
Abstract  The NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality 
(FIREX-AQ) experiment was a multi-agency, inter-disciplinary research effort to: (a) obtain detailed 
measurements of trace gas and aerosol emissions from wildfires and prescribed fires using aircraft, satellites 
and ground-based instruments, (b) make extensive suborbital remote sensing measurements of fire dynamics, 
(c) assess local, regional, and global modeling of fires, and (d) strengthen connections to observables on the 
ground such as fuels and fuel consumption and satellite products such as burned area and fire radiative power. 
From Boise, ID western wildfires were studied with the NASA DC-8 and two NOAA Twin Otter aircraft. The 
high-altitude NASA ER-2 was deployed from Palmdale, CA to observe some of these fires in conjunction 
with satellite overpasses and the other aircraft. Further research was conducted on three mobile laboratories 
and ground sites, and 17 different modeling forecast and analyses products for fire, fuels and air quality and 
climate implications. From Salina, KS the DC-8 investigated 87 smaller fires in the Southeast with remote and 
in-situ data collection. Sampling by all platforms was designed to measure emissions of trace gases and aerosols 
with multiple transects to capture the chemical transformation of these emissions and perform remote sensing 
observations of fire and smoke plumes under day and night conditions. The emissions were linked to fuels 
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Key Points:
•	 �This work is an overview of the 
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experiment

•	 �FIREX-AQ investigated biomass 
burning emissions and chemistry and 
smoke transport

•	 �FIREX-AQ was a multi-platform 
mission that also utilized fire 
modeling and satellite detections and 
validation
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1.  Rationale and Motivation
The combination of a warmer, drier climate with fire-control practices applied over the last century has led to 
more intense fires, larger burned areas, and longer fire seasons in the U.S., Canada, and around the world. The 
20th century saw fire suppression become the standard response to wildfires, especially in the western U.S. 
and southwest Canada; this has led to a buildup of fuels in forested areas, a breakdown in the natural ecology 
of forests. In addition, risks to life and property associated with the expansion of the Wildland Urban Interface 
(WUI) have increased (Radeloff et al., 2018). Climate change causes increased temperatures, drought, higher 
fuel aridity and tree death further increasing the fire intensity (Abatzoglou, Battisti, et  al.,  2021; Kitzberger 
et al., 2007; Westerling, 2016). Prescribed fires and allowing some naturally occurring fires to burn are some of 
the management practices that address the above problem (Mutch, 1994; Schoennagel et al., 2017).

Fire is important for many ecosystems (Mutch, 1994), but it also poses costly risks to human health and prop-
erty. These risks have increased in recent decades due in part to population growth in the WUI (Westerling 
et al., 2006). Extreme fire seasons attract mounting attention due to the increasing number of costly extreme 
wildfires that include: the 2018 Camp Fire, which was the deadliest and most destructive wildfire in California's 
history and burned 62,053 ha and cost 16.65 billion dollars. The 2016 fires that burned across eight states in the 
southeast (48,158 ha); the 2016 Anderson Creek prairie fire that was the largest in Kansas history (161,874 ha); 
the 2016 Fort McMurray fire, which is the costliest fire in Canadian history ($2.7 B, 589,552 ha, 2400 structures 
destroyed); the 2004 Alaskan fire season (2.74 M ha), the largest in almost 80 years of Alaskan fire history and 
the extreme 2015 unusually-early-season Alaskan fires (2.07 M ha) (Abatzoglou, Rupp, et al., 2021; Wentworth 
et al., 2018) and the extreme fires in North America in 2020 and 2021 (https://www.nifc.gov/fire-information/
statistics). Coupled with the direct threats to life and property, wildland fires have demonstrable detrimental air 
quality related health impacts including aggravated asthma, chronic bronchitis, decreased lung function, conges-
tive heart failure, and premature death (Adetona et al., 2016; Doubleday et al., 2020; Rappold et al., 2011; Reid 
et al., 2016; Thelen et al., 2013).

Prescribed fires in the United States have ranged from 3.3 to 4.8 million ha (M ha) annually over the last decade, 
well above the typical wildfire area (Melvin, 2020). The majority of this area (80%) is in forests and rangeland 
(wildland) and agricultural use makes up about 20% of prescribed fire area (Melvin,  2018). Prescribed fires 
can reduce the risk of dangerous wildfires and usually have low direct risk to people and property, but they still 
generate smoke and air quality impacts (Addington et al., 2015; Fernandes & Botelho, 2003; Nowell et al., 2018; 
Stephens et al., 2012).

Fire impacts occur over wide time and distance scales, from local to global (Ansmann et  al.,  2018; Schill 
et al., 2020), via complex, interdependent, and poorly understood processes. For example, primary fire emissions 
are affected by a wide variety of factors including fuel conditions (type, structure, quantity, and moisture content), 
fire intensity, and fire weather (cumulative temperature, relative humidity (RH), wind speed, and precipitation), 
which in turn can be rapidly and heterogeneously modified by fires as they burn. Wildfire initiation can be natu-
ral (by lightning) or human caused, and prescribed fires are a frequent tool for land management (e.g., reducing 
fuels, land clearing and agriculture). Human ignition is currently the dominant ignition source in the United 
States (Balch et al., 2017). Over the life cycle of a fire, combinations of flaming and smoldering combustion 

consumed and fire radiative power using orbital and suborbital remote sensing observations collected during 
overflights of the fires and smoke plumes and ground sampling of fuels.

Plain Language Summary  The NOAA/NASA Fire Influence on Regional to Global Environments 
and Air Quality (FIREX-AQ) experiment was aimed at understanding how fuel and fire conditions at the 
point of emission influence the chemistry of smoke, what conditions and processes control the rise of smoke 
plumes, what happens to smoke as it is distributed in the atmosphere, and how chemical transformation of 
smoke impacts air quality, weather, and climate downwind. Lessons learned from FIREX-AQ will also be used 
to assess and improve the effectiveness of satellites for estimating the emissions from wildfires and prescribed 
burns and to reduce uncertainties associated with modeling and forecasting of smoke. Here we present an 
overview of the FIREX-AQ effort, its motivation and design, with detailed descriptions of the measurements 
and analyses carried out, their connections to FIREX-AQ science goals, and the early findings of this 
exceptionally broad effort to understand fire and its many impacts on the atmosphere.
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lead to different emissions at different times and at different locations within a fire (Bertschi et al., 2003; Saide 
et al., 2015; Yates et al., 2016). These variables also influence plume rise and the subsequent transport and chem-
ical evolution of fire emissions (Herron-Thorpe et al., 2014), which determines secondary products (e.g., evolved 
gases and aerosol species) (Akagi et al., 2012). Fire growth is driven by weather conditions, and forecasts are 
subject to the limitations of weather-based prediction (Potter, 2020). Fire activity varies on a broad seasonal scale, 
but climatology is inadequate to provide the detailed information needed to understand and predict fire impacts. 
This is especially true for impacts related to air quality, which depend on the intersection of fire emissions with 
populations and are sensitive to chemical transformations that can result when emissions from fires and anthro-
pogenic sources combine (Selimovic et al., 2020).

The importance of biomass burning (BB) on a global scale is well-known (Akagi et  al.,  2011; Bond 
et al., 2004, 2013; Crutzen & Andreae, 1990; Crutzen et al., 1979; Schill et al., 2020). Previous BB studies have 
focused on: the tropics, documenting both the near field environment (Andreae et al., 1994; Kaufman et al., 1998; 
Swap et al., 2002; Ward et al., 1992; Yokelson et al., 2011) and the widespread impacts across remote oceanic 
regions (Fishman et al., 1996; Hoell et al., 1999), boreal/Arctic regions (Goode et al., 2000; Jacob et al., 2010; 
Lefer et al., 1994; Nance et al., 1993; Palmer et al., 2013; Soja et al., 2004) where the relative importance of 
BB to fossil fuel and other air pollution sources is great, and temperate BB field measurements, which can also 
target prescribed fires (Akagi et al., 2013; Baker et al., 2018; Burling et al., 2011; May et al., 2014; Yokelson 
et al., 1999, 2013).

The ubiquity of fire emissions is also evident from previous airborne field studies in North America that were 
not focused solely on BB but sampled smoke frequently. Following are examples from some of the more recent 
missions that observed BB atmospheric impacts. The international ICARTT study 2004 (International Consor-
tium for Atmospheric Research on Transport and Transformation) found a strong BB influence from Canadian 
and Alaskan fires in the northeast U.S. (Clarke et al., 2007; Warneke et al., 2006), and NOAA's TEXAQS 2006 
(Texas Air Quality Study) identified systematic differences in particle morphology between urban and BB sources 
(Schwarz et al., 2008). The international POLARCAT study 2008 (Polar Study using Aircraft, Remote Sensing, 
Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) focused on Arctic measure-
ments, where arctic haze over Alaska was attributed to spring fires burning in Asia (Warneke et al., 2009, 2010). 
While sampling local Canadian fire emissions during the summer was intentional, sampling fires in California in 
the spring during ARCTAS-CARB 2008 (Arctic Research of the Composition of the Troposphere from Aircraft 
and Satellites) was unexpected (Sahu et al., 2012), but these campaigns provided a broad cross section of fire 
emissions and impacts (Hecobian et al., 2011; Singh et al., 2012). Canadian fire emissions and their downwind 
impacts were the focus of the BORTAS (quantifying the impact of BOReal forest fires on Tropospheric oxidants 
over the Atlantic using Aircraft and Satellites) (Palmer et al., 2013) campaigns in 2011. NOAA's SENEX 2013 
(Southeast Nexus) acquired data on the relative contribution of BB to organic aerosols and gases in the southeast 
U.S. in summertime and provided the first airborne measurements of nighttime smoke (Zarzana et al., 2017), 
while the NASA/NSF DC3 (2012) campaign fortuitously encountered a smoke plume interacting with a deep 
convective cloud (Apel et al., 2015) and evidence for the broad influence of convection on the ventilation of fire 
emissions (Huntrieser et al., 2016). Most recently, the NASA Atmospheric Tomography (ATom) project revisited 
the widespread BB products that are transported across the remote ocean atmosphere (Bourgeois et al., 2021; 
Schill et al., 2020).

Large scale atmospheric campaigns in temperate regions began specifying wildfires as targets during NASA's 
ARCTAS 2008 and SEAC 4RS 2013 (Studies of Emissions and Atmospheric Composition, Clouds, and Climate 
Coupling by Regional Surveys) (Toon et al., 2016). The latter included detailed evaluation of the plume from the 
Rim Fire, which was one of the largest known wildfires in California at the time (Forrister et al., 2015; Peterson 
et al., 2015; Saide et al., 2015; Yates et al., 2016; Yu et al., 2016). SEAC 4RS also measured emissions and smoke 
evolution from 15 small agricultural fires in the Mississippi River Valley (MRV) (Liu et al., 2016).

The DOE BBOP 2013 (Department of Energy BB Observation Project) mission was the first airborne campaign 
to focus primarily on western US wildfires and detailed smoke optical properties. BBOP identified evidence 
for evolving brown carbon (BrC) materials in fire plumes (Kleinman et al., 2020; Sedlacek et al., 2018; Zhou 
et al., 2017). By combining all the wildfire data from BBOP and SEAC 4RS, Liu et al. (2017) calculated wildfire 
emission factors (EFs) for about 80 species based on three fires. Parallel to the above field measurements, the 
University of Montana and others led laboratory studies including FLAME-3 and 4 that produced numerous 
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fuel-specific EFs and smoke aging simulations for laboratory fires (Ahern et al., 2019; Hatch et al., 2015, 2017; 
May et al., 2013; McMeeking et al., 2009; Stockwell et al., 2014, 2015).

The Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen 2018 (WE-CAN 2018) 
(https://www.eol.ucar.edu/field_projects/we-can) was originally planned to coincide with the NASA/NOAA 
2019 field campaign as a complement to FIREX-AQ, but aircraft schedules could not be aligned. WE-CAN 
systematically characterized the emissions and early evolution of western U.S. wildfire plumes and focused on 
three sets of scientific questions related to fixed nitrogen, absorbing aerosols, cloud activation, and chemistry in 
wildfire plumes (Lindaas et al., 2021; Palm et al., 2020; Permar et al., 2021). The data were collected from the 
NCAR/NSF C-130 research aircraft stationed in Boise, ID in the summer of 2018. The main focus was on the 
first day of processing, which is a major driver of the eventual air quality and climate significance of wildfire 
smoke, because the chemistry and micro-physics occurring during this time determine the partitioning of reac-
tive nitrogen, alters cloud chemistry and nucleation, and determines aerosol scattering and absorption (Hodshire 
et al., 2019). Several WE-CAN results have been published (https://www.eol.ucar.edu/node/12743/publications).

Due in large part to the variability and complexity of wildfires and agricultural burning, and due to their evolv-
ing emission trends, there remains a need to enhance the understanding of emissions, smoke evolution, and AQ 
impacts across a greater range of conditions, while taking advantage of the most recent advances in atmospheric 
chemistry instrumentation. FIREX-AQ was planned to advance these critical research needs to better characterize 
BB impacts on air quality and climate impacts.

1.1.  FIREX-AQ Science Objectives

The overarching objective of FIREX-AQ was to provide an unprecedented combination of fire science covering: 
(a) measurements of trace gas and aerosol emissions for not only wildfires but also prescribed fires in great 
detail, (b) relate them to fuel and fire conditions at the point of emission, (c) characterize the conditions relating 
to plume rise, (d) follow plumes downwind to understand chemical transformation and air quality impacts, (e) 
assess the efficacy of satellite detections for estimating the emissions from sampled fires, (f) connecting remote 
sensing and in-situ with satellite data, and (g) improve air quality and climate models.

The NOAA FIREX research effort was designed as a five-year research project and later merged into the compre-
hensive NOAA/NASA FIREX-AQ research effort to target critical unknowns about BB with state-of-the-art 
technologies and collaborative laboratory and field studies, culminating in the 2019 field campaign that deployed 
multiple aircraft, mobile laboratories and fixed ground sites coupled with satellite measurements and intensive 
modeling studies. The diverse activities included in FIREX-AQ 2019 range from scientists collecting fuels on the 
ground to multiple aircraft measurements of smoke plumes from wildfires and prescribed burning to global 3D 
fire and health impacts modeling.

Wildfires tend to be seasonal and generally result in large pollution concentrations over wide areas and can cause 
both local and regional air quality impacts. Their emissions are often transported thousands of kilometers and can 
impact large regions of the U.S. at a time (Park et al., 2007; Rogers et al., 2020; Selimovic et al., 2019; Warneke 
et al., 2006). Prescribed fires are usually smaller and less intense than wildfires but are much greater in number 
and occur throughout the whole year. They may be ignited during periods that minimize population exposure and 
air quality impacts, but can cause regional backgrounds to increase, are generally in closer proximity to popula-
tions, and are responsible for a large fraction of the U.S. PM2.5 emissions (Washenfelder et al., 2015). Prescribed 
burning associated with agricultural fire outputs is still poorly represented in emission inventories (McCarty 
et al., 2009; Nowell et al., 2018; Pouliot et al., 2017; Ramo et al., 2021). The field experiments in FIREX-AQ 
investigated both wild and prescribed fires, but did not include residential or trash burning. Subsequent sections 
discuss the coordination of prescribed and wildfire sampling, including the resulting benefits to stakeholders.

1.2.  FIREX-AQ Science Questions

A summary of the FIREX-AQ science questions is provided here and the topics include questions about emis-
sions, chemical transformations, local air quality effects, regional and long-term impacts, climate relevant prop-
erties, and satellite measurements of wildfires and prescribed fires in North America.
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1.	 �What are the emissions of gases and aerosols from North American fires?
2.	 �What chemical transformations affect those emissions?
3.	 �What are the local air quality impacts of North American fires?
4.	 �What are the regional and long-term impacts of North American fires?
5.	 �What are the climate-relevant properties of BB aerosols?
6.	 �How can satellite measurements help with #1–5?

1.3.  FIREX FireLab 2016 Campaign

The NOAA FIREX FireLab Experiment was conducted at the USDA Fire Sciences Laboratory in Missoula, 
Montana in 2016, in preparation for FIREX-AQ. The goal of these experiments was to apply the most technically 
up-to-date methods to measure emissions, optical properties, and aging of smoke from laboratory fires. The focus 
was to burn fuels under combustion conditions that are characteristic of the western U.S. and other fuels that 
are under-sampled by the fire research community. Three main areas of research were conducted: quantifying 
the emissions of gases and particles, understanding chemical and physical processing of smoke emissions, and 
measuring optical properties of smoke. A very comprehensive set of EFs for various fire conditions was measured 
and is available for trace gases and aerosol from fuels typical in the Western and some limited fuels from the 
Southeastern U.S. The Fire Lab Experiment also provided a better understanding of the mechanisms of trace gas 
emissions for different fire conditions, such as high and low temperature combustion (Sekimoto et al., 2018). In 
addition, a large number of photochemical products of smoke aging were determined and used to update chemical 
mechanisms in various models (Coggon et al., 2019). Several new methods were applied to the measurement of 
optical properties of smoke particles, and new results were obtained on the relationships between particle chem-
istry and optical properties. There have been a substantial number of publications from the 2016 FireLab study 
that describe a variety of research products (Table S1 in Supporting Information S1).

The Missoula FireLab facility has been featured in a number of previous publications (Burling et  al.,  2010; 
Christian et  al.,  2003) so is not described here. A website with substantial detail can be found here (https://
csl.noaa.gov/projects/firex/firelab/). The details of the fuels burned, quantities, and elemental compositions can 
be found in Selimovic et al. (2018). For the most part, the fuels burned during the study were characteristic of 
western North America, since one main goal of FIREX-AQ was a better understanding of how wildfires impact 
air quality in this region. The fuels were often burned as realistic mixtures of canopy, litter, and duff material 
from a particular species, for example, Engelmann Spruce, and some fires were conducted with only one of those 
classes of materials, for example, duff (the partially decayed material right above the soil surface). It should be 
recognized that there are limitations inherent in the simulation of fires in the laboratory: fuel moisture is often 
lower than in the natural setting: the soil boundary and its associated moisture and heat capacity is absent. Never-
theless, laboratory studies have provided essential information with which to begin analyzing and interpreting 
measurements of actual wildfires.

Considerable progress was made during the FireLab experiment on understanding emissions from North American 
fuels. This has resulted in more detailed ways to categorize volatile organic compounds (VOC), reactive N, and 
POC (particulate organic carbon) emissions according to fire regime (Koss et al., 2018; Roberts et al., 2020). In 
addition, the application of new analytical techniques has led to refinements in the identification of VOC species 
responsible for oxidant and SOA (secondary organic aerosol) formation, and the absorption properties of primary 
and secondary organic aerosol particles (BrC). The FireLab study also provided an opportunity to compare multiple 
measurement methods for gas phase species, and for black carbon (BC) particles in particular. Many of these features 
of primary wildfire emissions are being examined and refined using the results of the FIREX-AQ measurements.

A number of experiments at the FireLab involved capturing the emissions from the Stack Burns and subjecting 
them to short-term (hours to a few days) simulated atmospheric processing, either under photochemical (e.g., OH 
reaction) or nighttime (e.g., NO3 and O3 reaction) conditions. These efforts yielded valuable information of which 
compounds were important in oxidant, SOA, and BrC formation, and what product species could be expected 
from these processes. Several experiments also encompassed liquid and particle condensed phase photochem-
ical processing to examine the potential of that chemistry to produce and destroy BrC chromophores (Adler 
et al., 2019; Fleming et al., 2020).
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The final goal of the FireLab experiment can be broadly categorized as the application of new and improved 
analytical methods to measure the optical properties of smoke. Much of this work was performed during the 
Room Burns, as many of these methods needed a consistent smoke source that lasted for a sufficient time (10 min 
to over an hour). The instrumentation used in this work measured both the light scattering and absorption prop-
erties of smoke, as well as BC and BrC properties. Several of the optical experiments have direct application to 
refining the detection and characterization of smoke plumes by satellites (Manfred et al., 2018).

2.  Assets Deployed During FIREX-AQ 2019
2.1.  Platform Summary

The FIREX-AQ campaign was a large-scale coordinated effort in summer 2019. The deployment dates and loca-
tions of the various platforms for FIREX-AQ science are listed in Table 1, a schematic of the deployed platforms 
is shown in Figure 1, and each platform is then discussed in detail. The FIREX-AQ field campaign was conducted 
in two phases, focusing first on western wildfires and then targeting smaller fires in the south east. All of the 
platforms and the forecasting team described below deployed to the western region in late July 2019. Boise, ID 
was the main operations base. When the DC-8 relocated to Salina, KS on 19 August to conduct the small fire 
sampling, several of the other platforms and ground sites continued to sample smoke from western wildfires until 
early September. The forecasting team moved to Salina with the DC-8 but continued to provide daily briefings 
for the team members that remained in the west.

Table 1 
List of the Platforms and Their Location and Timing During FIREX-AQ

Platform/Site Location Deployment date Number of flights/drives

Aircraft

  NASA DC-8 Boise, ID 24 July–16 August 2019 13

Salina, KS 19 August–03 September 2019 7

  NOAA Chem Twin Otter Boise, ID 03 August–05 September 2019 33

Cedar City, UT 6

  NOAA Met Twin Otter Boise, ID 21 July–13 August 2019 23

  NASA ER-2 Palmdale, CA 01–21 August 2019 12

Mobile Laboratories

  AML McCall, ID 05–30 August 2019 12

  MACH-2 McCall, ID 21 July–27 August 2019 8

Boise, ID

  CARB CA 15–30 August, 1–4 November 2019 4

  DRAGON-Mobile 1 and 2 McCall, ID 29 July–28 August 2019 11

Boise, ID

Missoula, MT

Ground sites

  DRAGON Multiple sites 23 July–3 September 2019

  McCall, ID 44.871 N, 116.115 W 25–30 June 2019

  Missoula, MT 46.86 N, 113.985 W 2017–2021

  Lewiston, ID 46.413 N, 117.027 W 18 June–08 September 2019

  Boise, ID 43.60 N, 116.351 W 25 June–10 September 2019

  Mt. Bachelor, WA 43.979 N, 121.687 W 05 August–15 September 2019

 21698996, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

037758 by N
asa G

oddard Space Flight, W
iley O

nline L
ibrary on [29/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

WARNEKE ET AL.

10.1029/2022JD037758

7 of 62

2.2.  Fires Investigated

All the western wildfires that were investigated during the FIREX-AQ campaign are listed in Table 2 and loca-
tions are shown in Figure 2. Table 2 also includes information of the platforms and dates that each fire was 
sampled and total burned area and fuels burned.

2.3.  Aircraft Platforms

2.3.1.  NASA DC-8

The NASA DC-8 instrument payload for FIREX-AQ 2019 is described in Table 3 and was designed to provide the 
most detailed characterization of fire plumes from any aircraft platform to date. The DC-8 had a very complete 
package of gas- and aerosol-phase measurements as well as extensive remote sensing capabilities. Several of the 
in-situ measurements had a time resolution of up to 10 Hz, which was essential when sampling small fires with 
plume penetrations shorter than 5 s (Liu et al., 2016). The value of sampling with a sub-second time resolution 
has been demonstrated by Müller et al. (2016). The NASA DC-8 flights are shown in Figure 3 and the intercepted 
fires are included in Table 2. The specific flight tracks of the NASA DC-8 for the western wildfires are shown in 
Figure S1 in Supporting Information S1 color coded with CO.

2.3.2.  NOAA Chem Twin Otter

The NOAA Chem Twin Otter completed 39 science flights during 3 August 2019–5 September 2019 and sampled 
10 regional wildfires near Boise, ID and Cedar City, UT. The payload weight limited the aircraft to flight dura-
tions of 2.5–3.0 hr. The aircraft typically completed two or three individual flights per day, for a total daily 
flight time of 5–9 hr. The NOAA Chem Twin Otter was stationed in Boise, ID and Cedar City, UT, but regularly 
refueled at small regional airports to access fires throughout Idaho, Oregon, Montana, Nevada, and Utah. The 
flight duration allowed the NOAA Chem Twin Otter to follow wildfire plumes approximately 200 km downwind, 
corresponding to plume ages near 10 hr.

The NOAA Chem Twin Otter payload during FIREX-AQ 2019 was selected for detailed measurements of emis-
sions, BrC evolution, and fast chemistry during both day and night. The payload is listed in Table 4. The NOAA 
Chem Twin Otter flights are shown in Figure 2 and the 10 intercepted fires are included in Table 2. The specific 

Figure 1.  The platforms used for the coordinated sampling of the western wildfires during FIREX-AQ.
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flight tracks color coded with CO of the NOAA Chem Twin Otter for the 
western wildfires are shown in Figure S2 in Supporting Information S1.

The NOAA Chem Twin Otter was the only aircraft to observe significant 
nighttime processing of a smoke plume and an example is described in 
Figure 3 for the 204 Cow Fire.

The NOAA Chem Twin Otter was the only platform where a main science 
goal was to focus on nighttime smoke. Several flights targeted the transi-
tion between photochemistry and dark chemistry and intercepted nighttime 
smoke, which was usually aged daytime smoke. Figure 3 shows results from 
smoke sampled after sunset on 28 August 2019 from the 204 Cow fire. Plume 
age estimates suggest the youngest smoke was emitted between 0 and 2.25 hr 
before sunset with a best estimate of 1.0 hr before sunset. The time series 
shows that the production rate of NO3, P(NO3), is significant due to enhanced 
NO2 within the plume and the smoke sampled contained <100 pptv of NO. 
The left panel shows a positive correlation of O3 with CO from O3 production 
for smoke emitted >5 hr before sunset, but a negative correlation with CO 
for smoke emitted <5 hr before sunset suggesting a strong potential for NO3 
chemistry.

2.3.3.  NASA ER-2

NASA's high-altitude ER-2 research aircraft flew seven satellite simulator 
instruments with the goal to serve as a bridge between in-situ and satellite 
datasets. An airborne remote sensing instrument suite was used to help char-
acterize fire development, emission processes, plume evolution, and down-
wind impacts on air quality. The primary objective for addressing broad 
FIREX-AQ science goals was to provide large-scale high-resolution observa-
tional constraints for fire behavior, plume rise, and smoke emission models, 
while the specific objectives of this platform were to: (a) Establish observa-
tional links between atmospheric conditions, fire temperature, smoke plume 
heights, and downwind smoke dispersion; (b) Characterize regional aerosol 
properties and trace gases profiles/amounts downwind from fires; (c) Evalu-
ate multi-instrument synergy for fire process characterization. The payload of 
the NASA ER-2 was designed to achieve those goals and is listed in Table 5. 
The NASA ER-2 flights are shown in Figure 2 and the 10 observed fires are 
included in Table  2. The specific flight tracks of the NASA ER-2 for the 
western wildfires are shown in Figure S3 in Supporting Information S1.

All NASA ER-2 flights were coordinated with satellites in a variety of smoke 
conditions to evaluate how well satellite retrievals can handle small-scale 
sub-pixel variabilities. The satellite coordination included NASA ER-2 flight 
legs on and parallel to satellite tracks to evaluate viewing angle uncertainties 
in satellite retrievals. Ground monitors (including mobile AERONET, and 
California Air Resources Board (CARB) mobile platforms) were routinely 
targeted during the campaign primarily for NASA ER-2 instrument algo-
rithm validation purposes.

An example of how the ER-2 connects to satellite data is shown in Figure 4. The NASA ER-2 investigated 
the Williams Flats fire in coordination with the NASA DC-8 aircraft on 06 August 2019, where the eMAS 
instrument measured high aerosol optical depth (AOD) with a very high spatial resolution at center of the 
MODIS-Aqua swath, where the collocation of MODIS and eMAS aligned nicely. The comparison shows that 
eMAS and MODIS 10 km data are in good agreement. The NASA DC-8 aircraft sampled the plume in-situ at 
roughly the same time.

Figure 2.  Maps showing the western portion of the campaign. (left) The flight 
tracks of the FIREX-AQ aircraft, the drive tracks of the mobile laboratories, 
the locations of the ground sites, and the locations of the investigated fires. 
(right) The investigated fires on top of a land cover map.
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Table 3 
Payload of the NASA DC-8 for FIREX-AQ

Species measured Technique Frequency (Hz) Investigator Institution References

Gas phase measurements (tracers and reactive nitrogen)

  O3, NO, NO2, NOy Chemiluminescence 1 Tom Ryerson NOAA CSL Ryerson et al. (2000)

  CO2, CO, CH4, H2O Laser absorption 
spectroscopy

1–5 Glenn Diskin NASA LaRC Sachse et al. (1991)

  NH3, Speciated hydrocarbons, 
and OVOCs a

PTR-ToF-MS 1–5 Armin Wisthaler U Innsbruck and U Oslo Müller et al. (2014), 
Tomsche et al. (2022)

  PAN, PPN, other PANs Chemical ionization mass 
spectrometry (CIMS)

1–10 Greg Huey Georgia Tech Zheng et al. (2011)

  HONO, HCN, HNCO, 
HCOOH, N2O5, 
hydroperoxymethyl 
thioformate (HPMTF), 
halogenated compounds

Iodide ToF-CIMS 1 Patrick Veres NOAA CSL Veres et al. (2020)

  CH3CN H3O+ ToF-CIMS 1–5 Carsten Warneke NOAA CSL Yuan et al. (2017)

  CO, N2O, H2O Cavity enhanced 
absorption

1 Jeff Peischl NOAA CSL Eilerman et al. (2016)

  SO2 Laser induced fluorescence 1 Andrew Rollins NOAA CSL Rollins et al. (2016)

  NO Laser induced fluorescence 1 Andrew Rollins NOAA CSL Rollins et al. (2020)

  HCN CIMS 1–10 Paul Wennberg CalTech Crounse et al. (2006)

  NO2 CANOE, nonresonant 
laser-induced 
fluorescence

1 Jason St. Clair NASA GSFC St. Clair et al. (2019)

  NO2, HONO Airborne cavity enhanced 
spectrometer

1 Caroline Womack NOAA CSL Min et al. (2016)

  HNO3 Mist chamber 0.0066 Jack Dibb UNH Scheuer et al. (2010)

  O3 ROZE, cavity enhanced 
absorption

1–10 Tom Hanisco NASA GSFC Hannun et al. (2020)

Gas phase measurements (Hydrocarbons and Oxidation Products)

  CH2O, C2H6 Laser absorption 
spectroscopy

1 Alan Fried CU Boulder Weibring et al. (2007)

  C2-C11 Alkanes, C2-10 
Alkenes, C6-C9 Aromatics, 
C1-C5 Alkylnitrates, etc.

Whole air sampling Up to 168/flight Don Blake UC Irvine Simpson et al. (2020)

  Speciated hydrocarbons and 
OVOCs

H3O+ ToF-CIMS 1–5 Carsten Warneke NOAA CSL Yuan et al. (2017)

  C2-C10 Alkanes, C2-C4 
Alkenes, C6-C9 Aromatics, 
C1-C5 Alkylnitrates, etc.

Whole air sampling Up to 72/flight Jessica Gilman NOAA CSL Lerner et al. (2017)

  C3-C10 hydrocarbons, C1-C7 
OVOCs, HCN, CH3CN, 
C1-C2 halocarbons, etc.

HR-ToF-GC/MS 0.0095 Eric Apel NCAR ACOM Apel et al. (2010)

  CH2O Laser induced fluorescence 1–10 Tom Hanisco NASA GSFC Cazorla et al. (2015)

  H2O2, organic peroxides, 
organic acids, isoprene 
oxidations products, etc.

CIMS 1 Paul Wennberg CalTech Crounse et al. (2006)

  glyoxal, methylglyoxal Airborne cavity enhanced 
spectrometer

1 Caroline Womack NOAA CSL Min et al. (2016)

Aerosol measurements (physical/optical/chemical)

  bulk aerosol composition Filter sampling (FS) and 
mist chamber (MC)

0.0066 Jack Dibb UNH Heim et al. (2020)
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Table 3 
Continued

Species measured Technique Frequency (Hz) Investigator Institution References

  BrC absorption FS and MC with 
spectro-photometer

0.0066 Rodney Weber Georgia Tech Forrister et al. (2015), 
Zeng et al. (2021)

  Aerosol absorption and 
extinction at multiple 
wavelengths and RH

Cavity ringdown extinction 
and photoacoustic 
absorption 
spectrometers

1 Nick Wagner NOAA CSL Lack et al. (2012)

  Aerosol scattering phase 
function at UV and visible 
(blue) wavelengths

Laser imaging 
nephelometer

1 Adam Ahern NOAA CSL Manfred et al. (2018)

  Aerosol number concentration TSI CPC 1 Richard Moore NASA LaRC Sinclair & 
Hoopes (1975)

BMI mCPC ∼5–10 Agarwal & Sem (1980)

  Cloud and supermicron 
aerosol size distribution

DMT CDP 1 Richard Moore NASA LaRC Baumgardner 
et al. (2014), Lance 
et al. (2010)

DMT CPSPD

  Aerosol number size 
distribution

TSI SMPS (mobility), TSI 
LAS (optical)

0.016 Richard Moore NASA LaRC Moore et al. (2021)

1

  Non-volatile aerosol number 
concentration and size 
distribution (350°C)

Thermally-denuded CPC 
and LAS

1 Richard Moore NASA LaRC

  Cloud condensation nuclei 
(0.34%SS)

DMT CCN Counter 1 Richard Moore NASA LaRC Roberts & Nenes (2005)

  Aerosol absorption and 
scattering at multiple 
wavelengths and RH

TSI nephelometer, 
radiance research 
PSAP

1 Richard Moore NASA LaRC Bodhaine et al. (1991), 
Bond et al. (1999), 
Lin et al. (1973), and 
Ogren (2010)BMI TAP

  BC concentration, size, 
mixing state

SP2 1 Joshua Schwarz NOAA CSL Schwarz et al. (2008)

  Submicron aerosol bulk and 
size segregated composition

HR-ToF-AMS 1–10 Jose Jimenez CU Boulder Canagaratna 
et al. (2007), Guo 
et al. (2021)

  Molecular aerosol 
composition

EESI-MS (ESI offline 
filters)

1 (2e−4) Jose Jimenez (Alexander 
Laskin)

CU Boulder (Purdue U) Pagonis et al. (2021)

  Cloud and coarse mode size 
distribution

Optical wing probe 
detectors

1 Bernadett Weinzierl U Vienna Baumgardner 
et al. (2001)

  mixing state, shape, 
composition of single 
particles

transmission electron 
microscopy

24/flight Adachi Kouji Meteorological Research 
Institute, Japan

Adachi et al. (2020)

Remote sensing measurements (active and passive)

  Zenith/nadir solar actinic flux 
and photolysis frequencies

4π-sr spectroradiometry 1 Sam Hall NCAR ACOM Hall et al. (2018)

  Active fires (T ≤ 850 K) 
and burn scars at 10–20 m 
resolution

MODIS/ASTER airborne 
simulator (MASTER) 
scanning spectrometer

Jeff Myers NASA ARC Hook et al. (2001)

  Zenith/nadir profiles of 
O3, aerosol backscatter, 
extinction, depolarization., 
etc.

Differential absorption 
lidar-high spectral 
resolution lidar 
(DIAL-HSRL)

0.1 John Hair NASA LaRC Hair et al. (2008)

Meteorological measurements
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2.3.4.  NOAA Met Twin Otter

The NOAA Met Twin Otter (MET-TO), based in Boise, ID, completed 14 science flights (57 hr) and sampled 12 
different fires. The MET-TO had a typical endurance of 4 hr and, for more distant fires, would land and refuel 
at nearby airfields to extend its sampling time on station. Four of the flights were coordinated with the NOAA 
Chem Twin Otter.

The MET-TO was deployed to characterize the spatial structure of the horizontal wind fields surrounding the fire, 
the fire strength and progression, and to investigate the vertical motions over the fire and the transport and geom-
etry of the downwind plume. This was accomplished using remote sensing instrumentation (a scanning Doppler 
lidar, optical imager, and infrared radiometer) and a meteorological package to profile thermodynamic variables 
when the aircraft was changing altitudes and measuring conditions at flight altitude. The payload listed in Table 6 
for this platform was purposely kept light in order to maximize the endurance of the aircraft. The NOAA Met 
Twin Otter flights are shown in Figure 2 and the intercepted fires are included in Table 2. The specific flight tracks 
of the NOAA Met Twin Otter for the western wildfires are shown in Figure S4 in Supporting Information S1.

The NOAA MET Twin Otter aircraft flew above the plume, when possible, in order to provide complete vertical 
coverage of dynamics and aerosol concentration throughout the plume. The aerosol backscatter measured with 
the Micro-pulse Doppler Lidar of the NOAA MET-TO is shown in Figure 5. The backscatter data together with 
the measured wind field structure can be used to determine fire weather dynamics. For example, the plume rise 
and the injection height can be measured as a function of the fire strength and boundary layer conditions.

2.4.  Mobile Laboratories

2.4.1.  NASA MACH-2

The NASA Langley Aerosol Research Group (LARGE; https://science-data.larc.nasa.gov/large/) deployed the 
NASA Mobile Aerosol Characterization laboratory (MACH-2) with Boise, ID as a home base. The MACH-2 was 
driven to the fires as listed in Table 1 to investigate smoke for up to 5 days like in the case of the Williams Flats 
fire. The MACH-2 coordinated with other research platforms, including the NOAA Twin Otters, the Aerodyne 
Mobile Laboratory (AML), the Mobile Dragons, and the NASA DC-8. The MACH-2 traveled 13,300 miles in 
51 days, sampled eight fires in six different states, and recorded 10.5 days of 1-s data.

The payload of the MACH-2 is listed in Table 7 and was focused on characterizing aerosol optical, microphysical 
and compositional properties. Most instruments sampled during the drive, but filter samples were only collected 
during stationary measurements. The MACH-2 conducted detailed measurements of gaseous and particulate 
nitrogen species including the isotopic composition of NOx, HONO, HNO3 and aerosol nitrate to examine reac-
tive nitrogen budgets in fresh and aged smoke plumes. In addition, quartz-fiber and Teflon filter samples were 
collected and analyzed for EC/OC, BrC, toxicity, organic functional groups, and isotopes. Samples were drawn 
from a common inlet on the top rear of the vehicle to minimize generator exhaust contamination and enable 
temporal correlation between measured species. Ancillary measurements of CO, CO2, NO2, NOx, H2O, temper-
ature, pressure, vertical aerosol backscattering and navigational parameters were made to establish plume char-
acteristics and vehicle location relative to emission sources. The MACH-2 drives are shown in Figure 2 and the 
intercepted fires are included in Table 2. The specific drive tracks color coded with CO of the MACH-2 for the 
western wildfires are shown in Figure S5 in Supporting Information S1.

Table 3 
Continued

Species measured Technique Frequency (Hz) Investigator Institution References

  3D winds, turbulence, 
Reynolds number

Meteorological 
measurement system

1–20 Paul Bui NASA ARC

  Meteorological and navigation 
parameters

Various 1–5 Melissa Yang NASA NSRC

 aThe VOCs from this instrument were only archived for one flight to cover unavailable data from the primary H3O +-ToF CIMS.

 21698996, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

037758 by N
asa G

oddard Space Flight, W
iley O

nline L
ibrary on [29/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://science-data.larc.nasa.gov/large/


Journal of Geophysical Research: Atmospheres

WARNEKE ET AL.

10.1029/2022JD037758

16 of 62

2.4.2.  Aerodyne Mobile Laboratory

The AML operated out of McCall, ID (the location of a ground site as described below), during FIREX-AQ 
from 9 to 28 August 2019 and during WE-CAN from 11 to 28 August 2018. The AML was well-equipped for 
detailed gas- and aerosol-phase characterization as listed in Table  8 and included, among other instruments, 
highly speciated VOC measurements with a Vocus PTR-MS instrument and aerosol composition with an aero-
sol mass spectrometer (AMS) operated with or without soot-particle mode. Aerodyne Research, Inc. trace gas 
monitors (using tunable infrared laser differential absorption spectroscopy, TILDAS) measured select trace gases 
including the fire tracer hydrogen cyanide (HCN) and ethane (C2H6). The AML also hosted a number of guest 
instruments run by external collaborators, also listed in the table below. The goal of the AML was to link the 
aircraft measurements to the ground by comparing EFs, understanding smoldering versus flaming emissions 
in close range of the fires, measure the air quality and the nighttime exposure in smoke-filled valleys, and look 
at plume aging. The AML drives are shown in Figure 2 and the intercepted fires are included in Table 2. The 
specific drive tracks of the AML for the western wildfires are shown in Figure S6 in Supporting Information S1.

The AML had the opportunity to measure smoke filled valleys, measured very close to the 204 Cow Fire, and 
intercepted smoke from a prescribed fire close to McCall, ID (Figures 6–10).

In 2019, the Nethker fire, which burned throughout the deployment, provided numerous close and longer-range 
mobile sampling opportunities, an investigation of VOC EFs with the Vocus PTR-MS and an investigation of 
smoke photochemistry with an onboard reaction chamber (potential aerosol mass). Excursions to the 204 Cow 
and Castle/Ikes fires measured smoke accumulation and ventilation in smoke-filled valleys. A small, prescribed 
burn near McCall, ID provided an opportunity to measure plume aging by intercepting the plume at three differ-
ent distances from the fire with a clear change in aerosol oxidation state observed. The ground site also observed 
this prescribed burn.

Figure 3.  Nighttime processing of a smoke plume from the 204 Cow Fire on 28 August 2019 observed by the NOAA Chem Twin Otter during FIREX-AQ. (top) The 
flight track color coded by CO. (bottom) CO correlation with O3. (right) Time series of the NO3 production rate, NO2, and O3.
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The emission ratios of more than 150 species measured by the Vocus PTR, consisting of a range of VOCs and 
OVOCs, were calculated for all of the different fires sampled in 2019 (and during earlier work in 2018) and 
compared with literature values. For the Nethker fire, positive matrix factorization (PMF) was used to iden-
tify and apportion low- and high-temperature burning mass-spectral signatures. In addition, the reactivity with 
daytime and nighttime oxidants of several BB species measured with the Vocus PTR was investigated. Details 
and discussion of all of these Vocus PTR observations can be found in Majluf et al. (2022).

AML sampling of the 204 Cow fire demonstrated how mobile ground measurements can captured smoke pooling 
and ventilation in mountain valleys, a phenomenon the aircraft could not sample in 2019 and is even sometimes 
missed by ground networks. In this example, measurements are done throughout the night, close to the fire, and 
access mountain valleys and plateaus experiencing differing smoke impacts at different times. The 204 Cow fire 
occurred in the mountainous Malheur National Forest in eastern Oregon. The AML deployment started in the 
afternoon (local time) of 26 August 2019 and continued through the night until around 11 a.m. (local time) the 
next morning. Sampling was possible on a limited number of roads to the east of the fire (Figure 6). Fire fighters 
were actively working on containing the fire at the time of deployment.

Ground measurements help investigate the impact of boundary layer dynamics on ground-level smoke, something 
of particular importance for air quality and exposures in mountain valley communities. Figure 7 shows hydrogen 

Table 4 
Payload of the NOAA Chem Twin Otter for FIREX-AQ

Parameters measured Technique Frequency (Hz) Investigator Institution References

Gas phase measurements

  O3, NO, NO2 Chemiluminescence 1 Andrew Weinheimer NCAR ACOM Ridley et al. (1992)

  CO, CO2, CH4, H2O Cavity ring-down 
spectroscopy

1 Michael Robinson NOAA CSL Crosson (2008), Karion 
et al. (2013)

  Selected acids (HNO3, 
HONO, organics), acid 
gases (N2O5, ClNO2), 
oxygenated organics, 
organic nitrates, and 
halogens

Iodide TOF-CIMS 1 Joel Thornton University of Washington Lee et al. (2014)

  Speciated VOCs GC × GC TOF-MS Variable; discrete 
samples

Kelley Barsanti UC Riverside Pankow et al. (2012)

Aerosol measurements

  Submicron aerosol 
composition

HR-TOF-AMS 1 Ann Middlebrook NOAA CSL DeCarlo et al. (2006)

  Water-soluble organic 
carbon concentration 
and BrC absorption

BrC-PILS 0.25 Rebecca Washenfelder NOAA CSL Zeng et al. (2021)

  Aerosol absorption Continuous light 
absorption 
photometer

1 Ale Franchin NOAA CSL Ogren et al. (2017)

  Submicron particle size 
distribution

UHSAS optical particle 
counter

1 Ale Franchin NOAA CSL Kupc et al. (2018)

  Soluble ions, absorption Ion chromatography, 
size-exclusion 
chromatography 
with UV/visible 
spectroscopy

Variable; discrete 
samples

Cora Young York University Di Lorenzo et al. (2017)

  Elemental analysis XRF, others 1 sample/4 min Alex Laskin Purdue University Laskin et al. (2003)

Radiation and Meteorological measurements

  NO2 photolysis frequency Filter radiometers 1 Michael Robinson NOAA CSL Junkermann et al. (1989)

  Meteorological and 
navigation parameters

ARIM200 1 Michael Robinson NOAA CSL (Aventech Research 
Inc.)
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cyanide (HCN) measurements as a function of time along with AML elevation. Acetonitrile (formally C3H4N +, 
as quantified by the Vocus PTR-ToF) and BC (quantified by the SP-AMS) are also shown. These measurements 
were conducted along repeated transects and stationary locations on the set of roads shown in Figure 6. Fire trac-
ers were generally at low concentrations during the first two third of the deployment. During the last one third 
of the deployment, HCN and other fire tracers increased rapidly. Then about 2 hr after sunrise, all fire tracers 
decreased to almost background levels. We attribute this to the dynamics of the atmosphere. At night, the bound-
ary layer height decreases; with a strong inversion layer, all fire tracers are “trapped” in a shallow layer above 
ground. About 2 hr after sunrise, all fire tracer concentrations decreased rapidly. This was the case even when the 
AML drove through the eastern part of the fire-impacted area (roads closed during the night). We attribute this to 
rapid airmass lofting with convection during the day.

Table 5 
Payload of the NASA ER-2 Aircraft for FIREX-AQ in 2019

Parameters measured Technique Nominal resolution PI-name Institution References

Aerosol and cloud properties, (research: 
aerosol plume height)

AirMSPI-1 (Multiangle 
Spectro-Polarimetric 
Imager)

10 m and 10 km swath David Diner NASA JPL Diner et al. (2013), van 
Harten et al. (2018)

Vegetation types, effective fire 
temperature, H2O (research, AOD)

AVIRIS-C (Vis-SWIR 
spectrometer)

18 m and 20km swath Rob Green NASA JPL Green et al. (1998)

Backscatter profile, depolarization 
ration, aerosol extinction profiles, 
aerosol layer type

CPL (channel backscatter 
lidar with polarization)

30 m vertical, 20 m 
horizontal

Matt McGill NASA GSFC McGill et al. (2002)

Cloud and aerosol properties eMAS (Vis-IR scanning 
spectrometer)

50 m and 37 km swath Rob Levy NASA GSFC King et al. (1996)

NO2, HCHO, SO2, CHOCHO, O3 GCAS (UV-Vis-NIR 
spectrometer)

500 m and 16 km swath Scott Janz NASA GSFC Kowalewski & 
Janz (2014)

Atmospheric thermodynamic profiles; 
CO, O3 profiles

NAST-I (IR scanning 
interferometer)

2,600 m and 40 km swath Allen Larar NASA LaRC Zhou et al. (2002, 2005)

Atmospheric thermodynamic profiles; 
Research (CO2, O3, CO, N2O, CH4, 
SO2 profiles)

S-HIS (IR scanning 
interferometer)

2,000 m and 40 km swath Joe Taylor U. Wisconsin-SSEC McCourt et al. (2004), 
Taylor et al. (2005)

Figure 4.  Overlay of the eMAS AOD data on top of the MODIS AOD retrieval for the flight of the NASA ER-2 over the 
Williams Flats fire on 06 August 2019.
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These measurements also show the effects of topography and smoke pooling. At the 204 Cow fire, strong down-
hill outflow of fire tracers was observed through relatively narrow valley structures, as indicated by the blue 
arrows in Figure 6. The AML drove through the area where the outflow joined the main valley, and high fire 
tracer concentrations were measured. The AML could not access the road that followed the main valley floor, 
but above the valley floor, fire tracer concentrations were low to moderate. This suggests that the main outflow 
happened only along the lowest altitudes of the valley. Conversely, in northern Arizona, the AML observed 
very little smoke outflow on the lee side of the plateau where the Castle and Ikes fires burned, and into the deep 
valley structures of the upper Colorado River. A major difference between the 204 Cow and Castle/Ikes fires is 
in the topographical scales: shallow valleys funneling smoke, versus a much larger downwind elevation drop in 
Arizona.

On 27 August 2019, a prescribed burn was conducted east of New Meadows, Idaho. With wind flow out of the 
WSW, the prescribed fire plume was sampled at various points by the AML. The plume was sampled initially 
on Idaho State Highway 55 approximately three miles west of McCall and then later sampled at two additional 
locations on the west and east sides of Payette Lake. Figure 8 depicts HCN associated with this BB plume. The 

Table 6 
Payload of the MET-TO for FIREX-AQ

Parameters measured Technique Frequency (Hz) PI-name Institution References

Line-of-sight wind speed and aerosol 
backscatter intensity (ABI)

Micropulse Doppler lidar 0.15–1 Alan Brewer NOAA CSL Schroeder 
et al. (2020)

Fire radiative power Scanning Radiometers Imager 
FLIR Duo R

Ru-Shan Gao NOAA CSL

Figure 5.  Range corrected aerosol backscatter intensity curtain and horizontal wind profile in the foreground from the Goose Fire measured on 5 August 2019 by the 
NOAA Met-TO with the Doppler Lidar. The active fire location is shown in orange on the surface map and the vertical ticks on the Y axes are every 500 m. The view in 
this image is from the ENE and the curtain data runs roughly SW to NE (going from left to right).
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orientation of this road network perpendicular to the transport of the plume allows for investigation of plume 
aging with transport.

The SP-AMS instrument showed increases in organic and BC loading associated with this plume. As a BB plume 
ages, we expect oxidation to occur. Figure 9 depicts the H:C and O:C ratios of fit organic species measured with 
the SP-AMS. As transects move further downwind relative to the source, the O:C state of the organic aerosol on 
average increases. Each dot in Figure 10 represents one 20-s sampling point.

Table 7 
Payload of the NASA MACH-2 for FIREX-AQ

Parameter measured Technique Frequency (s) Investigator Institution References

Aerosol measurements

  Particle number density TSI 3775 1 Bruce 
Anderson

NASA LaRC TSI_3775

  Aerosol size distribution TSI SMPS w/3772 CPC 60 Bruce 
Anderson

NASA LaRC TSI_SMPS

Teledyne T640 10 Teledyne_T640

TSI APS 1 TSI_3321

TSI Optical Particle Spectrometer 1 TSI_3330

  3-λ scattering Air Photon 5 Bruce 
Anderson

Air_Photon_
IN101

  3-λ extinction 3-wavelength CAPS 5 Bruce 
Anderson

Aerodyne_CAPS

  Hyperspectral aerosol absorption 
photometer

Custom Variable Bruce 
Anderson

Jordan 
et al. (2022)

  Spectral aerosol extinction, 
absorption, BrC absorption

Hyperspectral Extinctiometer (SpEX) 240 Carolyn 
Jordan

NIA/LaRC Jordan  
et al. (2015,  

2021)

  3-λ absorption photometer TAP, PSAP 5 Bruce 
Anderson

Brechtel_TAP

  Aerosol ionic composition PTFE filters + IC Intermittent Bruce Anderson –

  Aerosol organics PTFE filters + Spectroscopy Intermittent Bruce 
Anderson

–

  EC/OC, metals quartz filters; sunset labs, ICP Intermittent Bruce 
Anderson

OC/
EC_Analyzer

  PM2.5 MetOneE-BAM 3,600 Bruce 
Anderson

MetOne_E-BAM

  PM2.5, PM10 Teledyne T640 60 Bruce 
Anderson

Teledyne_T640

  Cloud/aerosol profiles Vaisala CL5100 Ceiliometer 60 Rich Moore Vaisala_CL51

Gas phase measurements

  CO, CO2, H2O LGR iCOSSpectrometer 1 Bruce 
Anderson

NASA LaRC LGR_CO/CO2

  CO2, H2O Licor 840 NDIR 1 LI-840

  NOx, NO2 LGR NO2 Spectrometer 1 LGR_NO2

  O3 Thermo scientific 1 Thermo_
Scientific

  HONO, HNO3 Mist Chamber/IC 300 Jack Dibb UNH Scheuer 
et al. (2010)

  N and O isotopes in NOx, NO2, 
HONO, nitrate and ammonium

Impinger for NOx, denuders for NO2 and HONO, 
and filters for nitrate and ammonium

variable (hours) Meredith 
Hastings

Brown 
University

Chai et al. (2021)

Meteorological measurements

  Winds, T, RH, and navigation 
parameters

AirMar 200WX 1 Bruce 
Anderson

AirMar_200WX
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2.4.3.  AERONET and DRAGON

In the northwestern U.S. and southwestern Canada, 14 regional AErosol 
RObotic NETwork (AERONET) sites were located in the FIREX-AQ region 
and sun/moon/sky photometers performed measurements for aerosol assess-
ment. These permanent AERONET sites were augmented with three Distrib-
uted Regional Aerosol Gridded Observation Networks (DRAGONs) located 
in Missoula, Taylor Ranch, and McCall (locations shown in Figure 3) and 
two mobile deployed units (Holben et al., 2018). Each DRAGON provided 
enhanced coverage with temporarily deployed sunphotometers. The goals 
were to capture aerosol variability, specifically smoke aerosol at varying 
distances from source regions in complex mountainous terrain and to develop 
a geo-referenced database that will facilitate comparison and validation 
investigations with in-situ and remote sensing platforms from FIREX-AQ. 
The regional DRAGON and AERONET sites operated 22 July–6 September 
with a nighttime focus 7–21 August for FIREX-AQ.

The payload of the DRAGONs is listed in Table  9 with a Sun-tracking 
CIMEL CE318T to measure AOD and volume size distribution, where the 
retrieval algorithms had to be adjusted for mobile instrument data (Giles 
et al., 2019; Sinyuk et al., 2020). Further the PLASMA (for Photomètre Léger 
Aéroporté pour la Surveillance des Masses d’Air) sun photometer provided 
rapid observations of the Sun to provide AOD every 10 s (Karol et al., 2013). 
Less frequent measurements using Microtops II and Calitoo hand-held sun 

Table 8 
Payload of the Aerodyne Mobile Laboratory (AML) for FIREX-AQ in 2019

Species measured Technique Freq. (Hz) Investigator Institution References

CO, N2O, H2O; C2H6, CH4; 
HCN, C2H2, HCHO, 
HCOOH, NO, NO2, NH3

multiple Tunable Infrared 
Laser Direct Absorption 
Spectroscopy (TILDAS)

1 Tara Yacovitch, Christoph 
Dyroff; Scott Herndon; 
J. Rob Roscioli

Aerodyne research Inc. 
(ARI)

McManus et al. (2015), 
Yacovitch 

et al. (2014)

CO2, H2O Non-dispersive infrared 1 Tara Yacovitch ARI LiCOR

O3 UV absorption 1 Tara Yacovitch ARI 2B Tech

oxygenated and nitrogen-
containing VOCs

Vocus-PTR-MS 1 Francesca Majluf ARI Krechmer et al. (2018)

particulate matter size and 
composition

High-resolution aerosol mass 
spectrometer (AMS, 
SP-AMS)

1 Ed Fortner ARI Jayne et al. (2000), 
Onasch 

et al. (2012)

BC size distribution Single Particle Soot Photometer 
(SP2)

1–10 Tim Onasch ARI Sedlacek et al. (2018)

particle count Condensation Particle Counter 
(CPC)

1 Ed Fortner ARI

GPS and meteorology GPS compass, RMYoung and 
Airmar anemometers

1–10 Tara Yacovitch ARI

NO2 photolysis frequency Filter radiometer 1 Samuel Hall NCAR ACOM Metcon Inc.

OC, EC, Levoglucosan, 
dehydroabietic acid

Filter samples with GCxGC-
ToF-MS and Sunset OC/EC 
analyzer

30–60 min Allen Goldstein UC Berkeley Jen et al. (2019), Liang 
et al. (2022)

Aerosol absorption and 
extinction at 488 and 
561 nm

Multiwavelength Integrated 
Photoacoustic spectrometer 
and Nepehelometer (MIPN)

2 Rajan Chakrabarty Washington Uni. in St. 
Louis

Sumlin et al. (2021)

Single-particle optical 
properties and 
composition

Electron Energy-Loss 
Spectroscopy (EELS)

10/fire Rohan Mishra, Rajan 
Chakrabarty

Washington Uni. in St. 
Louis

Zhu et al. (2014)

Figure 6.  AML deployment at the 204 Cow fire on 26 August 2019. The 
HCN data are color (and size) coded in bins of 10 ppb from 0–10 ppb (green) 
to 60–70 ppb (red). The red area indicates the boundary of the fire during the 
month of August (VIIRS data (University of Maryland, 2020)). The red shaded 
heatmap shows fire observations as detected from satellite for the same time 
period. The blue arrows indicate outflow paths of fire tracers downhill through 
narrow valleys during the second half of the night. Topographical maps from 
Google.com.
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photometer data were available when the CIMEL CE318T photometer was performing sky scanning measure-
ments (Smirnov et al., 2009). Two CIMEL Lidars (CE370 and CE376 models) were available in each mobile unit 
to provide aerosol and cloud vertical distribution.

The fires investigated by the DRAGONs are listed in Table 2 and measurements were coordinated with other 
platforms for example, the DC-8 and ER-2 during Williams Flats fire observations. The DRAGON drives are 
shown in Figure S7 in Supporting Information S1.

As examples of the aerosol variability observed by AERONET and the DRAGONs, the decrease of AOD with 
distance from the Williams Flats fire and vertical variation downwind of the 204 Cow Fire are shown in Figures 10 
and 11. The goal of examining aerosol variability can be viewed in Figure 10 as AOD changes with the distance to 
the fire source for the Williams Flats Fire from 5 to 8 August 2019, where several plume crossings were attempted 
up to 250 km downwind of the fire. The AOD magnitude is highly variable in the vicinity of the fire due to the 
significant changes in aerosol loading as the vehicles moved in and out of the smoke plume. Peaks in AOD near 

120 and 185 km are due to the DRAGON Mobile Unit 2 passing through 
the downwind smoke plume. The Angstrom Exponent (AE) (440–870 nm) 
varied between 1.4 and 2.4 indicating aerosol particle sizes vary significantly 
in the fine mode smoke. The variation in AE stabilized around 1.8 at 100 km 
from the fire suggesting aging and aggregation of the smoke particles farther 
away from the fire source.

Figure 11 shows the Cimel CE370 micro-pulse lidar range corrected signal 
(RCS) measured during the 204 Cow Fire in Oregon on 26 August 2019 by 
DRAGON Mobile Unit 2. Vertical variation of the aerosols shows the smoke 
plume rising to about 3 km on the first transect while other transects farther 
to the east indicate smoke may have subsided near the ground into the nearby 
valleys (top panels). Coincident measurements from the PLASMA instru-
ment AOD (bottom left) are interpolated to lidar wavelength at 532 nm and 
AE from 440 to 870 nm. Aqua MODIS true color imagery (bottom right) 
indicate the extent of the smoke plume at 20:15  UTC.

2.4.4.  CARB

The CARB deployed a Mobile Measurement Platform (MMP) equipped with 
advanced technologies to measure gas- and particle-phase pollutants emit-
ted from wildfires. Over the past decade, CARB's MMPs have been used to 

Figure 7.  Time series of HCN, BC (from SP-AMS), and C3H4N + (quantified as acetonitrile) during the cow fire deployment. Note the strong increase in fire tracers in 
the early morning hours (Analysis and figures by Christoph Dyroff).

Figure 8.  The drive track of the AML on 27 August 2019 color and size 
coded by HCN.
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measure a variety of source emissions, study air pollution impacts on communities, and identify fugitive methane 
leaks throughout California. The measured EFs are used to inform the fire emission model, the First Order Fire 

Effects Model, used by CARB. The research advances the modeling of wild-
fire impacts on air quality to safeguard human health.

The payload of the MMP during FIREX-AQ is listed in Table 10, includ-
ing the guest instruments from UC Berkeley and UC Riverside. CARB 
deployed the MMP during FIREX-AQ on 15 and 30 August 2019 to the 
Springs Fire and after FIREX-AQ on 1 and 4 November 2019 to the Kincade 
Fire in California. During each deployment, CARB staff drove the MMP in 
the vicinity of the wildfire to detect the wildfire smoke. Once the smoke 
was identified (i.e., (CO) > 500 ppb), the MMP acted as a stationary site 
to monitor the fire plumes. The MMP drives are shown in Figure S8 in 
Supporting Information S1.

The lack of fire activity in California during FIREX-AQ limited the interac-
tion of the MMP with the rest of the FIREX-AQ platforms, but an example 
of the MMP measurements of the Springs Fire is shown in Figure 12, which 
shows an example of the evolution of the Springs Fire on 30 August 2019. 
During the deployment, the MMP was parked ∼3 km north of the Springs 
Fire. The measurement can be categorized into three periods. Period 1 is 
characterized by fast-changing pollutant concentrations. The smoke evolved 
quickly as the planetary boundary layer developed during 07:00–09:00, caus-
ing the pollutant concentration to decline. The modified combustion effi-
ciency (MCE) also decreased from ∼0.95 to ∼0.85. Period 2 lasted from 
09:00 to 10:30. The measurement was under northwesterly wind conditions. 
Clean background air entrainment diluted the sampled fire plume, result-
ing in low pollutant concentrations. The southerly winds dominated during 
Period 3 (similar to Period 1). The pollutant concentrations showed multiple 
spikes. The MCE values were around 0.9.

Figure 9.  Organic aerosol O:C and H:C ratios are depicted and colored by location of plume intercept by the AML (Analysis and figures by Ed Fortner).

Figure 10.  Mobile DRAGON showed a decrease of the AOD with increasing 
distance from the Williams Flats Fire from 5 to 8 August 2019. The peak at 
120 km represents Mobile DRAGON Units 1 and 2 crossing the Williams 
Flats Fire plume near Spokane, Washington. The lower peak at 185 km 
represents the plume crossing of Mobile DRAGON 2 at Cour d’Alene.
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The EFs of the measured pollutants were quantified as the wildfires evolved. An example is shown for CH4 during 
the Springs Fire and the Kincade Fire measurements (Figure 12b) with the following observations: (a) The EF of 
CH4 (EFCH4) decreased with increasing MCE for both the Springs Fire and the Kincade Fire emissions, which is 
consistent with previous studies (Guerette et al., 2018); (b) The EF values are comparable with those reported in 
the literature (Akagi et al., 2011); and (c) The different slopes of EFCH4 versus MCE for the two fires reflected the 
influence of vegetation type on the EF.

2.5.  Ground Sites

2.5.1.  McCall, ID

When not driving, the AML measured and operated out of McCall, ID, where additional instruments were 
deployed to a ground site called the Activity Barn Ground Site. The location is also shown on the map in Figure 2 
and Figure S9 in Supporting Information S1. The additional instrument list is shown in Table 11, and the two fires 
that brought smoke to the site were the Nethker Fire and the prescribed fire listed in Table 2. The Comprehensive 
Thermal desorption Aerosol Gas chromatograph (C-TAG) with high-resolution time-of-flight mass spectrometer 

Table 9 
Payload of the DRAGON Mobile Units for FIREX-AQ

Parameter measured Technique Frequency (Hz) Investigator Institution References

Spectral Irradiance retrieval of AOD 
and VSD

CIMEL CE318T 1 Brent Holben NASA GSFC cimel.fr

Simultaneous AOD and VSD PLASMA 0.1 Philippe Goloub Laboratoire d’Optique 
Atmospherique/CIMEL

Karol et al. (2013)

Aerosol optical thickness Calitoo 1 cimel.fr

aerosols and clouds vertical 
distribution

CIMEL Lidar (CE370 and 
CE376)

0.1 calitoo.fr

Aerosol optical thickness Microtops II 1 David Giles NASA solarlight.com

Figure 11.  Cimel CE370 lidar range corrected signal (top left) measured during the 204 Cow Fire in Oregon on 26 August 2019 by DRAGON Mobile Unit 2. 
Coincident measurements from the PLASMA instrument AOD (bottom left) are interpolated to lidar wavelength at 532 nm and Angstrom Exponent from 440 to 
870 nm. Aqua MODIS true color imagery (bottom right).
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(HR-TOF-MS) was deployed to this site together with a gas chromatograph electron impact high-resolution time 
of flight mass spectrometer (GC-EI-ToF). Weekly passive sorbent tubes analyzed by thermal desorption-gas 
chromatography-mass spectrometry (TD-GC-MS) were also collected at the site.

In 2019, the smoke impact on the site was unusually small, and overall, only modest fire influence was detected 
at McCall during FIREX-AQ. With the exception of the day where the prescribed burn near McCall ID was 
observed (Figure 13), the ground site experienced smoke impact mostly from residential burning. Time series are 
shown for BC from the SP-AMS, furfural from the GC-EI-TOF, ACSM-measured organic aerosol mass loading, 
and an ACSM estimate of BB organic aerosol (BBOA) concentration based on the intensity of the signal meas-
ured at m/z 60, a tracer signal for the presence of levoglucosan in the aerosol (Zhang et al., 2015). These instru-
ments all show a plume arriving around 5:45 a.m. UTC (11:45 p.m. local time), likely due to smoke from the 
prescribed burn settling in the valley. During this event, the GC-EI-TOF saw elevations of VOCs in the gas phase 
that are considered tracers of BB like furfural. Throughout the campaign, furfural did not demonstrate a strong 
diurnal pattern (from background of the local Nethker fire and residential buring). The strong spike in concen-
tration on the evening of the prescribed burn indicates that furfural may be a good tracer of fresh, non-residential 
BB emissions.

2.5.2.  Lewis-Clark State College, ID

Researchers from the Lewis-Clark State College (LCSC) Air Chemistry Research Group deployed instrumenta-
tion for ground sampling during FIREX-AQ in June–September 2019 with the main goal of determining human 
exposure to a variety of air toxics from wildfire smoke. Daily to weekly averaged passive (diffusive) sorbent tube 
air sampling with subsequent thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) analy-
sis of VOCs (up to 27 hydrocarbons and halogenates) was accomplished at stationary locations including the 
campaign ground sites at Missoula, MT, McCall, ID, Boise, ID, Lewiston, ID, Moscow, ID, and Spokane, WA 
(Figure 2 and Figure S9 in Supporting Information S1) (Miller et al., 2022). Mobile sorbent tube grab sampling 
was also utilized at active fire events, including Williams Flats (eastern WA) and Nethker (central ID) fires, 
often coinciding with the AML mobile labs and the AERONET sites. This resulted in the analysis of 97 VOC 
species, including hydrocarbons, halogenates, oxygenates, and sulfur species. In addition to VOC measurements, 
ambient sulfur dioxide levels were monitored at the Lewiston, ID stationary site, using a Teledyne T102 sulfur 
fluorescence analyzer.

The measured VOC concentrations were applied to EPA risk assessment techniques to determine human 
exposure to a variety of air toxics before and during the 2019 wildfire season in the Northwest and nearby 
populated areas during FIREX-AQ. Although the stationary sites did not have significant wildfire smoke 
exposures in 2019, they served as background to the wildfire sites mobile sampled. For example, the health 
risk due to benzene was calculated in the Nethker fire and Williams Flats fire, using the proximal cities of 
McCall, ID and Spokane, WA as background. The exposure concentration was equated to the mean observed 
concentration multiplied by an exposure weighting (the product of the exposure time, frequency, and dura-
tion divided by the averaging time). The cancer risk was then calculated from the exposure concentration 
multiplied by the inhalation unit risk (compound dependent). In the Nethker fire samples, elevated benzene 
(a known carcinogen and air toxic) concentrations were seen over 100 times elevated compared to those at 

Table 10 
Payload of the CARB Mobile Laboratory (MMP) for FIREX-AQ in 2019

Species measured Technique Frequency (Hz) Investigator Institution References

NO, NO2, NOx 2B Model 405 NOx Monitor 1 Shang Liu CARB Birks et al. (2018)

O3 2B Model 205 O3 Monitor 1 Andersen et al. (2010)

CH4, CO2, CO, H2O Picarro G2401 0.2 Crosson (2008)

BC/7-λ aerosol absorption Aethalometer AE33 1 Drinovec et al. (2015)

T, RH, WS, WD Airmar Weather Station 200WX 1 Airmar

OC, EC, Speciated components in 
PM2.5

Filter samples with GCxGC-ToF-MS and 
Sunset OC/EC analyzer

30–60 min Allen Goldstein UC Berkeley Jen et al. (2019), 
Liang et al. (2022)

Speciated VOCs Sorbent tube samples with GC × GC TOF-MS 30–60 min Kelley Barsanti UC Riverside Pankow et al. (2012)
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McCall, ID which lies 30 miles south. Considering a 30-day wildfire smoke exposure scenario such as this 
each year, for 26 years of one's lifetime (average residence in a locale), the risk of cancer goes up by a factor 
of 19 compared to background (Dickinson et  al.,  2022). This results in potentially serious human health 
implications for sub-chronic to chronic exposure to wildfire smoke, especially with more active and longer 
duration wildfire seasons in the Northwest. The use of sorbent tube air sampling was successful in determin-
ing the effects of many wildfire smoke VOCs on air quality of surrounding regions and the associated health 
risks to nearby communities.

Figure 12.  (a) The time series of CO, CO2, MCE, and wind direction during the Springs Fire measurement on 30 August 2019. (b) The emission factor of CH4 as a 
function of MCE.
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2.5.3.  Other Ground Sites

Other sites operating during FIREX-AQ and shown in Figure 3 include long-term observations at Missoula, MT 
and Mt. Bachelor, as well as a temporary site in Boise, ID. Due to the relatively mild fire conditions in 2019, 
there was no direct coordination between the FIREX-AQ aircraft observations and these sites. These ground sites 
documented thousands of hours of fresh to aged smoke impacts on urban areas with a focus on O3, downwind 
gas-particle partitioning, evolving aerosol optical properties, etc. and therefore provide valuable context regard-
ing the episodic impact of fires over a longer period than the campaign. Additional material on these sites can be 
found in the SI (Sections 4.1–4.3).

Table 11 
Instrument List for the McCall Ground Site for FIREX-AQ in 2019

Parameters measured Technique Freq. Investigator Institution References

Speciated VOCs GC-EI-TOF Every 20 min Megan Claflin Aerodyne Research, Inc. Claflin et al. (2021)

Aerosol size and 
composition

Aerosol Chemical Speciation Monitor 
(ACSM)

1 min Phil Croteau Ng et al. (2011)

NOx, CO, PM ARIsense 10s Eben Cross Cross et al. (2017)

OC, EC, levoglucosan, 
dehydroabietic acid

Filter samples with GCxGC-ToF-MS 
(cTAG) and Sunset OC/EC analyzer

30–60 min Allen Goldstein UC Berkeley Jen et al. (2019), Liang 
et al. (2022)

Met data (T, RH, P) Airmar Weather Station 200WX 1 s Tara Yacovitch Aerodyne Research, Inc.

Cloud and aerosol profiles Micro pulse Lidara 1 min E.J. Welton NASA GSFC Campbell et al. (2002), 
Welton et al. (2000)

 aData are available at: https://mplnet.gsfc.nasa.gov/data?s=McCall&v=V3.

Figure 13.  2019 prescribed burn impact at the McCall, ID ground site. Time series of Organic aerosol (ACSM), BBOA Tracer (ACSM), Furfural (GC-EI-ToF), and 
Black Carbon aerosol (SP-AMS AML) all measured at the McCall Activity Barn ground site (Analysis and figures by Megan Claflin).
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2.6.  Forecasting and Nowcasting Support

2.6.1.  Meteorology

For the western portion of the campaign, a team from the Naval Research Laboratory provided daily briefings 
on large scale circulation and regional forecasts in areas where fires were burning. Briefings contained mete-
orological forecast of the potential for new and sustained fires over the next days and the potential for pyro-Cb 
(pyro-cumulonimbus) development. Several members of this team were in Boise and then one member provided 
large-scale support during the Salina portion of the campaign. Briefings were customized for all the mobile 
platforms listed above except the CARB MMP, and these mobile briefings continued after the DC-8 was based 
in Salina. In Salina, the team from Florida State University provided the daily meteorological briefings. Included 
were experimental forecasts of prescribed fire activity based on forecast weather conditions.

2.6.2.  Fire Weather and Fire Behavior

The Fuel2Fire team combined data from multiple sources to prepare daily reports to provide information to 
guide the FIREX-AQ campaign on the timing and selection of fires to target. For the western fires, the Fuel2Fire 
team assessed the previous day's fire activity, overnight fire activity, and the forecasted fire weather to determine 
which fires and regions showed the most potential to burn. Data analyzed to determine fire potential and behavior 
included: National Interagency Coordination Center Incident Management Situation Report, USFS Wildland Fire 
Assessment System (WFAS), Fire Weather and Fire Behavior maps, and overnight and 24-hr remotely-derived 
fire activity (see Section 3.4 for more detail). The Fuel2Fire team provided the fires and regions that were most 
likely to burn to Stan Kubota (Stan's Consulting Service), to the meteorological and smoke forecasting teams, 
and to the entire FIREX-AQ team. The forecasting teams needed the target fires to model well in advance of the 
flights. Kubota provided insights from the Incident Commanders (IC) that were leading fire actions on the ground 
and aircraft attacks. A representation from the National Interagency Fire Center (NIFC) attended the daily brief-
ings and provided information to support the campaign. This information was essential to coordinate sampling 
by the FIREX-AQ aircraft and mobile units and included continually updated IC reports on fire behavior and 
planned suppression efforts.

In the southeast, the fires were largely smaller and often burned on private lands. Prescription fires are inten-
tional ignitions, where the fires are planned to meet management or cultural objectives, when fire weather is 
minimal. Several prescription fires were planned and/or coordinated by the Fuel2Fire team, and others were 
identified through relationships with regional extensions, state agencies, and conservation organizations that 
were established in advance of the campaign. Cropland and pile fires burn rapidly, so near-real-time 5- to 15-min 
Geostationary Operational Environmental Satellites (GOES 16 and 17) were critical to identifying small fires 
and guiding the DC-8 aircraft. Additionally, the Fuel2Fire team provided background on the typical cropland fire 
timing by hosting a Fuel2Fire van that identified potential fire activity.

2.6.3.  Smoke Forecasting

Forecasts of smoke, aerosol, and trace gas concentrations were provided by several groups using 16 different 
models as described in Table 12. These forecasts ranged from operational to highly experimental. The differ-
ences among models include: fire emissions, plume injection parameterization, assimilation of satellite AOD 
retrievals, complexity of chemistry, dynamic core and meteorology, time of initialization, and domain extent 
and resolution. Representatives of most modeling teams deployed to Boise and Salina and contributed to flight 
planning activities; teams in the field included GEOSFP, RAQMS and WISC WRF-Chem, NAAPS, WACCM 
and NCAR WRF-Chem, UIOWA WRF-Chem, NAQFC Experimental, HRRR-Smoke, GEFS-Aerosols, FLEX-
PART, and UCLA WRF-Chem. CU-Boulder team was also in the field and contributed to flight planning. The 
model PIs are listed in the SI. High resolution (2.5 km) experimental forecasts for western North America (ARQI 
FireWork experimental) specially implemented for FIREX-AQ were provided by campaign partner Environment 
and Climate Change Canada. Other forecasting systems listed in Table 12 that run operationally were obtained 
through collaborations.

Model output from the majority of these systems was downloaded in near-real time from the providers and was 
plotted using the NASA GMAO Framework for Live User-Invoked Data (FLUID) system (https://fluid.nccs.nasa.
gov/about/), which enabled the science team to have all forecasts plotted in the same domain and color-scale. 
Spatial maps at pressure levels and total column, as well as vertical cross-sections at fixed locations were included 
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in these plots which enabled a better comparison of the guidance provided by the different models. Individual 
forecasting teams contributed more specialized products from their forecasting systems which included vertical 
cross-section along user defined locations, tracers tracking emissions from different sectors and from different 
BB emission inventories, and plume age estimates.

2.6.4.  Nowcasting

During all flights by any of the FIREX-AQ aircraft, representatives of the meteorology, fire weather, and chemi-
cal forecasting teams provided updates on the behavior of all fires in the region of operations. These were based 
on near-real-time satellite imagery (primarily GOES 16 and 17) and reports from IC overseeing firefighting 
actions. During the Salina phase the nowcasting team was essential to direct the DC-8 to regions where small 
fires were burning, as these were nearly always very short-lived and could not be targeted more than 10–15 min 
in advance. Cropland, pile, and silviculture fire nowcasting relied heavily on thermal anomalies in the shortwave 
infrared window (3.9 μm band) from GOES-16 (e.g., active fire detections). Key information was saved during 
each flight to support data interpretation after the campaign.

3.  Execution of the FIREX-AQ 2019 Intensive Campaign
3.1.  Fire Season 2019

NIFC publishes the annual fire activity on their website (www.nifc.gov/fireInfo/fireInfo_statistics.html) and the 
data can be used to relate the 2019 fire season of the FIREX-AQ field experiments to previous years including 

Table 12 
Sixteen Different Forecast Models Predicting Smoke Used During FIREX-AQ in 2019

Model Forecast domain Institution
Grid 

resolution

Initial 
time 

(UTC)
Chemical 

mechanism
Fire emission key 

parameter (inventory)
Plume 

injection

Assim. 
satellite 

data

GEOSFP Global NASA GMAO 5/16 × 1/4 deg 00 Simplified FRP (QFED) No Yes

CAMS Global ECMWF 0.4 deg 00 Full FRP (GFASv1.2) Yes Yes

RAQMS Global University of Wisconsin 1.0 deg 12 Full hotspots (RAQMS) No Yes

NAAPS Global NRL 30 km 00 Simplified hotspots (FLAMBE) No Yes

WACCM Global NCAR 1.0 deg 00 Full hotspots (FINN) No No

GEFS-Aerosols Global NOAA CSL 25 km 00 Simplified blended (GBBEPx) Yes No

ARQI FireWork 
experimental

NW US and SW 
Canada

ECCC 2.5 km 12 Full hotspots (CFFEPSv4.0) Yes No

HRRR-Smoke CONUS NOAA GSL 3 km 00 Smoke tracer FRP Yes No

AIRPACT NW US Washington State University 4 km 08 Full hotspots (SMARTFIRE/
Bluesky)

Yes No

UCLA 
WRF-Chem

W US UCLA 4 km 00 Simplified FRP (QFED, with 
inversion)

Yes Yes

UIWOA 
WRF-Chem

W US University of Iowa 8 km 12 Full FRP (QFED) Yes No

WISC WRF-Chem CONUS University of Wisconsin 8 km 12 Full hotspots (PREP-CHEM) Yes Yes

FireWork North America ECCC 10 km 12 Full hotspots (CFFEPSv2.1) Yes No

NAQFC CONUS NOAA NCEP 12 km 12 Full hotspots (HMS/Bluesky) Yes No

NAQFC 
Experimental

CONUS NOAA ARL 12 km 12 Full hotspots (HMS/Bluesky) Yes Yes

NCAR 
WRF-Chem

CONUS NCAR ACOM 12 km 00 Full hotspots (FINN) Yes No

FLEXPART CONUS NCAR and Ludwig-
Maximilians Uni.-Munich

25 km 00 Smoke tracers Hotspots (GFAS) Yes No

Note. See additional details in Ye et al. (2021).
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2018 for the WE-CAN experiment. The wildfire seasonality for wildfires in 
the Northwest is shown in Figure 14 and typically peaks between August 
and September as was the case for 2017–2021. The western U.S., targeted 
from Boise, ID, had about a quarter of the 10-year average area burned (0.97 
million acres). In 2019 there were only eight wildfires over 40,000 acres in 
the mainland U.S. and the DC-8 aircraft investigated two of those fires: The 
Sheep Fire (112,106 acres, a ∼1 day grass fire) and the Williams Flats fire 
(44,446 acres, which burned over 1 week). The U.S. trend in 2019 does not 
change long-term patterns and likely resulted from anomalies such as heavy 
spring and mid-season precipitation that left forests and grasslands wetter 
than normal (Frank, 2020).

In contrast, the 2018 fire season that WE-CAN experienced was more 
normal and had 5.4 million acres burned in the western U.S. and 45 signif-
icant fires above 40,000 acres. The low 2019 fire season provided the 
FIREX-AQ  aircraft opportunities to investigate individual isolated fire 
plumes well, while the C-130 during WE-CAN had the additional opportu-
nity to study complex mixtures of multiple fire plumes.

3.2.  Weather Forecast and Meteorological Conditions in Summer 2019

Meteorological conditions in 2019 were a significant driver for the low fire 
year. While individual fires can be influenced by a variety of small-scale 

features, larger-scale (synoptic) weather patterns are the primary driver of regional fire activity, fire danger, and 
fire potential. During the months prior to FIREX-AQ, the western U.S. was affected by a persistent and anom-
alously deep trough of low pressure (negative Arctic Oscillation pattern), resulting in relatively cool and moist 
weather. Measurable rainfall occurred unusually late in California, when the dry season is typically setting in. 
Fuel moisture therefore remained elevated as the fire season began, likely explaining the lack of widespread, large 
wildfires during FIREX-AQ. This synoptic weather pattern also resulted in a relatively wet and stormy spring and 
early summer in the central U.S.

The Boise deployment can be separated into three distinct phases based on synoptic meteorology (Figures 15a–15c): 
(a) persistent anticyclone, (b) ridge breakdown, and (c) northern trough. The first phase (22 July–05 August) 
featured a relatively strong, and persistent anticyclone (high pressure), centered over the Four Corners region 
(Figure 15a). This anticyclone is the primary feature controlling the transport of monsoonal moisture from the 
tropical Eastern Pacific, Gulf of California, and/or Gulf of Mexico to the western U.S. (e.g., Higgins et al., 1997). 
At the start of FIREX-AQ, moisture transport persisted in the mid-troposphere (4–7 km) over portions of Arizona, 
Nevada, and Utah, resulting in widespread cloud cover and thunderstorm development during the local afternoon 
and evening hours. Surges of moisture intermittently reached portions of the interior Pacific Northwest, facili-
tating thunderstorm development above a very dry, near-surface mixed layer. Precipitation generally evaporated 
before reaching the ground, allowing lightning strikes to ignite several fires. Airborne sampling was generally 
focused temporally between moisture surges to the north and west of the primary moisture pathway, including the 
Shady, Tucker, North Hills, and Williams Flats fires.

The ridge axis associated with the anticyclone amplified and extended over the Pacific Northwest during 
the second phase of the Boise deployment (06–08 August; Figure  15b). A low-pressure trough concurrently 
approached from the west. This “ridge breakdown” weather pattern is often associated with periods of extreme 
fire and smoke plume behavior (e.g., Westphal & Toon, 1991), including the development of wildfire-driven, 
smoke-infused thunderstorms, known as pyrocumulonimbus or pyroCb (Peterson, Fromm, et al., 2017; Peterson, 
Hyer, et  al., 2017; Peterson et  al., 2018, 2021). Approaching weather disturbances also coincide with persis-
tence of intense burning well into the nighttime hours (Peterson et al., 2015; Saide et al., 2015). The Williams 
Flats fire in Washington State was significantly affected by this unique meteorology. Fire spread and smoke 
release gradually increased as the approaching low-pressure trough gradually enhanced surface wind speeds in 
the preceding hot and dry air mass. Smoke plume altitude also increased each day, coinciding with enhanced 
moisture transport and decreased stability in the mid-troposphere. Both the DC-8 and ER-2 obtained measure-
ments on all 3 days of this short sampling phase, providing a comprehensive data set over a period of extreme 

Figure 14.  Cumulative area burned in the western US (California, Great 
Basin, Northern Rockies, and Northwest) for 2017–2021. (Data source: NIFC: 
https://www.predictiveservices.nifc.gov/intelligence/archive/archive2021.
html).
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fire behavior. This culminated on 08 August, when the DC-8 obtained the first detailed measurements from 
inside the high-altitude outflow region of a pyroCb (Peterson et al., 2022) (https://earthobservatory.nasa.gov/
images/145446/flying-through-a-fire-cloud).

The third phase of the Boise deployment (9–18 August; Figure 15c) occurred after the change in synoptic mete-
orology described above. The low-pressure trough moved ashore, producing relatively cool, moist, and cloudy 
conditions over the northern portion of the study region. Fire activity decreased and the Williams Flats fire was 
effectively extinguished by rainfall. To the south, the anticyclone shifted into Texas, deflecting monsoonal mois-
ture to the east of the primary study region. This resulted in significant drying and clearing over much of the 
southwestern U.S. Fire activity rapidly increased, especially in Arizona and Utah. FIREX-AQ sampling therefore 
shifted to this region, with an emphasis on the Springs, Castle, Trumbull, Sheridan, Ikes, and Boulin fires.

Synoptic meteorology for the final portion of FIREX-AQ (19 August–05 September) is summarized in Figure 15d. 
This period featured an amplified synoptic pattern over North America, with anomalous ridging (high pressure) 
over the western U.S. and a deep trough (low pressure) in the east. The high-pressure ridge over the western 
US promoted a return to warm and dry conditions. Fires that survived the preceding period of cool and damp 
weather in the Northwest were reinvigorated. New fire ignitions also occurred, providing a variety of sampling 

Figure 15.  The large-scale weather patterns influencing fire patterns during FIREX-AQ in 2019.
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opportunities for the FIREX-AQ assets that remained in that region after DC-8 moved to Salina. Relatively 
cool and moist conditions prevailed over much of the Midwest. Intermittent frontal boundaries traversed the 
central U.S. and portions of the Southeast, occasionally reaching the Gulf Coast. These fronts served as a forcing 
mechanism for convective activity (thunderstorms) and rainfall. Sampling of fires with the DC-8 out of Salina 
was generally limited to periods between frontal passages in the greater MRV area, Texas, Oklahoma, Nebraska, 
and Kansas.

3.3.  Forecast Models Predicting Smoke

Smoke trajectory forecasts were used frequently for flight planning. Fire locations, size, containment, and 
suppression plans were often known with good accuracy from fire incident reports (e.g., InciWeb, https://inci-
web.nwcg.gov). After several fires were identified by the Fuel2Fire team (Section 2.6.2) for potential sampling 
on future days, HYSPLIT forward trajectory ensembles were run with high-resolution meteorological forecasts 
(NAM CONUS Nest 3 km) for all of these fires by the Florida State University team. Trajectories were initialized 
at multiple altitudes from the surface to 4 km altitude to encompass a range of possible smoke injection heights. 
The resulting trajectory maps provided guidance on interpreting satellite images of active smoke plumes with a 
quick visualization of plume development or stagnation, plume transport direction at multiple potential altitudes, 
height of the smoke above terrain downwind, and wind shifts over the course of the day, all of which were used 
for determining the suitability of a smoke plume to be sampled by the aircraft. Figure 16 shows a sample smoke 
trajectory ensemble forecast for the Ridgetop fire, which had a lot of diversity on the trajectory direction for the 
different altitudes. The Ridgetop Fire was sampled on 2 August 2019 by the DC-8 and trajectories are compared 
to satellite imagery of the sampled plume.

Chemical and smoke forecasts served multiple purposes for flight planning. Global models and regional models 
covering the whole of North America were important to provide guidance on the influence of long-range trans-
port during the campaign. There were two major smoke events that were tracked during the campaign. The first 
was smoke from Canadian fires located in northern Alberta that stayed out of reach from Boise but ended up 
producing surface PM2.5 enhancements in the eastern US between 24 and 26 July. Observed surface PM levels 
were raised to Moderate AQI (12–35 μg/m 3) over extended regions of the central and eastern US, with most fore-
casts showing similar PM enhancements. HRRR-Smoke showed similar patterns of enhancements, and thus this 
confirms the source is smoke (as this model only tracks smoke). The second was smoke from Siberia during the 
first half of August that affected the sampling region occasionally but remained mostly lofted. This smoke layer 
was sampled by the DC-8 during the 3 August 2019 flight.

Figure 16.  Left: Smoke trajectory ensemble forecast for the Ridgetop fire in Montana for multiple potential smoke injection altitudes in which low-level trajectories 
depict extensive vertical plume spreading to the north and northwest (blue, orange, and red lines) while high-level trajectories show horizontal plume confinement to 
the east (gray lines). (Above Ground Level (AGL), Mean Sea Level (MSL)). Right: Satellite image of smoke distribution at the time of aircraft sampling (gray line), 
showing diffuse low-level smoke transported to the north and high-elevation smoke outflow from pyroconvection transported to the east.
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These forecasts were rarely used for flight planning for fresh smoke plumes, because multiple limitations were 
encountered. Model resolution from global models was generally too coarse to provide this type of guidance. 
Higher resolution models had other limitations. One of them was the latency on which emissions are updated, 
which created issues of fires not showing up when they had recently started or when clouds obscured the fire 
during a satellite overpass. At other times fires remained in the forecasts even when they had been mostly 
contained in reality. Assumptions related to smoke emissions and injection heights also created large diversity 
between models. Guidance on 1-day old smoke was generally more useful and helped interpret the satellite 
images as the effect of some of these limitations was reduced. An example of this guidance is shown in Figure 17 
for the DC-8 flight on 7 August 2019 that sampled 1-day old smoke from the Williams Flats fire over Montana.

3.4.  Active Fire Information for Flight Planning

As part of the flight planning and preparation, the Fuel2Fire team provided active fire information during the 
mission for decisions on which fires to target. The objective of this active-fire support was to identify active-fire 
regions and specific fires that were expected to burn. During the western campaign, these data were provided 
daily to model and meteorological forecasting teams for flight planning preparations (Section 2.6.2). The data 
and information presented included: basic fire information such as fire name, location, and size; fire weather 
and likelihood of continued fire growth, satellite data (fire detection, FRP, and smoke); ecosystem types and a 
fuels narrative; status of fuel lidar data collection; fire behavior; percent contained and estimated date of contain-
ment; actioned status (personnel, crews, engines, helicopters); daily 209 and NIFC reports; and Temporary Flight 
Restrictions.

Also available for flight planning were: (a) fire weather information, which provides the potential likelihood of 
continued fire growth, (b) National Weather Service 7-day fire potential, WFAS observed and forecasted Fire 
Danger ratings, severe fire weather, and fire behavior potential maps, (c) Satellite data of visible and active-
fire detection data (MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS)), (d) National Infrared 
Operations (NIROPS) data showing the active overnight firelines, (e) smoke extent using visible imagery and 
the NOAA Hazard Mapping System smoke product, (f) coincident satellite overpass potential (Aqua, Terra, 
Met-Op-B, Sentinel-5, CALIPSO), and (g) ecosystem types. Daily briefings are available on the FIREX-AQ data 
archive (https://www-air.larc.nasa.gov/missions/firex-aq/).

Figure 17.  Forecasts of aerosol concentrations (OC and PM2.5) at 700 hPa valid at 6 p.m. on 7 August 2019 showing enhancements due to 1-day old Williams Flats 
fire smoke (red ovals) from multiple forecasting systems. Open circles represent locations of interest (blue: cities, red: AERONET sites). Source: FIREX-AQ Chemical 
forecasts on 6 August 2019.
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For the eastern campaign, fire support was reliant on information from the fire science exchanges (https://south-
ernfireexchange.org/), states, parks, and conservation networks (see Section 3.6 for more detail). GOES data 
were crucial for locating small cropland and pile burning fires, due to the instruments capacity to provide 5-min 
data. Even though GOES is a moderate-to-low resolution instrument, it has a demonstrated ability to detect 
smaller fires due the instruments high-temporal resolution (Soja et al., 2009). The Fuel2Fire team planned several 
prescribed fires in advance of the campaign that were targeted by the DC-8 and the Fuel2Fire ground crew during 
the campaign.

3.5.  Sampling of Western Wildfires

The sampling strategy of western wildfires is discussed using the DC-8 as an example and further explained by 
describing the coordinated sampling of the Williams Flats fire by multiple FIREX-AQ platforms.

3.5.1.  DC-8

Flight planning for the Western wildfires considered fire weather, forecast models, and firefighting/monitor-
ing operations input. Additional factors considered in flight planning included: satellite overpass locations and 
timing, fire fuel type, fire size and intensity, firefighting and flight restrictions, smoke age and fresh smoke 
accessibility, resampling of smoke measured the previous day, coordination with other platforms, and potential 
smoke impact on urban areas.

Flights were designed to measure the emissions as fresh as possible, determine the chemical transformation in 
the smoke during transport, and understand the variability in emissions and chemistry over time. An example of 
a flight for western wildfires is shown in Figure 18 for the Williams Flats fire on 7 August 2019. The flight track 
color-coded by carbon monoxide (CO) is shown on the top in the figure. This flight used the typical sampling 
strategy for the fresh smoke, but also included aged smoke, which was sampled after take-off in Boise, ID.

On most DC-8 flights, the fresh fire plume was initially approached with a longitudinal (i.e., over the length of 
the plume determined by local winds) overflight to map the vertical structure of the plume in aerosol backscatter 
using the DIAL-HSRL, and to provide a level flight leg for the MASTER instrument to record the active fire 
and the burn scar. Visible and IR images of the Williams Flats fire from MASTER are shown in the insert in 
Figure 18. Ideally the plume was first overflown from the aged smoke towards the fire location as was done on 
the Williams Flats fire in Figure 18. With this approach, the DC-8 was able to immediately start sampling smoke 
as young/close as possible at the fire itself with minimal time lost to aircraft positioning requirements. During 
some flights, the transit from Boise came from a direction such that two remote sensing overflights had to be 
flown to measure the plume structure, first away from fire along the smoke plume followed by a return flight to 
the fire and freshest smoke.

The HSRL-DIAL backscatter data (also shown in Figure 18) were available in real-time on the aircraft and were 
used to determine the ideal in situ sampling altitude of the plume, which was generally the center of the plume. 
In situ plume sampling patterns started with an upwind leg in clear air followed by a series of plume crossings at 
increasing distance downwind of the fire. Near the fire, the legs were spaced more closely than further downwind 
as seen in Figure 8. On some flights, select legs were repeated at different altitudes to investigate the difference 
in chemistry in the center of the plume, where light is strongly attenuated, compared to the top edge of the plume 
with higher photolysis values. The in-situ backscatter data were also used to adjust the aircraft altitude during 
plume sampling further away from the fire to account for changes in plume height as can be seen in Figure 18.

This pattern was repeated two or three times on some fires to investigate changes in emissions and chemistry. 
Fire emissions can change rapidly due to changes in local meteorology or the fire moving to areas with different 
slopes that impact fire spread rates or have different fuels or fuel loadings. The MCE, also shown in Figure 18, 
for the two repeat patterns of the Williams Flats changed from 0.904 to 0.908 on 07 August 2019, while the MCE 
from  the Williams Flats flight on 03 August 2019 changed more substantially from 0.919 to 0.908.

The aged smoke that was targeted on the first part of the flight on 7 August 2019 was predicted by most forecast 
models and was observed in GOES 16 and 17 images, shown in Figure 19. Using the HSRL the vertical distri-
bution of the smoke was determined with a longitudinal overflight at 25,000 ft (pressure altitude) of the one-day 
old smoke plume starting from fresher towards more aged smoke. The same flight track in reverse direction was 
flown at 12,000 ft inside the smoke plume. Aged smoke was only clearly observed from the Williams Flats fire 
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Figure 18.  (a) Flight track of the NASA DC-8 FIREX-AQ flight on 07 August 2019 to the Williams Flats fire in Washington color coded with CO. (b) The carbon 
flux for several plume crossings computed from the carbon to aerosol backscatter measured by the HSRL LIDAR as calculated by Stockwell et al. (2022). (c) Regional 
overview of the flight plan including sampling aged smoke. The insert shows data from the MASTER instrument of the fire in the visible and IR. (d) The time series of 
CO and ozone together with the flight altitude.
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on two flights and only one other flight sampled aged smoke, where the emission location and time was well 
understood (FIREX-AQ flight on 3 July 2019).

The results of the smoke sampling strategy are demonstrated by the time series of CO and ozone in Figure 18. 
The first part of the flight sampled the aged smoke and a clear enhancement of CO (and ozone) is observed that is 
significantly smaller than in the fresh smoke. The first sample pattern in the fresh smoke showed significant CO 
decreases with plume age due to dilution, but also potentially due to decreases in emissions during the extended 
plume sampling with the aircraft (Wiggins et al., 2020), while the second pattern had a more constant mixing 
ratios during transport. The ozone time series indicates very active photochemistry. In the closest transects to the 
fire ozone is titrated. Ozone enhancements occur downwind first at the edges of the plume, where more light is 
available. In the furthest downwind transects ozone is enhanced in the whole plume.

3.5.2.  Coordinated Sampling of Western Wildfires

One of the primary objectives of FIREX-AQ was to combine near and far-field observations to understand emis-
sions, chemical evolution and transport to evaluate downwind impacts of wildfires. To look at fires holistically 
and achieve this objective, input from multiple research disciplines, platforms, models, and satellite observations 
had to be coordinated. The FIREX-AQ campaign brought an unprecedented opportunity to coordinate differently 
focused research platforms.

The NASA DC-8 sampled wildfire plumes from near the point of emission to downwind impacts on a regional 
scale. These efforts provided data to understand the influence of fire emissions on atmospheric composition 
with continuity from initial emissions to evolved impacts several hours downwind. With its ability to explore an 
extremely wide range of smoke ages, the NASA DC-8 coordinated with the NASA ER-2 and the two NOAA Twin 
Otter aircraft with complementary payloads and goals. For example, the Chem Twin Otter sampled fire plumes 
at night to investigate the nighttime chemical evolution of fire plumes. The mobile laboratories were used to 
examine smoke in locations and at times inaccessible to any of the aircraft, such as smoke from smoldering parts 
of the fire that did not get lofted high enough to be measurable by aircraft, which can cause smoke filled valleys 
at night and early morning (Selimovic et al., 2019), leading to some of the highest exposures for local residents.

The NASA ER-2 flew 11 science flights out of Palmdale, CA with ∼70 science flight hours between 01 and 
21 August 2019: flight tracks are shown in Figure 2. The ER-2 team, working with the DC-8 leads and the 
FIREX-AQ forecasting team, coordinated NASA ER-2 and NASA DC-8 aircraft over the Williams Flats fire, 
reachable by both aircraft, on 6, 7, and 8 August 2019. NASA ER-2 instruments captured the smoke development 
of the Williams Flats fire over the 3 days, and provided a variety of remote sensing observations of meteorological 
conditions and smoke heights prior to pyro-cumulonimbus clouds (pyroCbs) development captured by the NASA 

Figure 19.  A typical forecast product available for the fresh and aged smoke from the Williams Flats fire on 07 August 2019 along with the nowcast satellite.

 21698996, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

037758 by N
asa G

oddard Space Flight, W
iley O

nline L
ibrary on [29/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

WARNEKE ET AL.

10.1029/2022JD037758

37 of 62

DC-8 on 8 August 2019. NASA ER-2 and NASA DC-8 aircraft were coordinated under satellites on 6 August 
2019, addressing the main NASA ER-2 goal to bridge in-situ and satellite observations. As fire activity moved to 
the Southwest, the NASA ER-2 shifted flight patterns to Arizona and Utah, coordinating again with NASA DC-8 
aircraft over the Sheridan fire on 15 August 2019. The ER-2 team was also closely working with NOAA aircraft 
leads, and coordinated with the NOAA Chem Twin Otter aircraft over Little Bear and Ikes fires on August 20 and 
21, 2019. NASA ER-2 flights were coordinated with satellites in a variety of smoke conditions to evaluate how 
well satellite retrievals can handle small-scale sub-pixel variabilities. The satellite coordination included NASA 
ER-2 flight legs on and parallel to satellite tracks to evaluate viewing angle uncertainties in satellite retrievals.

Figure  20 shows results from the most detailed coordination by several platforms during FIREX-AQ: DC-8, 
ER-2, LARGE mobile lab, mobile AERONET, and several satellite overpasses (NOAA20, GOES 16 and 17, 
VIIRS, MISR, CALIPSO, and METOP-B) on the Williams Flats fire on 06 August 2019. The top left shows 
that smoke was expected from the hourly AQI forecasting on that day and the routine air quality monitoring sites 
detected smoke around Spokane, WA. The fire was clearly detected by satellites as is demonstrated by the VIIRS 
fire detections shown in the left bottom of Figure 20. The flight and drive tracks of the DC-8, ER-2, MACH-2, 
mobile AERONET are shown in the center plot. The NASA DC-8 flew the typical pattern with a downward 
looking remote sensing overflight followed by several plume crossings. Images from the Williams Flats fire by 
the MASTER instrument on the DC-8 in the visible and IR are also shown in Figure 20. At the same time, the 
NASA ER-2 flew high above along the length of the plume six times and the DRAGONs and MACH-2 drove 
under the plume and aircraft for upward looking remote sensing and in-situ measurements. In addition to all the 
measurements during the fire, the fuels on the ground were sampled after the fire season by the Fuel2Fire team.

The comparison between the MACH-2 and the DC-8 during the 6 August 2019 sampling of the Williams Flats 
fire is shown in Figure 21. While the NASA DC-8 and ER-2 were completing longitudinal runs along the length 
of the smoke plume and cross-sectional transects across the width of the smoke plume, the MACH-2 and mobile 
AERONET platform drove from the southwest corner to the northeast corner of the dashed box as denoted by 
the blue and magenta traces in Figure 20. Similar aerosol optical measurements on the DC-8 and the MACH-2 
allow for direct comparisons between remotely-sensed, vertically-resolved smoke backscatter and in situ extinc-
tion coefficients. For example, airborne HSRL curtains of calibrated aerosol backscatter coefficient that show 
the smoke plume being injected up to an altitude of roughly 2–3  km Above Ground Level (AGL) and then 
being subsequently mixed down to the surface (Figure 21a). The surface elevation in Figure 21a is given by the 
white trace. Meanwhile, the uncalibrated, attenuated backscatter curtain from MACH-2 zenith-point ceilometer 
in Figure 21c shows similar structure in the boundary layer height also extending up to about 2 km AGL with 

Figure 20.  Coordination of multiple platforms at the Williams Flats fire on 6 August 2019 during FIREX-AQ.
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periods of elevated plumes and periods where the smoke mixed down to the surface. It should be noted here that 
the data in Figure 21 from the DC-8 is covering a large distance over a short time and the data from MACH-2 is 
covering a short distance over a long time. A direct comparison of select aerosol intensive and extensive aerosol 
optical properties is shown in Figure 21b for the complementary DC-8 and MACH-2 measurements. While the 
relatively slow-moving MACH-2 and fast-moving DC-8 are not spatially coordinated in time, the elevated back-
ground measurements are consistent with each other, as well as the aerosol single scattering albedo of approxi-
mately 0.9–0.95.

These early analyses of the combined airborne and ground-based mobile laboratory aerosol measurements 
demonstrate the power of lidar-based remote sensing for placing the measurement results in proper context. 
While the detailed information obtained from the HSRL is invaluable, it is worth noting that the layer height 

Figure 21.  Comparison of the NASA MACH-2 with the DC-8 during the Williams Flats fire measurements on 6 August 2019. (a) DC-8 HSRL longitudinal (top) and 
cross-section (bottom) flight curtains. (b) MACH-2 ceilometer curtains for the day (top) and collocation times (bottom). (c) Comparison of in situ aerosol SSA and 
extinction measurements with DC-8 and MACH-2 within the white dashed box in Figure 20.
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information and un-calibrated attenuated aerosol backscatter structure from the ceilometer clearly show when the 
plume mixed down to the MACH-2 sampling level and when it did not.

3.6.  Flight Planning and Sampling Strategies for Smaller Eastern Fires

Liu et al. (2016) analyzed 15 crop fires in the MRV sampled from the NASA DC-8 during SEAC 4RS in 2013 
and emissions from those fires showed some statistically significant differences from previously published emis-
sions estimates, indicating that crop residue fires are a diverse and globally understudied source. This motivated 
the second main objective for FIREX-AQ, which was to sample a large number of small mostly prescribed fires 
to build statistics on EFs and fuels, plume rise, satellite detectability, and integrated impacts for these types of 
sources.

Small fire activity occurred within the reach of the DC-8 every day during the Salina, KS deployment 19 
August–3 September 2019. Flight planning for the small fire sampling drew on multiple sources of informa-
tion including data on burning permits issued by state and local organizations, fire spotting by members of the 
Fuel2Fire team collecting fuels in the region, and weather forecasting specialized for prescribed fire conditions. 
With the  important exceptions of several large prescribed burns that were coordinated in advance between 
Fuel2Fire and the responsible agencies, all of these planning tools could only indicate general regions where 
small fires were expected to occur. Near-real-time fire detections from GOES-16 provided essential guidance 
enabling the DC-8 to effectively sample as many fires as possible on each flight. The nowcasting team on the 
ground would inform the aircraft of current fire detections, which often happened in regional clusters, and the 
aircraft would re-direct to that location quickly, before the short-lived small agricultural fires had run their 
course.

The flight tracks of the NASA DC-8 for the southeastern small fires are shown in Figure 22 and the fires that 
were investigated are listed in Table 13 with more detail. The DC-8 conducted seven flights out of Salina, KS and 
investigated 87 different small fires in 12 states. The fires investigated included prescribed fires in prairies and 
forests, agricultural burning of corn, soybeans, and rice fields, slash and pile burning. The area around Kansas, 
Nebraska and Northern Texas has mostly rangeland and cropland, the MRV mostly cropland, and Louisiana, 
Georgia, Northern Florida mostly silviculture, cropland and wildland fires. In coordination with the respective 
land management agency, several larger prescribed fires were investigated in the southeast. The Blackwater River 
prescribed fire in the Florida Panhandle was in an oak and mature-longleaf pine forest with shrub-grass and 
litter understory. Several grass prairie prescribed fires were sampled during the growing season in Nebraska and 
Kansas in the Tallgrass Prairie National Reserve.

A photo of a typical fire is shown in Figure 22 taken just before the aircraft penetrated the plume at about 1,000 ft 
altitude above ground right over the fire. Most fire plumes were crossed at least two times in two different direc-
tions. For some fires the plume was crossed at different altitudes as well. The time series of CO in Figure 22 for 
a section of the flight on 31 August 2019 shows that very high mixing ratios of trace gases and aerosol (up to 
20 ppm of CO) were observed in the plumes, which were only a few seconds wide. The high frequency meas-
urements on the aircraft as shown in Table 3 were essential for the precise determination of emission ratios and 
factors in such short plume encounters.

The MCE from the small fires, shown in Figure 23, varied greatly between the various southeastern burns due 
to the different fire stages and also fuel type, but in general corn fields burn at a higher MCE than land clearing, 
grassland fires or pile burning. The timeseries also shows the high variability in MCE and resulting CO, CO2, and 
NO emissions. Shown are 13 s of data that included two separate plume crossings from two adjacent corn fields, 
which had very different CO/CO2 and CO/NO ratios.

4.  Data From FIREX-AQ 2019
4.1.  Plume Identification and Smoke Age Calculation

A detailed description of each smoke transect is available on the FIREX-AQ data archive. CO and BC enhance-
ments above the background were used to identify and flag all of the sampled smoke plume transects. The start 
and end times of the plume, the fire, fuel, ignition, and transect type were determined together with the fire name 
or source. For each of these transects, the MCE was also calculated and provided.
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Figure 22.  (Top) Flight tracks of the NASA DC-8 color and size coded by CO for the FIREX-AQ eastern fire portion flown out of Salina, KS. (middle) The time series 
of CO for a section of the flight from 31 August 2019 that investigated 15 small agricultural fires from mostly corn fields. (bottom) A photo of a typical fire.
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Table 13 
Small Fires Investigated During FIREX-AQ by the NASA DC-8 From Salina, KS

State Latitude Longitude Major fuel Detailed fuel type

08/21/2019

  TX 34.0575 −99.8753 Forest Mesquite savanna

  TX 34.1602 −99.7702 Savanna Post-blackjack oak forest/Mesquite savanna

  TX 32.5380 −94.1157 Slash Silviculture: conifer slash (minimal piles), post harvest

  TX 32.6473 −94.3526 Pile Land clearing of grass, shrub, young trees mix

  LA 32.7412 −91.3834 Cropland Corn

  LA 32.6653 −91.2677 Cropland Corn

  LA 32.5442 −91.4962 Urban/Barren House

  LA 32.6006 −91.5481 Cropland Corn

  LA 32.6247 −91.7975 Cropland Corn

  MS 32.8147 −90.9172 Cropland Corn

  MS 32.7792 −90.9529 Cropland Corn

  MS 33.0429 −90.8815 Cropland Corn

  MS 33.1205 −90.8801 Cropland Corn

08/23/2019

  MS 33.6811 −90.3483 Cropland Corn

  MS 33.5939 −90.3648 Cropland Corn

  MS 33.1014 −90.8664 Cropland Corn

  MS 33.1293 −90.8964 Pile Silviculture: Pile (mixed deciduous/coniferous), post harvest

  MS 32.9036 −91.0292 Cropland Corn

  LA 32.7511 −91.3865 Cropland Soybean

  LA 32.8191 −91.4972 Shrubland Uncertain - found mixed shrub and rice near

  LA 32.6100 −91.5408 Cropland Corn

  LA 32.6219 −91.7284 Cropland Corn

  LA 32.5856 −91.8398 Cropland Corn

  AR 34.4652 −90.8945 Cropland Corn

  MS 33.8409 −90.6277 Cropland Rice

  MS 33.7486 −90.3361 Cropland Corn

08/26/2019

  OK 34.1538 −95.3132 Slash Silviculture: slash, piles, mixed (deciduous/coniferous), post harvest

  AR 34.0675 −94.0568 Slash Silviculture: slash, piles, mixed (deciduous/coniferous), post harvest

  TX 33.34108 −95.48532 Cropland Corn

  LA 32.4413 −91.7402 Cropland Corn

  LA 32.4490 −91.8393 Cropland Corn

  LA 32.5623 −91.8286 Cropland Corn

  LA 32.6317 −91.7834 Cropland Corn

  LA 32.7603 −91.3526 Cropland Corn

  OK 34.2237 −95.451 Forest Prescribed severe and understory, mature not harvested and young 
coniferous pine timber w/deciduous - some accidental

  OK 34.1538 −95.3132 Slash Silviculture: slash, piles, and understory; coniferous/deciduous mix

08/29/2019

  NE 40.3142 −96.3607 Grassland Green growing season grass (not dry)

  KS 38.4107 −96.5549 Grassland Tallgrass Prairie, Green growing season grass (not dry)
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Table 13 
Continued

State Latitude Longitude Major fuel Detailed fuel type

  KS 38.8749 −97.4115 Pile Vegetation, trash, and/or BBQ

  KS 38.8453 −97.4501 Cropland Rice

  KS 38.8685 −97.3258 Cropland Fallow winter wheat

  OK 36.7578 −96.373 Grassland Pasture

  OK 36.8521 −96.319 Grassland Pasture, shrub, timber litter

  KS 37.0902 −96.2498 Grassland Pasture

08/30/2019

  FL 30.9779 −86.9288 Understory Blackwater River Prescription: primarily shrubs, grasses and litter 
from loblolly-longleaf-slash pine, willow-laurel-turkey-water 
oak, and magnolia forest

  GA 32.0596 −83.1305 Shrubland Land clearing, shrub, grass, coniferous

  GA 31.9658 −83.189 Pile Longleaf pine w/tree stump

  GA 31.8816 −83.5098 Slash Near mixed coniferous, deciduous silviculture

  GA 31.5406 −83.8855 Slash Land clearing, mix deciduous coniferous

  GA 31.712 −84.086 Cropland Corn

  GA 31.7416 −84.0305 Cropland Corn

  GA 31.4995 −84.3223 Pile Piles next to pecan fields and slash mixed forest, post cleared

  GA 31.7416 −84.0305 Cropland Corn

  GA 32.5132 −84.2492 Cropland Corn

  AL 32.6060 −85.2553 Slash Land clearing of mixed deciduous/coniferous forest, slash with 
piles, post harvest

  AL 32.3715 −85.5115 Slash Silviculture: slash, piles, mixed (deciduous/coniferous), post harvest

  AL 33.3762 −86.2203 Slash Silviculture: conifer slash (minimal piles), post harvest

8/31/2019

  MS 33.1391 −90.9207 Cropland Rice

  MS 33.0937 −90.8297 Cropland Corn

  MS 33.3493 −90.3351 Cropland Corn

  MS 33.3016 −90.5021 Cropland Soybean and grass

  MS 33.6099 −91.0219 Cropland Corn

  AR 33.9333 −91.4202 Cropland Corn and soybean

  AR 33.8983 −91.4059 Cropland Soybean

  AR 34.5803 −90.7037 Cropland Corn

  AR 35.0924 −90.8554 Cropland Soybean

  MS 33.8936 −90.6083 Cropland Corn

  MS 34.0614 −90.5754 Cropland Rice

  MS 33.1535 −91.025 Cropland Rice

  MS 33.1501 −90.8568 Cropland Corn

  MS 33.0777 −90.8157 Cropland Corn

  LA 31.3626 −92.9486 Slash Silviculture: conifer slash (minimal piles), post harvest

9/3/2109

  MO 36.8085 −90.0508 Cropland Corn

  MO 36.9949 −90.0102 Shrubland Shrubs, grass

  IL 37.4367 −88.6022 Cropland Rice

  AR 35.9493 −90.4444 Cropland Corn

 21698996, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

037758 by N
asa G

oddard Space Flight, W
iley O

nline L
ibrary on [29/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

WARNEKE ET AL.

10.1029/2022JD037758

43 of 62

The physical age of smoke, meaning the time elapsed since the smoke was produced in a fire, is a critical param-
eter for understanding the chemical aging of fire emissions. For each transect as described above, two methods of 
estimating smoke physical age at the time of sampling by aircraft were used during FIREX-AQ. The first method 
used the mean horizontal wind speed, as measured on the aircraft in the vicinity of the fire on each flight day. 
Using this wind speed, the smoke age was inferred from the distance between the fire and the center point of a 
smoke plume transect. The second method used the HYSPLIT model (Stein et al., 2015) to compute air parcel 
back trajectories from the aircraft to the upwind source fire. Smoke ages were determined with trajectories from 
multiple high-resolution meteorological datasets (HRRR 3 km, NAM CONUS Nest 3 km, and GFS 0.25°), which 
were then averaged, plus time for buoyant plume rise (at 7 m s −1 mean vertical velocity (Clark et al., 1996; Lareau 
& Clements, 2017)). Uncertainties in the smoke ages are assessed from the range of ages between meteorological 
datasets, mismatch between measured and modeled winds, and trajectory spatial error in missing the known fire 
source.

While the first method for estimating smoke age benefits from accurate wind measurements, it assumes that winds 
are homogeneous in space and time during the plume transport, which can systematically bias the age estimates. 
In FIREX-AQ these systematic biases are most commonly due to wind changes during the day-to-night transition. 
The second method accounts for spatial and temporal variations in winds, but is susceptible to errors in the mete-
orological model. Through careful comparison of the simulated trajectories to smoke transport observed from 
geostationary satellites, however, periods with large meteorological errors can be identified and removed from 
calculations to improve the smoke age estimates. The two methods of estimating smoke age (trajectory-based 
and mean wind-based) typically differ by 27% (median absolute difference) for smoke plume ages up to several 
hours. The ensemble statistics of trajectories with different meteorological fields can also identify periods when 
the smoke age uncertainties are likely greater. Figure 24 shows the flight track color coded with physical plume 
age on top of a GOES17 smoke image of the Williams Flats fire.

4.2.  Fuels and Fuel Consumption

The Fuel2Fire team provided detailed fire and fuels information post-mission such as FRP, burned area, fuels, 
total daily and 1-s carbon emissions, diurnal fire cycles for each western fire, and other related data products for 
both the western wildland fires and the southeastern prescribed, silviculture, and cropland fires. The fuel type 
for forest and shrublands was determined using the FCCS database, and cropland fires were classified using the 
Cropland Data Layer and videos from the DC-8 overflights. A subset of the fire and fuel information is shown in 
Tables 2 and 13 for fires investigated by each platform in this manuscript. The goal was to connect the fuels and 
fire burning on the ground to the smoke composition measured by the DC-8 to improve modeling of impacts on 
chemistry, air quality, and health.

Table 13 
Continued

State Latitude Longitude Major fuel Detailed fuel type

  AR 35.7377 −90.0215 Cropland Rice

  AR 35.5140 −90.0742 Cropland Rice

  AR 35.5194 −90.6233 Cropland Rice

  AR 35.526 −90.7043 Pile Land clearing, mix deciduous coniferous

  AR 35.0903 −91.0314 Pile Shrubs, grass, crop residue

  AR 34.8254 −91.686 Cropland Corn

  AR 34.4610 −90.7637 Cropland Corn

  AR 34.4006 −90.6913 Cropland Rice

  MS 33.8584 −90.7738 Cropland Rice

  MS 33.7019 −90.777 Cropland Corn

  MS 33.6976 −90.803 Cropland Corn

  MS 33.69036 −90.8265 Cropland Corn w/rice

  MS 33.5931 −90.7076 Cropland Corn

 21698996, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

037758 by N
asa G

oddard Space Flight, W
iley O

nline L
ibrary on [29/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

WARNEKE ET AL.

10.1029/2022JD037758

44 of 62

Figure 23.  The modified combustion efficiency (MCE) of all the southeastern small fires. Highest MCE values shown in red 
are dominated by crop fires, while lowest MCE values shown in blue are dominated by land clearing, green grassland fires, 
and pile burning. An example timeseries of CO, CO2, and NO of two smoke plumes from adjacent fields demonstrates the 
varying chemical signatures with changes in MCE.
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For the western campaign, Fuel2Fire provided daily post-fire data for every fire flown on the fuels and burned 
area, fire behavior, and daily 1-s carbon emissions. Fuel types can change as fires burn across a landscape 
(Figure 25), and the amount of fuel burned is dependent on what is available or dry enough to burn, under the 
control of cumulative fire weather (temperature, wind speed, precipitation and RH). Using the Williams Flats fire 
as an example, burned area is greater on 3 August 2019 (fire weather High), but the amount of fuel consumed 
is greater on 6 August 2019 (fire weather Very High). The diurnal cycle and relative energy released by a fire is 
also under the control of fire weather conditions. Typically fire fuel consumption rates peak in the late afternoon 
when temperatures are highest and RH is the lowest (Figure 25).

Post-fire analysis for the eastern campaign included fire location identification using Google Earth and the DC-8 
flight videos, as well as ecosystem-specific data. The diversity of fires sampled during this 7-day period includes: 
5 crop types, slash and pile burning, silviculture, grassland, understory, pasture, and several prescribed fires (e.g., 
Tallgrass prairies) (Table 13). The Blackwater River State Forest prescribed understory fire was sampled in detail 
before and after the fire to gather detailed fuels data to connect to satellite data and chemistry.

4.3.  Satellite Data

While satellite data are publicly available, a subset of satellite products are archived to facilitate analysis of the 
FIREX-AQ observations. This includes active fire detections from both polar orbiting and geostationary satellites 
provided through the Wildfire Automated Biomass Burning Algorithm (WF-ABBA) processing system. Polar 
orbiting data available from the VIIRS sensor onboard the Suomi National Polar-orbiting Partnership and NOAA-
20 Joint Polar Satellite System (JPSS-1) satellites. Geostationary data are available from the Advanced Baseline 

Figure 24.  The flight track of the NASA DC-8 on 3 August 2019 color coded with the physical plume age calculated with the trajectory method.
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Imager (ABI) sensors onboard GOES-16 (East) and GOES-17 (West). Time-resolved FRP from these assets 
relevant to FIREX-AQ in-situ and remotely sensed fires is also included in the data archive.

Satellite visible imagery is also of great value given that the flight paths alone do not convey the dynamic 
nature of fire plume evolution. True color imagery from GOES-16 and GOES-17 are available on the FIREX-AQ 
archive as still images and movies for all the sampled western wildfires and a few selected eastern fires. Each 
image is overlaid with the aircraft locations and flight paths until that point in time.

5.  Emerging Results From FIREX-AQ
5.1.  Emissions

A major science goal of FIREX-AQ was to improve estimates of BB gas and aerosol emissions and their 
representation in models. To enable a detailed assessment of emissions based on the FIREX-AQ in situ observa-
tions, a key element was daily total carbon emissions estimates provided by the Fuel2Fire team for the specific 
fires sampled by the DC-8 aircraft. These emissions estimates were grounded in observed and estimated fuel 
consumption and temporally distributed with a diurnal variation proportional to the FRP observed by the GOES 
satellites. Along with the plume age calculations, these emissions could then be related to specific cross-plume 
sampling transects downwind of the fires.

As a first step, Wiggins et al. (2020) were able to show that between consecutive transects the relative trend in 
FRP was correlated to the relative trend in conserved smoke tracers (CO2, CO, and BC aerosol). Thus, when 
continuously available, FRP measurements can be used to account for changes in the amount of emissions and 

Figure 25.  Ecosystem types for the Williams Flats fire. Thirty eight different fuel types are mapped at 30-m resolution for the Williams Flats fire using the FCCS 
database. All the GeoMAC perimeter maps are shown with active fires overlaid on 3 and 6 August, highlighting the unique fuels combusted on different days as the 
fire burns across the landscape. On 3 August, the primary fuels burned were in grasslands (beige colors), and in contrast, the primary fuels burned on the 6th are forests 
(green colors).
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these changes have to be considered together with dilution and chemistry in the transported fire plumes. This 
work only looked at the relative rate of change, but did not directly estimate the magnitude of emissions.

To more fully evaluate Fuel2Fire estimated emissions versus emission fluxes based on airborne observations, 
HSRL lidar data were necessary to extrapolate in situ observations across the full cross section of the plume at each 
downwind distance in combination with transport speeds based on wind observations. Two independent emissions 
assessments based on DC-8 observations were conducted by Wiggins et al. (2021) and Stockwell  et al. (2022). 
While each assessment took a slightly different approach, both found reasonable agreement across all western 
wildfires between Fuel2Fire emissions estimates and their own based on airborne observations with regression 
slopes of 1.15 (r 2 = 0.83) and 1.33 (r 2 = 0.92), respectively.

Stockwell et al. (2022) focused on total carbon emissions from in-situ observations and HSRL lidar data, which 
provide the most direct comparison with the Fuel2Fire inventory, and also compared in situ estimated emissions 
broadly to existing model inventories of total carbon. The FIREX-AQ in situ and Fuel2Fire emissions estimates 
compared the best to the top-down FRP-based inventories (GFAS, QFED, and FEER), while bottom-up invento-
ries (FINN, GFED, and 3BEM) tended to underestimate emissions. Two other experimental inventories (GBBEP 
and HRRR) exhibited strong overestimates.

Using the continuous, time-resolved GOES FRP product from the Fuel2Fire team, Stockwell et  al.  (2022) 
also provide a comprehensive set of smoke emission coefficients for 88 trace gas and aerosol components of 
smoke from western wildfires. While smoke coefficients have been reported in the literature for bulk aerosol, 
the FIREX-AQ data provide the first such information for many of the trace gas species and specific aerosol 
components.

Wiggins et  al.  (2021) focused on aerosol emissions, assessing uncertainty in bottom-up emissions through 
comparison to the GFED4.1s and in top-down emissions to the FEERv1.0 inventory. For GFED, the average 
aerosol EF calculated from the FIREX-AQ in situ observations agreed well with GFED. For FEER, the smoke 
emission coefficient was estimated by regressing estimated emissions versus GOES FRP for the in situ esti-
mated emissions, Fuel2Fire emissions, and a lidar-based estimate using lidar AOD. The estimates from these 
high-resolution inventories were all lower than the FEER value, but still within the large statistical uncertainties. 
Two potential causes for this difference were the use of MODIS FRP instead of temporally resolved GOES 
FRP and the used constant mass extinction efficiency (MEE) instead of one that is increasing with smoke age 
as observed on the DC-8. This result raised the question of whether top-down methods are more vulnerable to 
uncertainties in MEE than previously thought.

FIREX-AQ data are contributing a very comprehensive set of EFs for use in models. FIREX-AQ consistently 
sampled a large number of fires with a larger suite of instruments than previous experiments. Emission factors for 
the western wildfires (Gkatzelis et al., in prep) largely corroborate results from FireLab and recent compilations 
from SEAC 4RS (Liu et al., 2017), WE-CAN (Permar et al., 2021), and the literature update of Andreae (2019) 
for temperate forest EFs. For the smaller eastern fires Travis et al., (in prep), is providing valuable information on 
the diversity of fuels (e.g., corn, rice, soybeans, grass, land-clearing) and how these fuels differ in expected MCE 
and resulting EFs. Method advancements allowed the AMS to report EFs for submicron potassium and organic 
sulfur with high time resolution and estimate their EFs, both for wildfires and agricultural fires (Guo et al., 2021).

Ground measurements from the AML enabled an assessment of VOC emissions from near-field sampling of 
seven western wildfires (Majluf et al., 2022). Emissions ratios for 240 mass spectral signals were calculated and 
evaluated using PMF to identify two factors relating to high and low temperature pyrolysis. These factors corrob-
orated the temperature dependent factors obtained by Sekimoto et al.  (2018) from the FireLab. These factors 
indicate processes that cannot be discriminated using MCE.

5.2.  Plume Chemistry

Fire emissions undergo rapid changes in the near field and continue to evolve as smoke ages and is transported 
downwind. These changes are particularly important for understanding impacts on air quality, climate, ozone 
production, and the evolution of aerosol abundance, composition, and optical properties. FIREX-AQ provided 
an opportunity to look at these impacts through both observational constraints and model evaluation of observed 
changes.
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5.2.1.  Role of HONO

The importance of HONO from fires has been well established and several FIREX-AQ publications address the 
dominant role of HONO in the rapid chemical changes occurring in the first few hours after emission. FIREX-AQ 
observations suggest that subsequent chemical production of HONO is also important (Chai et al., 2021). Using 
stable isotopes of oxygen and nitrogen in HONO from the NASA MACH-2, Chai et al. (2021) provided evidence 
for significant secondary production in near-ground smoke samples in both daytime and nighttime smoke. Addi-
tional analysis of the NASA MACH-2 observations of HONO by Kaspari et al. (2021) showed that HONO was 
not depleted in far-field smoke compared to near-field smoke sampled at ground level. While ground-surface 
chemistry is expected to play a significant role in these observations, conditions aloft are also expected to contrib-
ute to HONO production when dense smoke with sufficient particle surface area is present. Secondary production 
of HONO in fresh smoke plumes is corroborated by large eddy simulations of near-field smoke evolution by 
Wang et al.  (2021). Using FIREX-AQ observations for comparison, the model captures the strong variability 
in HONO across the plume due to the variation in photolysis rates between the well-lit plume edges and the 
darker conditions in the center and lower parts of dense plumes. To capture the observed downwind gradient in 
total HONO, the model requires a secondary heterogeneous source constrained by aerosol uptake of NO2. This 
secondary chemistry is able to best reproduce the downwind decay in total HONO as compared to simply increas-
ing expected emissions. Even when increasing HONO emissions by a factor of five to match observed HONO 
concentrations in the smoke sampling transects closest to the fire, the decay is still more rapid than that observed 
across subsequent downwind transects (Wang et al., 2021).

5.2.2.  Ozone Production

Several FIREX-AQ studies advanced understanding of ozone production in fire plumes. As shown by Akagi 
et al. (2013) a large range of ozone formation rates and total ozone formed were observed in various fire plumes 
during several field experiments. Prior to FIREX-AQ, the reasons for the large variation in ozone formation rates 
were not well understood, but clearly depended on fuel specific emissions, VOC/NOx ratios, meteorology, and 
plume thickness influencing the light availability (Akagi et al., 2012; de Gouw et al., 2006; Jaffe & Wigder, 2012; 
Yokelson et al., 2009).

Using the detailed observations from FIREX-AQ, Xu et  al.  (2021) provided the first observationally 
constrained analysis of near-field daytime ozone production in fire plumes by recognizing that individual 
crosswind smoke sampling transects provide a continuum between fresher (plume center, slower photochemis-
try) and more aged (plume edge, faster photochemistry) air. The similarity in physical age across each perpen-
dicular transect allows the spectrum of chemical age to be interpreted without the need to consider changes in 
fire state and emissions that complicate a comparison between consecutive downwind transects. Twenty-five 
“Single Transect Analyses” were identified with adequate physical conditions and chemical gradients to esti-
mate ozone production. These analyses used observationally estimated OH exposure, VOC reactivity, and 
peroxy radical fate (based on ratios of organic peroxides to hydroxynitrates) to calculate Ox chemical closure 
(Ox = O3 + NO2 + HNO3 + peroxyacylnitrates + particulate nitrate). The resulting agreement between obser-
vationally estimated Ox production and observed changes in Ox enabled a deeper evaluation of near-field 
photochemistry resulting in a parameterization of O3 + NO2 production for use in models. The parameteri-
zation accounts for both the initial NO2 emissions (dependent on MCE) and the subsequent photochemical 
production of O3 (dependent on OH exposure) (Xu et al., 2021). This parameterization is intended to enable 
Chemical Transport Models to incorporate near-field ozone production that primarily occurs at subgrid scales.

An important aspect of fire plume chemistry is the potential for extreme variability in actinic flux throughout 
the plume. To look deeper into the range of chemical conditions in fire plumes, Decker et al. (2021) examined 
evidence for “dark chemistry” both during the day and night for plumes sampled by the Twin Otter and DC-8. 
They found evidence for NO3 chemistry at all times of day due to the reactivity of NO3 radicals in fire plumes that 
is orders of magnitude larger than urban or forested environments. In terms of BB VOC oxidation, NO3 was found 
to be important mainly for phenolic compounds and was competitive with OH and O3 even during the day. Thus, 
NO3 chemistry was found to be an important element to understanding SOA and BrC formation in fire plumes.

Recognizing that fire emissions often peak in the late afternoon and extend into the evening, Robinson et al. (2021) 
investigated the time-of-day dependence of plume chemistry. Using a 0-D box model approach, key differences in 
the rate and NOx-VOC sensitivity of O3 production were identified. In typical afternoon conditions, O3 production 
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and NOx depletion occurred extremely rapidly following emission (∼20 min) with HONO and formaldehyde 
photolysis being the dominant radical sources. The near-field transition from VOC-sensitive to NOx-sensitive 
conditions for ozone production was similar for afternoon versus evening plumes, although on average the NOx 
depletion occurred more rapidly for afternoon plumes. The O3 to CO ratio subsequent to the most rapid phase of 
the O3 production varied strongly with time of day and was larger on average for afternoon than evening plumes.

5.2.3.  Aerosol Chemistry and Physics

The complexity of the near-field environment for aerosol chemistry was investigated from a number of perspec-
tives, including emissions, trends in BrC absorption, and organic aerosol volatility. Considering that secondary 
production of BrC in smoke plumes is competing with multiple loss processes (evaporation, chemical process-
ing, and photobleaching) it is perhaps not surprising that both the DC-8 and Chem Otter observed wildly vari-
able trends in normalized BrC concentrations, with increasing, relatively constant, and decreasing trends in 
dilution-corrected BrC observed during the first few hours of downwind transport and evolution (Washenfelder 
et al., 2022; Zeng et al., 2022).

The need to better understand the components of BrC and their chemistry is highlighted in a case study from the 
Sheridan fire which provided the opportunity to sample a descending smoke plume with an associated downwind 
temperature increase of 15° (287–302K). Across this temperature gradient, evaporation was shown to decrease 
4-nitrocatechol by two-thirds while total BrC absorption was unchanged (Zeng et al., 2022). Despite the clear 
decrease in normalized OA mass as temperature increased during this plume transect, the normalized absorp-
tion by BrC measured with a photoacoustic spectrometer was essentially constant. Zeng et al. (2022) note that 
4-nitrocatechol is a major contributor to BrC, which means there must have been substantial production of addi-
tional chromophores to maintain nearly constant absorption. Washenfelder et al. (2022) found that 4-nitrocatechol 
accounted for a much smaller fraction of BrC absorption in selected smoke plumes sampled from the Chem Twin 
Otter during FIREX-AQ than was found from an analysis of WE-CAN plumes discussed by Palm et al. (2020). 
Washenfelder et al. (2022) suggested that BrC arises from a much larger number of chromophores with a complex 
time evolution that includes both primary and secondary sources, a change from the previous view of BrC as 
having a well-defined lifetime from limited prior aircraft work (Forrister et al., 2015).

In spite of the near-field complexity in aerosol chemistry, clear evidence for decreasing absorption in smoke 
sampled over longer aging further downwind was lacking. Figure S11 in Supporting Information S1 shows the 
initial aerosol Angstrom exponent (AAE) in FireLab smoke that was about 5 s old (Selimovic et al., 2018), where 
AAE is expected to scale with BrC fractional absorption contributions. Figure S11 in Supporting Information S1 
also shows the trend in AAE values for four precisely aged and isolated smoke plumes that impacted Missoula in 
2017–2019. The youngest smoke was from the Rice Ridge Fire in 2017 and other plumes were wildfire season 
prescribed fires, one in 2018 and two in 2019. Note that in contrast to brief airborne plume transects, the Missoula 
measurements benefit from hours of signal averaging at a reasonably narrow range of physical age. The data indi-
cate a decrease in AAE with a half-life of about 10 hr. Airborne data are more scattered and sometimes in thicker 
smoke but are not inconsistent with the UM ground-based trend (Forrister et al., 2015; Selimovic et al., 2020).

Diversity in near-field observations during FIREX-AQ imply that both the initial AAE and subsequent evolution 
in the first few hours substantially broaden the range of AAE values that can be expected in downwind obser-
vations. With only three opportunities during FIREX-AQ to sample smoke 1 day after emission, it is difficult to 
determine whether the complexity in downwind behavior is entirely due to differences in near-field conditions.

The complexity in BrC absorption is further examined by Jordan et al.  (2022) based on in situ hyperspectral 
absorption (300–700 nm) measurements taken from the LARGE mobile lab. Results show that the spectral curva-
ture in absorption as a function of wavelength is better represented by a second order polynomial than the linear 
AE fit commonly used for observations at a few discrete wavelengths. Even when second order polynomials are 
applied, remaining deviations from the fit can differ substantially from fire to fire. These deviations also occur 
across the full wavelength range, not just the shorter visible and near-UV wavelengths. While the exact nature of 
these spectral details remains to be understood, they do provide a potential path for understanding the observed 
diversity in BrC absorption behavior.

A more comprehensive assessment of OA volatility was made possible by measurements using a thermal denuder 
coupled to an AMS and Extractive Electrospray Ionization Time-of-Flight Spectrometer (EESI-MS) (Pagonis 
et al., 2021). These measurements allow for the relative roles of temperature and dilution to be tested along with 
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changes in aerosol composition in the ambient atmosphere for comparison with expectations from laboratory and 
ground studies.

The efficiency of smoke aerosol mass at producing light extinction and scattering (mass extinction efficiency 
and mass scattering efficiency) was studied by Saide et al. (2022). It was found that mid-visible smoke MEE can 
change from 2.5 to 3.2 m 2/g for fresh smoke (<2 hr old) to 6–7 m 2/g for one-day-old smoke emitted on the day 
the Williams Flats fire was showing its most extreme behavior. While increases in aerosol size partially explained 
this trend, changes in the real part of the aerosol refractive index (real(n)) were necessary to provide full closure 
assuming Mie theory. Real(n) estimates from multiple days were found to be positively correlated with organic 
aerosol oxidation state and negatively correlated with smoke volatility. Future studies should focus on better 
understanding and parameterizing these relationships to fully represent smoke aging.

Adding further to understanding of the complexity of aerosol composition in fire plumes, Adachi et al. (2022) 
identified fine ash-bearing particles, which represent a small, but significant, component of aerosol mass and 
number. This identification was made possible through analysis of filter samples with both transmission electron 
microscopy and ion chromatography. While ash is often recognized as a contributor to coarse particle emissions, 
these fine ash particles composed mainly of Ca and Mg carbonates are carried much further downwind, with 
implications for BB aerosol indirect effects for example, as ice nuclei. Overall, fine ash was found to account for 
∼8% and 5% of aerosol number and mass in smoke plumes. The fine ash component was observed in both the 
western wildfires and eastern agricultural burning plumes.

5.3.  Improving Models and the Importance Satellite Observations

One of the stated goals for FIREX-AQ was to evaluate and improve the ability of models to predict fire impacts 
on local to regional scales. A first step toward this goal was the comparison of 12 forecast models performed by 
Ye et al. (2021). The comparison focused on the multi-day sampling of the Williams Flats fire to evaluate model 
differences in fire emissions, plume injection height, diurnal cycle of emissions, initialization time, chemical 
mechanisms, satellite AOD assimilation, treatment of aerosol processes, and boundary conditions. Given the 
diversity in the models, the resulting recommendations were generally applicable rather than specific to any 
particular model. In terms of emissions, a major limitation relates to the use of fixed diurnal emission cycles. 
The adoption of satellite FRP-based emissions and diurnal variation were highlighted as an important path for 
improvement. Assimilation of satellite AOD was also shown to benefit model forecasts, leading to better predic-
tions of smoke AOD. Smoke AOD was not a good indicator of model performance for surface PM2.5 concentra-
tion, raising the importance of representing plume rise and the subsequent vertical distribution of smoke. The use 
of persistence for emissions is a problem across all models, especially for days with drastic fire growth. A poten-
tial way to reduce the impact of the persistence assumption would be to more frequently integrate satellite-based 
updates to emissions, but such solutions are not trivial to implement.

In a specific case study, better WRF-Chem (v3.5.1) performance was demonstrated by Kumar et  al.  (2022) 
after adopting FRP-based fire emissions and plume rise estimation (adopted from HRRR-Smoke (Ahmadov 
et al., 2017)) as well as diurnal emissions profiles based on mean FRP profiles for three longitude bands across 
North America. Incorporation of FRP-based emissions was shown to have the greatest impact, raising emis-
sions by a few orders of magnitude above the severely underestimated values provided by 3BEM (Brazilian 
Burning Emission Model), which is the burned area, bottom-up approach normally used in WRF-Chem (Freitas 
et al., 2011). Also important was the improved diurnal cycle of emissions, which was better suited for western 
wildfires rather than the Amazonian fire cycle used in the base model. The impact of FRP-based plume rise was 
more subtle without clear evidence for improved performance.

Thapa et al. (2022) took a closer look at the commonly used plume rise parameterization in WRF-Chem and 
HRRR-Smoke from Freitas et al. (2007). Using Active Fire Area and FRP measured by the MASTER instru-
ment during overflights by the DC-8, Fire Radiative Energy (FRE) was calculated and compared to the model 
estimates. Modeled FRE exhibited a much wider range across different fuels than was seen in the observations. 
Observed values fell within the range of model values for savannah and grassland, despite many of the western 
wildfires including forest for which model estimates were significantly high. This contributed to an overpre-
diction of smoke injection height into the free troposphere. HSRL data revealed that smoke lofted into the free 
troposphere for 37% of fire plumes, while the model predicted this condition for 80%–95% of the plumes between 

 21698996, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

037758 by N
asa G

oddard Space Flight, W
iley O

nline L
ibrary on [29/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

WARNEKE ET AL.

10.1029/2022JD037758

51 of 62

the two models. Adjusting model calculations based on observed FRE resulted in fewer injections to the free  trop-
osphere but did not entirely eliminate the bias.

Ye et al. (2022) further addressed model plume rise by examining the vertical distribution of smoke in WRF-Chem. 
Taking four observed cases of smoke reaching into the free troposphere identified by Thapa et al. (2022), the 
vertical distribution of fire emissions was constrained with an inversion system used to assimilate HSRL obser-
vations. These constrained runs were compared to base runs using the Freitas et al.  (2007) parameterization. 
While the base runs apportioned the smoke roughly equally between the boundary layer and free troposphere, 
the constrained runs showed that more than 80% of the smoke was reaching the free troposphere in each of the 
four cases. Despite an evaluation of several model parameters related to fire and atmospheric conditions, no clear 
relationships were found to enable an empirical prediction of the fraction of smoke reaching the free troposphere. 
Thus, there remains a need to improve both the frequency with which models inject smoke into the free tropo-
sphere and the fraction of smoke injected when this occurs. This is of particular importance to smoke transport 
and impacts downwind.

Tang et al. (2022) showed that the MUSICAv0 (Multi-Scale Infrastructure for Chemistry and Aerosols Version 
0) model during the FIREX-AQ was improved using plume rise parameterizations and diurnal cycle of fire emis-
sions, where the impact of plume rise is the larger effect.

For representation of small fire activity in models, detection continues to be a major challenge. GOES-16 and 17 
FRP has greatly improved prospects for small fire detection. The DC-8 flight paths on August 21 and 26, 2019 are 
shown in Figure 26. Over these two days, 2 wildland fires, 4 silviculture burns, 2 pile burns, 13 corn field burns, 
1 prescribed fire, and 1 structural fire were sampled. Most of the cropland fires were burning more than one corn 
residue field (∼mean 3 fields), and most of these were detectable from space, with only one exception. GOES was 
able to detect 83% of the fires sampled; VIIRS detected 74%; and MODIS identified 30% of the fires. Also, note 
the large number of fire detections by GOES for the slash (126) and silviculture (40) fires. This demonstrates that 
detected fire duration from GOES is a potential discriminator between crop residue and land clearing fires that 
would not be distinguishable from polar orbiting satellites.

In addition to the value of satellite FRP and AOD observations, remote sensing of trace gas concentrations from 
fires (e.g., CO, HCHO, NO2, HONO) are also improving. Stockwell et al. (2022) compared satellite derived CO 
emissions from TROPOMI with estimates derived from airborne in situ measurements of smoke emitted within 

Figure 26.  Two flight tracks from the eastern fires sampled on 21 and 26 August 2019, highlight the improved capability of satellites to detect small fires. The fuel 
type and the number of satellite detects from GOES, MODIS, and VIIRS is indicated for each sampled fire.
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90 min of the satellite overpass. For the five fires satisfying this criteria, satellite and airborne estimates were in 
excellent agreement.

Griffin et al. (2021) focused on satellite-derived NOx emissions using the high-spatial-resolution TROPOMI NO2 
data set. They demonstrated that emissions can be accurately estimated from single TROPOMI overpasses, but 
an explicit aerosol correction had to be applied to improve the agreement with aircraft observations (by about 
10%–25%). Based on chemistry transport model simulations and aircraft observations, the net emissions of NOx 
are 1.3–1.5 times greater than the satellite-derived NO2 emissions and a correction factor needs to be used to infer 
net NOx from satellite NO2.

Liao et al. (2021) analyzed western and eastern fires for secondary HCHO production. Secondary HCHO was 
calculated by subtracting initially emitted HCHO from the measured HCHO. The primary HCHO contribu-
tion time profile was calculated from HCHO observed close to the fire and estimated loss from OH oxidation. 
In 9 of 12 fires, this production more than offset the photochemical loss of the initially emitted HCHO. A 
comparison of the plumes revealed that OH abundance (determined from decay of VOC pairs of different 
reactivity) rather than the dilution-normalized reactivity of the VOC mixture was the source of variability in 
the strength of HCHO production. From this result, it was suggested that satellite observations of HCHO and 
CO might be used to estimate oxidant levels in smoke plumes. This would also depend on the need to accu-
rately represent photolysis rates in the plume, where the complex radiative environment challenges satellite 
retrievals as well.

6.  Summary
The FIREX-AQ experiment was a large coordinated multi-agency, multi-platform research effort to investigate 
US fires in 2019. Various platforms for in situ and remote sensing measurements, several models, and expansive 
satellite research were coordinated with fuels and fuel consumption data to investigate the atmospheric science 
of fires in the most complete way to date. An overview of the FIREX-AQ effort is presented here that includes 
the study motivation, design, science goals, and outcomes. Detailed descriptions of all the measurements and 
analyses conducted to date are provided.

Even though 2019 was a below average fire year, FIREX-AQ was able to collect a large and unique new data 
set of western wildfires and smaller eastern fires and a summary of emerging and novel results on emissions, 
plume chemistry, model improvements, and important satellite observations are presented here and represent 
major advances in our understanding; for example, linking fire emissions to satellite FRP data and para-
metrizing ozone formation in fire plumes. Many more publications are expected from FIREX-AQ results in 
the future.

While FIREX-AQ was a milestone in fire research, many questions remain unanswered; for example, the emis-
sions and reasons for the observed trends of BrC in aging fire plumes remains unclear. With extreme fire seasons 
expected to continue into the future, fire research needs are at an all-time high and need to be continued after 
FIREX-AQ.

Appendix A
https://espo.nasa.gov/firex-aq/content/FIREX-AQ_Participants.

Data Availability Statement
FIREX-AQ was primarily funded by the public through support of NOAA and NASA research and the full 
quality-assured data set acquired from all aspects of the mission and value-added products described below 
are publicly available. The data can be found on the FIREX-AQ website (https://www-air.larc.nasa.gov/
missions/firex-aq/) and the data archive (https://doi.org/10.5067/SUBORBITAL/FIREXAQ2019/DATA001) 
(FIREX-AQ science team, 2019). A custom merging tool is available that can generate the full data set or just 
a subset.
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