

TECHNOLOGY, SYSTEMS AND VALUE GHAIN CONFERENCE & EXPO

SEPT 12-15, 2023 • I-X CENTER • CLEVELAND, OHIO

Some Aeronautical Communications Experiments

NASA

SEPTEMBER 12-15, 2023

CLEVELAND I-X CENTER

GRC Communications Highlights

https://www.nasa.gov/centers/glenn/technology

Hermes and Advanced Communication Technology Satellite (ACTS) introducing Ku and Ka-band to the world

Test ranges to characterize antennas

Critical component experiments onboard the International Space Station (ISS) to perform evaluations in the space environment

Laboratory facilities to develop RF & optical communication technologies and emulate network scenarios from deep space to ground

RF atmospheric propagation research

SCaN Testbed onboard the ISS to conduct software defined radio (SDR) experiments

Current N/S/ Science Missions

Downpour of Data

Imaging and remote
sensing data generation is
outpacing our capability
to transmit to Earth

Aerospace Communications Evolution

Data to Serve the Missions Spans Many Purposes, Rates and Quality of Services (QoS)

Different types of data, with different requirements (BER, bandwidth, latency, security, custody, etc.)

- Tracking, telemetry and control (TT&C)
- Scientific data from instrumentation
- Pictures (high-resolution, stereoscopic, hyper-spectral)
- Video (composite of images)
- Biometric, voice, text messages to/from astronauts
- Asymmetric versus balanced forward & return links
- Networks versus PTP links of spacecraft, relays, surface assets

What do missions want?

- Uninterrupted data from anywhere in the solar system, more pictures, faster video, 3D, IMAX, telepresence, etc.
- High peak data rates to support human exploration
- QoS provisions for priority, latency, error rate, security

Improving Point-to-Point Links

Туре	Direction	Volume	Quality requirements	Applications
Telemetry	Return link	Moderate	High	 Vehicle data Subsystem status
Commands	Forward link	Low	Very high	Controlling vehicle Controlling payloads
Tracking/navigation	Either or both	Very low	Very high accuracy	Position and navigation
Science data	Return link	High	Moderate	Sensor data Imaging
Comm services	Bidirectional	Very high	Moderate	Relays

RF Beam from a Satellite in Geosynchronous Equatorial Orbit (GEO)

Image created with Google Maps

Electromagnetic beamwidth is ruled by the diffraction limit

Optical Beam from Geosynchronous Equatorial Orbit (GEO)

Image created with Google Maps

Benefits and Challenges

Technology
Readiness
Level

Transition From Ground-Based TRL 6 to Space Ops TRL 7 is a Major Step

Define, **D**esign, **D**eploy...

Plus, technology is more than hardware

Operations System Test, Launch TRL 9 & Operations TRL 8 System/Subsystem Introducing new technology from the lab Development into the operable network... TRL 7 Technology Demonstration TRL 5 Technology Development TRL 4 Research to Prove Feasibility TRL 3 TRL 2 Basic Technology Beware of the Never Use Scrap Heap! Research TRL 1 TRL Steps Recent emphasis on COTS hardware and crowd-sourced software tries to bridge the gap

Aerospace Architectures

Customer Needs

Migrating to Flexibility, Scalability and Affordability

Network Topology Transformations

Goals for communication networks

- Reduced mission burden with short mesh links for increased connectivity, enables proximity telerobotics
- Common architecture reduces development costs
- Reuse of hardware and software: family of product variations for different environments
- Efficient use of spectrum

Several networking challenges present

- Disconnection (interruptions in service, can be unscheduled)
- Buffering (levies storage requirements on vehicles)
- Latency (negates ACK based protocols)
- Security (imparts requirements on transceivers)

The Bundle Protocol (BP)

Delay/Disruption/Disconnection Tolerant Networking (DTN)

Store,
Carry,
Forward...

DTN approach organizes systems

- Licklider Transmission Protocol (LTP) provides reliability over long link delays and/or frequent interruptions in connectivity
- Contact Graph Routing (CGR) enables dynamic route computation to optimize performance and reduce mission operations costs
- Bundle Security Protocol (BSP) provides a mechanism for source authentication and data integrity and confidentiality
- Ameliorates forward/return link & bus asymmetry
- Reactive fragmentation and storage

Development Goals

- Ensure DTN is not the communications bottleneck
 - 1-10 Gb/s now, 100 Gb/s later
- Commercialization through open-sourcing
- Interoperability and ease-of-use

Other use cases

- Off grid communications
- Disaster response
- Environmental monitoring

Emulating LunaNet Internetworked Operations

Store,
Carry,
Forward...

Buffering data until a transmit opportunity arises, where an end-to-end path may not be available

Aircraft Flight Experiments

Laser Ground Terminal near GRC hangar

- Successfully conducting laser communications flight testing on GRC aircraft
- Achieved near-Gbps rates to/from ground terminal
- Exchanged TB of hyperspectral data over multiple days
- Communicated across obscuration interruptions such as landing gear, trees, etc.

Flight Results

- Took place at 35-50km
- All tests recovered from a signal interruption
- Custody tests successfully sent and received 100% of bundles

Optical Communications Technology Demonstrations

High Data Rates

From Near Earth

LCRD Terminal

1.244 Gbps Optical Relay

ILLUMA-T on ISS and O2O on Orion: 1.244 Gbps Relay User and 80 Mbps from the Moon

Tbird – TeraByte InfraRed Delivery

2U CubeSat Payload On-board 2.0 TB Storage 200 Gbps from LEO to Earth

DSOC Gen-1 User Terminal

DSOC on Discovery Psyche Asteroid Mission 125 Mbps from 40M km

RF/Optical Hybrid Antenna

Integrate 8-m optical apertures into a DSN 34m Beam Waveguide antenna

Laser Comm Relay Terminal
(LCRD) (2023)

Optical User Terminal ILLUMA-T (2024)

020 (2024)

DSOC Optical User Terminal (2023)

Advanced DSOC Optical User Terminal (2026)

15/5

Internetworked ISS Concept of Operations

Delivering a high rate (Gbps) networking system to the ISS to support an upcoming laser communications demo (collaborating with GSFC, MSFC & JSC)

