizon is reached or the episode terminates due to success
or failure. When the agent passes an action to the environment, the
environment passes the action through to the Basilisk simulator,
which turns the relevant models on or off and executes the dynamics
for the specified amount of time, tmode.

IV. Monte Carlo Tree Search Methods

A. Solving Markov Decision Processes

Solutions toMDPs involve finding the optimal policy π��si� or the
optimal value function V��si�. The optimal policy is the mapping
from states to actions that maximizes the value function.

π��si� � argmax
π

Vπ�si� (7)

The optimal value function V��s� is defined iteratively using the
Bellman equation:

V��si� � max
a

�
R�si; ai� � γ

X
si�1∈S

T�si�1jsi; ai�V��si�1�
�

(8)

The optimal value function is the value of the optimal policy.
Furthermore, the state–action value function Q�si; ai� is the value

HERRMANN AND SCHAUB 73

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 

http://hanspeterschaub.info/basilisk
http://hanspeterschaub.info/basilisk
http://hanspeterschaub.info/basilisk
http://github.com/atharris/basilisk_env
http://github.com/atharris/basilisk_env
http://github.com/atharris/basilisk_env
https://gym.openai.com/
https://gym.openai.com/


of a particular state–action pair. The optimal value function can be

found by evaluating Q��si; ai� with the action that maximizes

Q��si; ai�.
V��si� � max

a
Q��si; ai� (9)

If the optimal state–action value function is known, the optimal

deterministic policy is found with Eq. (10).

π��si� � argmax
a

Q��si; ai� (10)

In this work, the focus is on solving for the state–action value

functionQ�si; ai�.Many algorithms have been posed to solveMDPs.

Two of the most well-known algorithms, policy iteration [32] and

value iteration [33], compute the optimal policies and value functions

offline by repeatedly iterating over the policy or the value function

using a form of the Bellman operator. Although these techniques

provide exact solutions, they require an explicit transition function

and discrete state space. Conversely, online algorithms solve MDPs

while interactingwith the environment such that only reachable states

are considered. In a deterministic environment, this allows for the

relatively fast computation of optimal policies in large state spaces.

Furthermore, online algorithms only require a generative model to

represent the transition function, which is well suited for spacecraft

operations planning. Therefore, this work solves for the state–action

value function using an online algorithm, MCTS.

Fig. 2 Basilisk simulation flow diagram.

Table 1 Dynamics models

Model Translation Attitude

Multibody gravity ×
Earth J2 ×
Facet drag × ×
Random force and torque × ×
Reaction wheels ×
Thrusters × ×

74 HERRMANN AND SCHAUB

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 



B. Monte Carlo Tree Search

MCTS, specifically the UCT, is an online search algorithm that

computes optimal solutions to decision-making problems by con-
tinually simulating interactions with the environment to compute
intermediate state–action values, which are used to incrementally
step through the real environment. The specific version of UCT used
in this work is described in detail by Kochenderfer [34] and shown in
Fig. 4. The agent executes the demonstrated process from the current

state a specified number of times, which is known as the number of
simulations-per-step.
During selection, the agent chooses the action that maximizes the

intermediate state–action value Q plus an exploration bonus U.

During the expansion step, if the agent reaches a state that it has

not visited before, it initializes a state–action value for each possible

action in that state, as well as the number of times the state–action

combinations have been visited (initialized to zero). After expansion,

the agent executes a rollout policy to step through the problem until

the episode ends. In this problem, the agent stops executing the

rollout if it violates the resource constraints or the end of the planning

horizon is reached. A rollout policy is a policy that either randomly

selects actions or follows some heuristic that will lead the agent to

reward. The reward generated during rollout is then backed up

through each state, and the state–action value pairs are updated. This

process is repeated until the specified number of simulations-per-step

is reached. The agent then decides onwhich action to select in the real

environment by selecting the action associated with the maximum

state–action value pair. The process is repeated for the designated

number of simulations-per-step at the next state in the real environ-

ment. The process continues until the episode ends due to failure or

the end of the planning interval is reached.
Two rollout policies are explored: random and heuristic. The

random rollout policy selects random actions unless a downlink

opportunity is present (i.e., any of the states q1∶7 are nonzero), which
initiates a downlink mode. The heuristic rollout policy considers the

statesmost relevant to constraint violations to determinewhich action

will guarantee that a resource constraint violation does not occur. In

the event that a nominal resource state is achieved, the heuristic policy

either downlinks or images. The states most relevant to resource

constraint violations are the body rate of the spacecraft (BωB∕N ),

the rate of the reaction wheels (Ω), the power in the battery (Z), and
the amount of data in the data buffer (B). The limits on each state

variable are provided in Eqs. (11–14). A summary of the safety limits

in comparison to the failure limits, both with and without units, are

displayed in Table 5. Although the body rate of the spacecraft is not

considered in the reward function, the body rate is important for

determining when the desaturationmode should be taken over space-

craft charging when several other safety states have exceeded their

limits. A low-fidelity safety MDP is constructed using these varia-

bles. The state of this safety MDP is given by the tuple (tumbling,

saturated, low power, buffer limit), where each state in the tuple can

take the value true or false. In total, there are 16 possible states. This

technique is similar to what Harris and Schaub employ for shielded

deep RL in the EOS scheduling problem [19]. However, Harris and

Schaub use the shield to conservatively bound an agent’s actions

based on the safety MDP during training. In this work, the heuristic

policy derived from the safety MDP guides MCTS to high-value

states by avoiding constraint violations during rollout.

jBωB∕N j ≥ 1e-2 rad∕s → Tumbling � True (11)

jΩj ≥ 400 rad∕s → Saturated � True (12)

Z ≤ 40 Whr → LowPower � True (13)

B ≥ 0.8 GB → Buffer Limit � True (14)

Table 3 Ground station parameters

Location Latitude Longitude Elevation, m

Minimum
elevation
angle, deg

Boulder, CO (USA) 40.015 N 105.27 W 1600 10
Ka Lae, HI (USA) 19.897 N 155.58 W 9.0 10
Merritt Island, FL (USA) 28.318 N 80.666 W 0.91 10
Singapore 1.3521 N 103.82 E 15 10
Weilheim, Germany 47.841 N 11.142 E 560 10
Santiago, Chile 33.449 S 70.669 W 570 10
Dongara, Australia 29.245 S 114.93 E 34 10

Fig. 3 OpenAI gym framework.

Table 2 Spacecraft parameters

Parameter Value

General spacecraft parameter

Mass 330 kg

Dimensions 1.38 m × 1.04 m × 1.58 m

Inertia diag�82.1; 98.4; 121� kg ⋅m2

Power system

Solar panel area 1.0 m2

Solar panel efficiency 0.20
Instrument power draw 30 W
Transmitter power draw 15 W

Battery capacity 80 W ⋅ h
Attitude control system

Maximum wheel speeds 6000 RPM

Maximum momentum 50 N ⋅m ⋅ s
Maximum wheel torque 0.2 N ⋅m
Maximum thrust 0.9 N
Thruster minimum on time 0.02 s

RW1 spin axis b̂1

RW2 spin axis b̂2

RW3 spin axis b̂3

Data and communications system

Data buffer storage capacity 1 GB
Instrument baud rate 4 Mbps
Transmitter baud rate 4 Mbps

Table 4 Flight modes

Mode

Basilisk task and model Observation Downlink Charge Desaturation

Nadir point task Enabled Enabled Disabled Disabled
Sun-point task Disabled Disabled Enabled Enabled
MRP control task Enabled Enabled Enabled Enabled
RW desat task Disabled Disabled Disabled Enabled
Instrument power model On Off Off Off
Instrument data model On Off Off Off
Transmitter power model Off On Off Off
Transmitter data model Off On Off Off

HERRMANN AND SCHAUB 75

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 



Based on the state of the safety MDP, an expert-derived policy
selects the action that guarantees a resource violation will not occur.
The value of the state tuple and associated action may be found in
Table 6. Like the random rollout policy, if the image action is selected
(which means that the system state is nominal in terms of the safety
variables), but any of the ground station access variables q1∶7 are
nonzero, downlink is initiated instead.

C. State–Action Value Function Neural Network Regression

The ultimate goal of the state–actionvalue function neural network
regression is to generalize the state–action value functions computed
usingMCTSwith a neural network representation,Qθ�si; ai�.MCTS
is used to generate search trees that are regressed over using different
neural network architectures. Only the state–action value pairs asso-
ciated with states that MCTS executes planning from are used for
neural network regression. In other words, only the main search tree
is used because states far removed from the main tree are visited very
few times, resulting in poor state–action value estimates. In order for
the trees generated byMCTS to be used, the intermediate state–action
value pairs found using MCTS must be updated with the realized

reward after MCTS finishes stepping through a planning problem.
Once an entire planning problem has been solved by MCTS, the
reward received while stepping through the environment is used to
compute new state–action values in the main tree for the actual
actions selected. The intermediate state–action value pairs for each
other action are left as they are. This process is demonstrated in Fig. 5,
where the realized reward is backed up through the main search tree.
Figure 6 depicts the process used to train and validate the neural

networks. A large number of episodes starting at random initial
conditions are solved using MCTS, and the state–action value pairs
are assembled for each set of initial conditions. Each state and its four
associated state–action value pairs are separated from the tree and
added to the training set. The training set is randomized and split into
a training and test set where 90% of the data are used for training and
10% is used for validation to monitor overfitting. After generation
and assembly of the data, neural networks are trained to produce
state–action value function approximators, Qθ�si; ai�. The neural
networks are validated on the environment by executing them on a
test set of 100 initial conditions. At each step through each environ-
ment, the state is input into the value network and the action that
returns the highest state–action value is selected. The neural network
policy is the selection of the action associated with the highest state–
action value pair at each step through the environment. This is
represented in Eq. (15):

πθ�si� � argmax
ai

Qθ�si; ai� (15)

Table 7 shows the distributions that the initial conditions are drawn
from for training purposes. The eccentricity, inclination, longitude of
the ascending node, argument of periapsis, and true anomaly are drawn
fromfairly large distributions such that the agent experiences a rangeof
low Earth orbits. The semimajor axis is initialized to 6871 km in all
cases. Although some variation in altitude is inherent due to the
eccentricity and the previously described perturbations, a distribution
for the semimajor axis is not included to demonstrate how the agent
generalizes to semimajor axes above 6871 km. This allows for the
robustness of a single semimajor axis solution to be tested over a range
of mission altitudes. Also provided in Table 7 are the initial conditions
for the spacecraft attitude and rate, reaction wheel speeds, and initial
battery charge. The data buffer always beginswith no data collected. A
planning horizon, tmax, of 270 min (approximately three orbits) is
selected to balance computation time with a challenging operational
scenario.

V. Results

A. Monte Carlo Tree Search Hyperparameter Search

Ahyperparameter search is conducted to determine the bestMCTS
hyperparameter combination for generating neural network training
data. In the following search, different combinations of two key

Table 5 Failure and safety MDP limits

Resource state
Failure limits Safety limits

Unit Unitless Unit Unitless

Wheel speeds 628 rad∕s 1 400 rad∕s 0.64

Battery level 0 W ⋅ h 0 40 W ⋅ h 0.5

Data buffer level 1 GB 1 0.8 GB 0.8

Table 6 Heuristic policy conditional states

Tumbling Saturated Low power Buffer limit Action

1 1 1 1 Charge
1 1 1 0 Charge
1 1 0 1 Desaturate
1 1 0 0 Desaturate
1 0 1 1 Charge
1 0 1 0 Charge
1 0 0 1 Downlink
1 0 0 0 Image
0 1 1 1 Desaturate
0 1 1 0 Desaturate
0 1 0 1 Desaturate
0 1 0 0 Desaturate
0 0 1 1 Charge
0 0 1 0 Charge
0 0 0 1 Downlink
0 0 0 0 Image

Fig. 4 Upper confidence bound for trees.

76 HERRMANN AND SCHAUB

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 



parameters for MCTS are tested: the exploration constant c and the
number of simulations-per-step. The exploration constant scales the
exploration bonus during the search step, and the number of simu-
lations-per-step determines howmany simulationsMCTSexecutes at
each step through the environment. The hyperparameter search is
also conducted for both types of rollout policies described in
Sec. IV.B: random and heuristic. Each hyperparameter combination
is evaluated based on average episodic reward, downlink utilization,
and the resource management success rate. The downlink utilization

is a measure of how effectively the agent uses downlink opportuni-
ties. It is defined as the amount of time the agent downlinks data (i.e.,
sends data to a ground station, not spends in the downlink mode)
divided by the amount of time downlink windows are available (i.e.,
the amount of time the spacecraft is within the ground station’s field
of view as specified by the elevation in Table 3).
Figure 7 displays both the average reward and average downlink

utilization forMCTSwith a heuristic rollout policy. To generate these
plots, MCTS is executed on the same set of 10 different initial
conditions for each combination of c and number of simulations-
per-step. The results show that the average reward and downlink
utilization aremuchmore dependent on the exploration constant than
the number of simulations-per-step. Adequate exploration ensures
that the high-reward states discovered by the rollout policy are found
again during the simulation step. Furthermore, adequate exploration
allowsMCTS to find higher value states than those discovered during
rollout. Although the exploration constant appears to be the most
important hyperparameter, the number of simulations per step is
important in terms of optimality. At 10 simulations-per-step, MCTS
achieves a maximum average reward of 459 and downlink utilization
of 95.5%. At 100 simulations-per-step, MCTS achieves a maximum
average reward of 469 and downlink utilization of 97.1%. In the
literature, MCTS is shown to converge to the optimal action as the
number of simulations-per-step approaches infinity [23]. While
MCTS achieves acceptable performance for this problem at 10
simulations-per-step, it takes at least an order of magnitude more
simulations-per-step to converge to the optimal solution.
The same hyperparameter search is conducted for a random rollout

policy, and the results are provided in Fig. 8. Both average reward and
downlink utilization are much lower than the values generated by the
heuristic rollout policy. In Fig. 9, the resource management success
rate is shown. Fifty simulations-per-step is the minimum required
number for most exploration constants to achieve a 100% success

Fig. 5 UCT tree value computation.

Fig. 6 Value network training.

Table 7 Mission simulation parameters

Parameter Value

Orbit parameters

Semimajor axis, a 6871 km

Eccentricity, e U �0; 0.01�
Inclination, i U �40; 60� deg
Longitude of ascending node, Ω U �0; 20� deg
Argument of periapsis, ω U �0; 20� deg
True anomaly, f U �0; 360� deg

Spacecraft parameters

Disturbance torque, τext 2 × 10−4 N · m

Attitude initialization, σB∕R U �0; 1.0� rad
Rate initialization, BωB∕N U �−1e-05; 1e-05� rad∕s
Reaction wheel speeds U �−4000; 4000� RPM
Initial battery charge U �30; 50� W · h

Planning horizon

Maximum planning horizon, tmax 270 min

Planning interval, tmode 6 min

Integration time step, Δt 1 s

HERRMANN AND SCHAUB 77

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 



rate. In the case of the heuristic rollout policy, the success rate is 100%

regardless of the combination of hyperparameters. As hypothesized,

the heuristic rollout policy does a far better job at avoiding resource

constraint violations. As a result, MCTS only explores states where

there is high reward as the resource constraint violations have been

avoided. Conversely, the random rollout policy provides no guaran-

tees on avoiding resource constraints, soMCTS spends its simulation

budget learning where the low reward states are.

B. State–Action Value Network Hyperparameter Search

As described in Sec. IV.C, state–action value training data are

generated by MCTS. The selected MCTS hyperparameters for

generating these data are an exploration constant of c � 500, 10
simulations-per-step, and a heuristic rollout policy. The selected

hyperparameters balance the quality of the solutions with total

execution time. For reference, MCTS can generate a solution for

a single initial condition in 25 min using 10 simulations-

per-step. This can be extrapolated linearly for more simulations-

per-step, demonstrating the need to keep this parameter as low as

possible. The training data are generated using 1200 unique initial

conditions. To determine the best neural network architecture,

a) Average Episodic Reward b) Average Downlink Utilization

Fig. 7 UCT hyperparameter search: Heuristic Rollout Policy.

a) Reward b) Downlink Utilization

Fig. 8 UCT hyperparameter search: Random Rollout Policy.

Fig. 9 Resource management success rate.

78 HERRMANN AND SCHAUB

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 



a hyperparameter search is conducted over the number of hidden

layers, the number of nodes per hidden layer, the activation func-
tion, dropout rate, and hyperparameters specific to the activation

function. Each network is trained over 3000 epochs using a mean
squared error (MSE) loss function.
The first hyperparameter search explores the performance of the

state–actionvalue networkswhenvarying the number of hidden layers,
the number of nodes per hidden layer, and activation functions of each

layer. The dropout rate, which is the probability that a node will be
dropped during a training epoch to avoid overfitting [35], is held

constant at 0.25. Furthermore, the α parameter for Leaky ReLU is

kept at the default of 0.3. The parameter α controls the slope of the
Leaky ReLU activation function for x < 0. The performance is bench-

marked using total reward, downlink utilization, and total time to
execute. In Table 8, the performance of each Leaky ReLU network

architecture is provided. For each architecture, the top number is the

average reward, and the bottom number is the average downlink
utilization. An identical study using a hyperbolic tangent activation

function is not shown due to relatively poor performance. Only net-
work architectures with a Leaky ReLU activation function achieve

more than 95% downlink utilization. Furthermore, larger networks
perform better on average. Between four and six hidden layers

with 250 or 500 nodes each achieves the best performance, totaling

between 2.0E5 and 1.3E6 trainable parameters. A smaller number of
trainable parameters are preferred to increase the speed of training and

execution.
A more detailed hyperparameter search is performed to deter-

mine the best combination of parameters when the number of nodes

per hidden layer is held constant at 250 nodes per layer. The dropout
rate, the number of hidden layers, and α are all varied during the

hyperparameter search. As demonstrated in Table 9, the overall
architecture is relatively robust to the hyperparameters. Each drop-
out rate produces networks that achieve greater than 95% downlink
utilization. Furthermore, each number of hidden layers produces
networks that achieve greater than 95% downlink utilization. α is

the one parameter that does not produce more than 95% downlink
utilization for all values. In most cases, α � 0.50 struggles to
produce networks that can achieve greater than 90% downlink
utilization.
In addition to performance, other metrics may give insight into the

learned behavior of each neural network architecture. One such
metric, the average amount of time each network architecture spends

in each mode, can give insight into how well the networks have
learned which planet-centered, planet-fixed position and velocity
vectors are correlated with ground station access. In Fig. 10, the
average time (expressed as the percent time over each planning

interval) several agents spend in each mode averaged over the 100
initial conditions is shown. For the purposes of readability, only 10
agents that demonstrate the breadth of solutions are selected. Fur-
thermore, all of the selected agents are from Table 9 and achieve
greater than 95% downlink utilization. Each agent spends about the

same amount of time in the imaging mode. However, the time split
between the charging, desaturation, and downlink modes varies
widely for different architectures. Several architectures spend
between 30 and 40% of the time in the downlink mode but achieve

95% downlink utilization. Other architectures spend 60–70% of
the time in the downlink mode to achieve the same performance.
Downlink windows are available for an average of 5.98% of the
planning horizon, so in both cases the agents are spending more time
attempting to downlink than is necessary. However, it is unlikely

that the agents are randomly achieving this high reward considering
the consistency of the performance over the 100 test conditions.
This suggests that they have learned where the ground stations are
located in terms of the planet-centered, planet-fixed position and

velocity vectors to some degree. This is encouraging for future work,
especially for multiple targets scenarios in which the radius and
velocity of multiple targets are input states and each target is its
own action.

Table 8 Leaky ReLU general architecture search

Hidden layers

Nodes 1 2 3 4 5 6

100 309 356 383 409 365 416
64.7% 75.6% 79.9% 84.4% 75.6% 87.4%

250 348 379 433 455 461 453
72.5% 78.3% 89.3% 94.2% 95.9% 94.0%

500 344 402 450 460 459 462
70.9% 82.4% 93.0% 95.5% 94.9% 95.8%

Table 9 Leaky ReLU architecture: 250 nodes per layer

Dropout 0.05 0.10 0.25

α 0.01 0.10 0.25 0.50 0.01 0.10 0.25 0.50 0.01 0.10 0.25 0.50

Hidden layers
4 459 454 449 403 462 459 419 373 445 459 446 436

94.9% 94.5% 93.0% 84.3% 96.0% 95.0% 87.0% 77.0% 92.7% 95.1% 92.6% 90.9%
5 452 461 461 384 459 466 456 401 455 459 462 418

94.3% 95.4% 95.5 79.4% 95.3% 96.7% 94.6% 84.4% 94.1% 95.4% 95.8% 86.6%
6 455 462 463 403 455 462 453 362 451 463 460 453

94.7% 95.9% 96.1% 84.4% 94.5% 95.8% 94.4% 76.3% 93.7% 95.8% 95.3% 94.4%

Fig. 10 Average action percentages: specific search.

HERRMANN AND SCHAUB 79

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 



Another insight into the learned behavior of each network is
demonstrated by the small variance in the percent of time each agent
spends in the imaging mode. In Fig. 10, each agent spends around
10–15%of the time in the imagingmode. This is due to the spacecraft
filling up the data buffer and only having a limited number of down-
link opportunities available. The high-performing agents are limited
by the size of the data buffer, and the other spacecraft modes do not
include a penalty (other than power draw), so the spacecraft can split
its time between the other three modes, converging to various local
minima while achieving the same performance. Another learned
behavior demonstrated by a few networks highlights the dependence
on the activation function.When thehyperparameter search inTable 8
is repeated for a hyperbolic tangent activation function, several
architectures achieve an average reward of 1.00 and average down-
link utilization of 0.00%. This is because the state–action value
approximation converged to a local minima where spacecraft charg-
ing was always the highest-value action in Qθ�si; ai�.

C. Robustness

The data presented in the previous section make a strong case for
generalization within the training data distributions provided in
Table 7. However, the training data distributions do not cover all

lowEarth orbits. Specifically, the semimajor axis is always initialized

to 6871 km. Furthermore, the initial epoch is held constant in training.

Each planning horizon begins on May 4, 2021. In this section, the

effects of an erroneous orbit insertion into a higher semimajor axis

orbit and a changing epoch are studied.

The performance of six neural network architectures is measured

as the change in semimajor axis is increased from 0 to 2000 km in

increments of 100 km. In Fig. 11, the average episodic reward

increases with the semimajor axes of the orbits until Δa is between

500–750 km. This initially happens because the agents have more

ground station access as the semimajor axis increases. Average

episodic reward then begins to decrease as resource constraint fail-

ures begin to occur, as shown in Fig. 12. The reward decreases

before reaching a local minima, where the reward penalty for failing

to manage resources is offset by the increase in the length of the

downlink windows. The resource management failures occur

almost entirely due to data buffer overflows. Although this may

seem nonintuitive at first due to the increase in the length of the

downlink windows, consider the fact that the frequency of new

downlink windows decreases because of the larger semimajor axis.

The agent anticipates upcoming downlink opportunities based on

the planet-centered, planet-fixed position and velocity vectors.

Fig. 11 Average episodic reward as a function of semimajor axis.

Fig. 12 Resource management success rate as a function of semimajor axis.

80 HERRMANN AND SCHAUB

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 



However, these do not occur and the agent overflows the data buffer.
To rectify this issue, a state would need to be included in the state
space that quantifies the relative size of the semimajor axis within
the training distribution, normalized between �0; 1�. Regardless of
the resource constraint violations for large deviations in semimajor
axis, the trained neural networks can safely generalize up to a Δa
of 500 km.
The initial epoch of each simulation is moved 3, 6, and 9 months

forward in time, and the effect on performance, specifically resource
management, is studied.When the epoch is moved to 3 and 9months
in the future, some network architectures from Table 9 fail to manage
power on-board the spacecraft and drain the battery, receiving a large
reward penalty. For the 3-month change in epoch, 13 of the 36 trained
agents produce resource management failures. For the 9-month
change in epoch, 18 of the 36 trained agents produce resource
management failures. When the epoch is moved 6 months into the
future, the performance of the agents in Table 9 degrades themost; 29
of the 36 agents produce resource management failures. This is
largely due to the change in the position of the sun relative to the
Earth and the spacecraft and some agents becoming overfit on the
relative position of the three during training. Furthermore, some
agents anticipate ground station availability that never happens,
suggesting that they are overfit on the state that represents the percent
of the planning horizon that has passed. This demonstrates the need to
vary the epoch during training to prevent this type of overfitting.
However, it is encouraging that a number of agents generalize to
epochs outside of the training distributions without producing
failures.

D. Genetic Algorithm Comparison

To determine the optimality gap of MCTS and the resulting value
networks for the given spacecraft configuration, a genetic algorithm
is also tested on the same set of initial conditions. The genetic
algorithm yields open-loop tasking solutions based on the expected
environment, whereas MCTS and the neural networks yield closed-
loop tasking solutions specific to observations generated by stepping
through a real environment. Regardless, the genetic algorithm sol-
ution provides insight into how optimal the particular MCTS and
neural network solutions are with respect to the reward function. In
the interest of time, only the first 10 out of 100 initial conditions are
used. The DEAP evolutionary computation framework (https://deap.
readthedocs.io/en/master/) is used to implement a simple genetic
algorithm to solve for a mode schedule for each initial condition
evaluated using the same reward and environment specification
described in Sec. II. The crossover and mutation probabilities are
each set to 0.25. The number of generations and population size are
varied between 45 and 200 and between 10 and 20, respectively.
In Table 10, the genetic algorithm achieves the optimal solution of
472 reward and 99.8% downlink utilization.

E. Final Comparison

Table 11 displays the reward, downlink utilization, execution
time, and total number of Basilisk simulations required for each
MCTS method implemented in this paper. The hyperparameter
combination that achieves the highest reward is selected for each
method. Heuristic MCTS achieves its maximum reward at 75
simulations-per-step with an optimality gap of 0.64%. After train-
ing, the neural networks achieve near-optimal performancewith an
optimality gap of 1.3%. However, the total execution time is

several orders of magnitude less than any other algorithm imple-
mented in this work. The value network is the only candidate
algorithm in this work for on-board execution where execution
speed is paramount on resource-constrained flight processors.
Blacker et al. demonstrate that neural networks of a comparable
size can execute on radiation hardened processors like the LEON3 in
under 10 s [36].
The number of Basilisk simulations refers to the number of

simulations required to generate one solution that achieves the
demonstrated performance metrics in Table 11. For MCTS, this is
computed bymultiplying the number of simulations-per-step by the
total number of planning intervals. Note that the state–action value
networks achieve near-optimal performance by interacting with the
environment only one time, and never with a simulated environ-
ment, selecting an action after each observation. MCTS and the
genetic algorithm require many simulated environment interactions
to solve the planning problem. Furthermore, the genetic algorithm
yields open-loop tasking solutions. Although MCTS technically
yields closed-loop tasking solutions, it is given the truth model of
the environment for the purposes of this work. Because of the power
of neural networks to generalize across training data, the state–
action value networks are able to interpolate and compute solutions
to planning horizons with initial conditions they have never expe-
rienced before in a closed-loop implementation.

VI. Conclusions

This work successfully demonstrates the use ofMCTS and state–
action value function approximation with neural networks to solve
the EOS scheduling problem with resource constraints. The perfor-
mance of MCTS is investigated to determine the best hyperpara-
meter combination for training by varying the rollout policy,
exploration constant, and the number of simulations-per-step. It
is shown that MCTS achieves near-optimal performance with a
heuristic rollout policy and relatively small number of simula-
tions-per-step. Furthermore, the state–action value function esti-
mates generated by MCTS are regressed over using a variety of
neural network architectures. The performance of each network
architecture is benchmarked, and it is shown that networks with
2.0E5 to 1.3E6 trainable parameters perform the best, with the
Leaky ReLU activation function proving to be very robust to the
dropout rate, number of hidden layers, and α parameter. The learned
behavior of each network is explored, demonstrating that the net-
works have learned to manage resource constraints and the loca-
tions of the ground stations in regard to their planet-centered,
planet-fixed position vectors to some degree. Additionally, the
neural network architectures demonstrate generalizability within
the training distributions and robustness outside of the training
distributions. Finally,MCTS and state–actionvalue network regres-
sion are compared with a genetic algorithm, which provides an
upper bound on reward. The state–action value networks achieve
comparable performance to both the genetic algorithm and MCTS,
but with a six orders of magnitude reduction in execution time after
training, making a state–actionvalue network the only candidate for
on-board, autonomous spacecraft planning.

Acknowledgments

This work is supported by a NASA Space Technology Graduate
Research Opportunity grant (80NSSC20K1162). The authors would
like to acknowledge the AVS Laboratory for developing the Basilisk
Astrodynamics Software Framework. The authors would also like to

Table 10 Genetic algorithm
performance

Generations

Population size 45 100 200

10 445 463 447
94.0% 98.3% 96.2%

20 467 472 472
98.9% 99.8% 99.8%

Table 11 Comparison of algorithms

Metric RandomMCTS
Heuristic
MCTS

Value
network

Average reward 407 469 466
Average downlink utilization, % 83.9 97.1 96.7
Average execution time, s 19,100 11,400 0.0672
No. of simulations 4,500 3,375 0

HERRMANN AND SCHAUB 81

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 

https://deap.readthedocs.io/en/master/
https://deap.readthedocs.io/en/master/
https://deap.readthedocs.io/en/master/
https://deap.readthedocs.io/en/master/


thank Andrew Harris, who developed a Basilisk Gym Environment
and genetic algorithm runner the author couldmodify for this version
of the Earth-observing satellite scheduling problem.

References

[1] Amini, R., Castillo-Rogez, J., and Day, J., “Advancing the Scientific
Frontier with IncreasinglyAutonomous Systems,” Lunar and Planetary
Science Conference, AIAA Paper 2020-2503, 2020.

[2] Shah, V., Vittaldev, V., Stepan, L., and Foster, C., “Scheduling the
World’s Largest Earth-Observing Fleet of Medium-Resolution Imaging
Satellites,” International Workshop on Planning and Scheduling for

Space, Organization for the 2019 International Workshop on Planning
and Scheduling for Space, Berkeley, CA, 2019, pp. 156–161.

[3] Berger, R. W., Bayles, D., Brown, R., Doyle, S., Kazemzadeh, A.,
Knowles, K., Moser, D., Rodgers, J., Saari, B., Stanley, D., and Grant,
B., “The RAD750—A Radiation Hardened PowerPC Processor for
High Performance Spaceborne Applications,” 2001 IEEE Aerospace

ConferenceProceedings (Cat. No. 01TH8542), Vol. 5, Inst. of Electrical
and Electronics Engineers, Piscataway, NJ, 2001, pp. 2263–2272.
https://doi.org/10.1109/AERO.2001.931184

[4] Fukunaga, A., Rabideau, G., Chien, S., and Yan, D., “Towards an
Application Framework for Automated Planning and Scheduling,”
1997 IEEE Aerospace Conference, Inst. of Electrical and Electronics
Engineers, Piscataway, NJ, 1997, pp. 375–386.
https://doi.org/10.1109/AERO.1997.574426

[5] Knight, S., Rabideau, G., Chien, S., Engelhardt, B., and Sherwood, R.,
“CASPER: Space Exploration Through Continuous Planning,” IEEE

Intelligent Systems, Vol. 16, No. 5, 2001, pp. 70–75.
https://doi.org/10.1109/MIS.2001.956084

[6] Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castano, R.,
Davis, A., Mandl, D., Frye, S., Trout, B., Shulman, S., and Boyer, D.,
“Using Autonomy Flight Software to Improve Science Return on Earth
Observing One,” Journal of Aerospace Computing, Information, and

Communication, Vol. 2, No. 4, 2005, pp. 196–216.
https://doi.org/10.2514/1.12923

[7] Chien, S., Tran, D., Rabideau, G., Schaffer, S., Mandl, D., and Frye, S.,
“Timeline-Based Space Operations Scheduling with External Con-
straints,” 20th International Conference on Automated Planning and

Scheduling, Assoc. for the Advancement of Artificial Intelligence,
Menlo Park, CA, 2010, pp. 34–41.

[8] Chien, S., Doubleday, J., Thompson, D. R., Wagstaff, K., Bellardo, J.,
Francis, C., Baumgarten, E., Williams, A., Yee, E., Stanton, E., and
Piug-Suari, J., “Onboard Autonomy on the Intelligent Payload EXperi-
ment (IPEX) CubeSat Mission,” Journal of Aerospace Information

Systems (JAIS), Vol. 14, No. 6, 2016, pp. 307–315.
https://doi.org/10.2514/1.I010386

[9] Chien, S.A.,Davies,A.G.,Doubleday, J., Tran,D.Q.,Mclaren,D.,Chi,
W., and Maillard, A., “Automated Volcano Monitoring Using Multiple
Space andGroundSensors,” Journal of Aerospace Information Systems,
Vol. 17, No. 4, 2020, pp. 214–228.
https://doi.org/10.2514/1.I010798

[10] Chien, S., Mclaren, D., Doubleday, J., Tran, D., Tanpipat, V., and
Chitradon, R., “Using Taskable Remote Sensing in a Sensor Web for
Thailand Flood Monitoring,” Journal of Aerospace Information Sys-

tems, Vol. 16, No. 3, 2019, pp. 107–119.
https://doi.org/10.2514/1.I010672

[11] Globus, A., Crawford, J., Lohn, J., and Pryor, A., “A Comparison of
Techniques for Scheduling Earth Observing Satellites,” 16th Conference
on Innovative Applications of Artificial Intelligence, Assoc. for the
Advancement of Artificial Intelligence, Menlo Park, CA, 2004,
pp. 836–843.

[12] Spangelo, S., Cutler, J., Gilson, K., and Cohn, A., “Optimization-Based
Scheduling for the Single-Satellite, Multi-Ground Station Communica-
tion Problem,” Computers and Operations Research, Vol. 57, No. C,
2015, pp. 1–16.
https://doi.org/10.1016/j.cor.2014.11.004

[13] Cho, D.-H., Kim, J.-H., Choi, H.-L., and Ahn, J., “Optimization-Based
Scheduling Method for Agile Earth-Observing Satellite Constellation,”
Journal of Aerospace Information Systems, Vol. 15, No. 11, 2018,
pp. 611–626.
https://doi.org/10.2514/1.I010620

[14] Nag, S., Li, A. S., andMerrick, J. H., “SchedulingAlgorithms for Rapid
Imaging Using Agile Cubesat Constellations,” Advances in Space

Research, Vol. 61, No. 3, 2018, pp. 891–913.
https://doi.org/10.1016/j.asr.2017.11.010

[15] Gaudet, B., Linares, R., and Furfaro, R., “Adaptive Guidance and
Integrated Navigationwith ReinforcementMeta-Learning,” Acta Astro-

nautica, Vol. 169, April 2020, pp. 180–190.
https://doi.org/10.1016/j.actaastro.2020.01.007

[16] Hockman, B., and Pavone, M., “Stochastic Motion Planning for Hop-
ping Rovers on Small Solar System Bodies,” Robotics Research,
Springer, Cham, 2020, pp. 877–893.

[17] Chan, D. M., and Agha-mohammadi, A., “Autonomous Imaging and
Mapping of Small Bodies Using Deep Reinforcement Learning,” 2019
IEEE Aerospace Conference, Inst. of Electrical and Electronics Engi-
neers, Piscataway, NJ, 2019, pp. 1–12.
https://doi.org/10.1109/AERO.2019.8742147

[18] Harris, A., Teil, T., and Schaub, H., “Spacecraft Decision-Making
Autonomy Using Deep Reinforcement Learning,” AAS Spaceflight

Mechanics Meeting, AAS Paper 19-447, 2019.
[19] Harris, A., and Schaub, H., “Deep On-Board Scheduling for Autono-

mous Attitude Guidance Operations,” AAS Guidance, Navigation and

Control Conference, AAS Paper 02-117, 2020.
[20] Harris, A., and Schaub, H., “Spacecraft Command and Control with

Safety Guarantees Using Shielded Deep Reinforcement Learning,”
AIAA SciTech, AIAA Paper 2020-0386, 2020.

[21] Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G.,
Dabney, W., Horgan, D., Piot, B., Azar, M., and Silver, D., “Rainbow:
Combining Improvements in Deep Reinforcement Learning,” arXiv
preprint arXiv:1710.02298, 2017.

[22] Sutton, R. S., and Barto, A. G., Reinforcement Learning: An Introduc-
tion, MIT Press, Cambridge, MA, 2018, Chap. 13.

[23] Kocsis, L., Szepesvári, C., and Willemson, J., “Improved Monte-Carlo
Search,” Univ. of Tartu TR 1, Tartu, Estonia, 2006.

[24] Shah, D., Xie, Q., and Xu, Z., “Non-Asymptotic Analysis of Monte
Carlo Tree Search,” Abstracts of the 2020 SIGMETRICS/Performance

Joint International Conference onMeasurement andModeling of Com-

puter Systems, Assoc. for Computing Machinery, New York, 2020,
pp. 31–32.
https://doi.org/10.1145/3393691.3394202

[25] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap,
T., Hui, F., Sifre, L., Driessche, G., Graepel, T., and Hassabis, D.,
“Mastering the Game of Go Without Human Knowledge,” Nature,
Vol. 550, Oct. 2017, pp. 354–359.
https://doi.org/10.1038/nature24270

[26] Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L.,
Schmitt, S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., et al.,
“Mastering Atari, Go, Chess and Shogi by Planning with a Learned
Model,” arXiv preprint arXiv:1911.08265, 2019.

[27] Fedeler, S., and Holzinger, M., “Monte Carlo Tree Search Methods for
Telescope Tasking,” AIAA Scitech 2020 Forum, AIAA Paper 2020-
0659, 2020.

[28] Eddy,D., andKochenderfer,M., “MarkovDecisionProcesses forMulti-
Objective Satellite Task Planning,” 2020 IEEE Aerospace Conference,
Inst. of Electrical and Electronics Engineers, NewYork, 2020, pp. 1–12.

[29] Schaub, H., and Junkins, J. L., Analytical Mechanics of Space Systems,
4th ed.,AIAAEducationSeries,AIAA,Reston,VA, 2018, pp. 122–132.
https://doi.org/10.2514/4.105210

[30] Kenneally, P. W., Schaub, H., and Piggott, S., “Basilisk: A Flexible,
Scalable and Modular Astrodynamics Simulation Framework,” AIAA

Journal of Aerospace Information Systems, Vol. 17, No. 9, 2020,
pp. 496–507.
https://doi.org/10.2514/1.I010762

[31] Center, G. S., “Near Earth Network Users’ Guide,” Rev. 4, NASATR
453-NENUG, Greenbelt, MD, March 2019.

[32] Howard, R. A., Dynamic Programming and Markov Processes, Tech-
nology Press of Massachusetts Inst. of Technology, Cambridge, MA,
1960, Chap. 4.

[33] Bellman, R., “A Markovian Decision Process,” Indiana University

Mathematics Journal, Vol. 6, No. 4, 1957, pp. 679–684.
[34] Kochenderfer, M. J., “Sequential Problems,” Decision Making Under

Uncertainty: Theory and Application, MIT Press, Cambridge, MA,
2015, pp. 102–103

[35] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhut-
dinov, R., “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, Vol. 15, No. 56,
2014, pp. 1929–1958, http://jmlr.org/papers/v15/srivastava14a.html.

[36] Blacker, P., Bridges, C., and Hadfield, S., “Rapid Prototyping of Deep
Learning Models on Radiation Hardened CPUs,” 2019 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), Inst. of Elec-
trical and Electronics Engineers, New York, 2019, pp. 25–32.
https://doi.org/10.1109/AHS.2019.000-4

M. J. Kochenderfer
Associate Editor

82 HERRMANN AND SCHAUB

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
1,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

92
 

https://doi.org/10.1109/AERO.2001.931184
https://doi.org/10.1109/AERO.2001.931184
https://doi.org/10.1109/AERO.2001.931184
https://doi.org/10.1109/AERO.2001.931184
https://doi.org/10.1109/AERO.2001.931184
https://doi.org/10.1109/AERO.1997.574426
https://doi.org/10.1109/AERO.1997.574426
https://doi.org/10.1109/AERO.1997.574426
https://doi.org/10.1109/AERO.1997.574426
https://doi.org/10.1109/AERO.1997.574426
https://doi.org/10.1109/MIS.2001.956084
https://doi.org/10.1109/MIS.2001.956084
https://doi.org/10.1109/MIS.2001.956084
https://doi.org/10.1109/MIS.2001.956084
https://doi.org/10.1109/MIS.2001.956084
https://doi.org/10.2514/1.12923
https://doi.org/10.2514/1.12923
https://doi.org/10.2514/1.12923
https://doi.org/10.2514/1.12923
https://doi.org/10.2514/1.I010386
https://doi.org/10.2514/1.I010386
https://doi.org/10.2514/1.I010386
https://doi.org/10.2514/1.I010386
https://doi.org/10.2514/1.I010798
https://doi.org/10.2514/1.I010798
https://doi.org/10.2514/1.I010798
https://doi.org/10.2514/1.I010798
https://doi.org/10.2514/1.I010672
https://doi.org/10.2514/1.I010672
https://doi.org/10.2514/1.I010672
https://doi.org/10.2514/1.I010672
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.1016/j.cor.2014.11.004
https://doi.org/10.2514/1.I010620
https://doi.org/10.2514/1.I010620
https://doi.org/10.2514/1.I010620
https://doi.org/10.2514/1.I010620
https://doi.org/10.1016/j.asr.2017.11.010
https://doi.org/10.1016/j.asr.2017.11.010
https://doi.org/10.1016/j.asr.2017.11.010
https://doi.org/10.1016/j.asr.2017.11.010
https://doi.org/10.1016/j.asr.2017.11.010
https://doi.org/10.1016/j.asr.2017.11.010
https://doi.org/10.1016/j.asr.2017.11.010
https://doi.org/10.1016/j.actaastro.2020.01.007
https://doi.org/10.1016/j.actaastro.2020.01.007
https://doi.org/10.1016/j.actaastro.2020.01.007
https://doi.org/10.1016/j.actaastro.2020.01.007
https://doi.org/10.1016/j.actaastro.2020.01.007
https://doi.org/10.1016/j.actaastro.2020.01.007
https://doi.org/10.1016/j.actaastro.2020.01.007
https://doi.org/10.1109/AERO.2019.8742147
https://doi.org/10.1109/AERO.2019.8742147
https://doi.org/10.1109/AERO.2019.8742147
https://doi.org/10.1109/AERO.2019.8742147
https://doi.org/10.1109/AERO.2019.8742147
https://doi.org/10.1145/3393691.3394202
https://doi.org/10.1145/3393691.3394202
https://doi.org/10.1145/3393691.3394202
https://doi.org/10.1145/3393691.3394202
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.2514/4.105210
https://doi.org/10.2514/4.105210
https://doi.org/10.2514/4.105210
https://doi.org/10.2514/4.105210
https://doi.org/10.2514/1.I010762
https://doi.org/10.2514/1.I010762
https://doi.org/10.2514/1.I010762
https://doi.org/10.2514/1.I010762
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1109/AHS.2019.000-4
https://doi.org/10.1109/AHS.2019.000-4
https://doi.org/10.1109/AHS.2019.000-4
https://doi.org/10.1109/AHS.2019.000-4
https://doi.org/10.1109/AHS.2019.000-4
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FAERO.1997.574426&citationId=p_4
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.I010620&citationId=p_13
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.asr.2017.11.010&citationId=p_14
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FMIS.2001.956084&citationId=p_5
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.I010762&citationId=p_30
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.12923&citationId=p_6
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.actaastro.2020.01.007&citationId=p_15
https://arc.aiaa.org/action/showLinks?crossref=10.1145%2F3393691.3394202&citationId=p_24
https://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-030-28619-4_60&citationId=p_16
https://arc.aiaa.org/action/showLinks?crossref=10.1512%2Fiumj.1957.6.56038&citationId=p_33
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.I010386&citationId=p_8
https://arc.aiaa.org/action/showLinks?crossref=10.1038%2Fnature24270&citationId=p_25
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FAERO.2019.8742147&citationId=p_17
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.I010672&citationId=p_10
https://arc.aiaa.org/action/showLinks?crossref=10.7551%2Fmitpress%2F10187.003.0008&citationId=p_34
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.I010798&citationId=p_9
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FAERO.2001.931184&citationId=p_3
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.cor.2014.11.004&citationId=p_12
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FAHS.2019.000-4&citationId=p_36
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FAERO47225.2020.9172258&citationId=p_28

